Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale
Abstract. In the framework of landslide risk management, it appears relevant to assess, both in space and in time, the triggering of rainfall-induced shallow landslides, in order to prevent damages due to these kind of disasters. In this context, the use of real-time landslide early warning systems has been attracting more and more attention from the scientific community. This paper deals with the application, on a regional scale, of two physically-based stability models: SLIP (Shallow Landslides Instability Prediction) and TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis). A back analysis of some recent case-histories of soil slips which occurred in the territory of the central Emilian Apennine, Emilia Romagna Region (Northern Italy) is carried out and the main results are shown. The study area is described from geological and climatic viewpoints. The acquisition of geospatial information regarding the topography, the soil properties and the local landslide inventory is also explained.
The paper outlines the main features of the SLIP model and the basic assumptions of TRIGRS. Particular attention is devoted to the discussion of the input data, which have been stored and managed through a Geographic Information System (GIS) platform. Results of the SLIP model on a regional scale, over a one year time interval, are finally presented. The results predicted by the SLIP model are analysed both in terms of safety factor (Fs) maps, corresponding to particular rainfall events, and in terms of time-varying percentage of unstable areas over the considered time interval. The paper compares observed landslide localizations with those predicted by the SLIP model. A further quantitative comparison between SLIP and TRIGRS, both applied to the most important event occurred during the analysed period, is presented. The limits of the SLIP model, mainly due to some restrictions of simplifying the physically based relationships, are analysed in detail. Although an improvement, in terms of spatial accuracy, is needed, thanks to the fast calculation and the satisfactory temporal prediction of landslides, the SLIP model applied on the study area shows certain potential as a landslides forecasting tool on a regional scale.