Preprints
https://doi.org/10.5194/nhess-2020-131
https://doi.org/10.5194/nhess-2020-131
01 Sep 2020
 | 01 Sep 2020
Status: this preprint was under review for the journal NHESS. A final paper is not foreseen.

Landslides distribution at tributaries with different evolution stages in Jiangjia Gully, southwestern China

Xia Fei Tian, Yong Li, and Quan Yan Tian

Abstract. Landslide susceptibility assessment is of great significance for the disaster prediction and prevention. At present, most studies used statistical methods by the influence factors of landslide distribution, or based on physical models to determine the assessment result, the research of these methods was mainly focused on the gully scale. At the same time, these methods did not focus on the specific principle of material storage. In this paper, the surface erosion index, being the integral of the hypsometric curve, is adopted to explore the landslides distribution characteristic in different tributaries of the gully. Firstly, 81 tributaries of JJG are taken from DEM with 10 m grid cells, and the hypsometric curves are used to characterize their evolution stages; five stages are identified by the evolution index (EI, the integral of the hypsometric curves) and most tributaries are in relative youth stage with EI between 0.5 and 0.6. Then 906 landslides are interpreted from Quickbird satellite image of 0.61 m resolution. It is found that LD (LD = landslides number in a tributary/ the tributary area) increases exponentially with EI, while LAp (LAp = landslides area in a tributary/the tributary area) fluctuates with EI, meaning that landslides are inclined to occur in tributaries with EI between 0.5 and 0.6, and thus these tributaries are the main material sources supplying for debris flows.

This preprint has been withdrawn.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Xia Fei Tian, Yong Li, and Quan Yan Tian

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Xia Fei Tian, Yong Li, and Quan Yan Tian
Xia Fei Tian, Yong Li, and Quan Yan Tian

Viewed

Total article views: 739 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
528 168 43 739 47 50
  • HTML: 528
  • PDF: 168
  • XML: 43
  • Total: 739
  • BibTeX: 47
  • EndNote: 50
Views and downloads (calculated since 01 Sep 2020)
Cumulative views and downloads (calculated since 01 Sep 2020)

Viewed (geographical distribution)

Total article views: 688 (including HTML, PDF, and XML) Thereof 684 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 20 Nov 2024
Download

This preprint has been withdrawn.

Short summary
81 tributaries and 908 landslides are taken, this paper firstly reveals the spatial distribution of landslides. The relationship between hypsometric curve integral and landslides shows that the landslides number increases exponentially with hypsometric curve integral and the landslides area is concentrated in hypsometric curve integral between 0.5 and 0.6, it means that sufficient material for debris flows can be provided, which explains the reason that JJG has the debris flow of high frequency.
Altmetrics