Preprints
https://doi.org/10.5194/nhess-2019-379
https://doi.org/10.5194/nhess-2019-379
26 Nov 2019
 | 26 Nov 2019
Status: this preprint was under review for the journal NHESS but the revision was not accepted.

Data efficient Random Forest model for avalanche forecasting

Manesh Chawla and Amreek Singh

Abstract. Fast downslope release of snow (avalanche) is a serious hazard to people living in snow bound mountains. Released snow mass can gain sufficient momentum on its down slope path to kill humans, uproot trees and rocks, destroy buildings. Direct reduction of avalanche threat is done by building control structures to add mechanical support to snowpack and reduce or deflect downward avalanche flow. On large terrains it is economically infeasible to use these methods on each high risk site.Therefore predicting and avoiding avalanches is the only feasible method to reduce threat but sufficient snow stability data for accurate forecasting is generally unavailable and difficult to collect. Forecasters infer snow stability from their knowledge of local weather, terrain and sparsely available snowpack observations. This inference process is vulnerable to human bias therefore machine learning models are used to find patterns from past data and generate helpful outputs to minimise and quantify uncertainty in forecasting process. These machine learning techniques require long past records of avalanches which are difficult to obtain. In this paper we propose a data efficient Random Forest model to address this problem. The model can generate a descriptive forecast showing reasoning and patterns which are difficult to observe manually. Our model advances the field by being inexpensive and convenient for operational forecasting due to its data efficiency, ease of automation and ability to describe its decisions.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Manesh Chawla and Amreek Singh
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Manesh Chawla and Amreek Singh
Manesh Chawla and Amreek Singh

Viewed

Total article views: 1,236 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
789 384 63 1,236 63 60
  • HTML: 789
  • PDF: 384
  • XML: 63
  • Total: 1,236
  • BibTeX: 63
  • EndNote: 60
Views and downloads (calculated since 26 Nov 2019)
Cumulative views and downloads (calculated since 26 Nov 2019)

Viewed (geographical distribution)

Total article views: 1,076 (including HTML, PDF, and XML) Thereof 1,068 with geography defined and 8 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 07 Sep 2024
Download
Altmetrics