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Abstract.   

Fast downslope release of snow (avalanche) is a serious hazard to people living in snow bound mountains. Released snow

mass can gain sufficient momentum on its down slope path to kill humans, uproot trees and rocks, destroy buildings. Direct

reduction of avalanche threat is done by building control structures to add mechanical support to snowpack and reduce or

deflect downward avalanche flow. On large terrains it is economically infeasible to use these methods on each high risk site.

Therefore predicting and avoiding avalanches is the only feasible method to reduce threat but sufficient snow stability data

for  accurate  forecasting  is  generally  unavailable  and  difficult  to  collect.  Forecasters  infer  snow  stability  from  their

knowledge of local weather, terrain and sparsely available snowpack observations. This inference process is vulnerable to

human bias therefore machine learning models are used to find patterns from past data and generate helpful outputs to

minimise and quantify uncertainty in forecasting process. These machine learning techniques require long past records of

avalanches which are difficult to obtain. In this paper we propose a data efficient Random Forest model to address this

problem. The model  can generate a  descriptive forecast  showing reasoning and patterns  which are difficult  to  observe

manually. Our model advances the field by being inexpensive and convenient for operational forecasting due to its data

efficiency, ease of automation and ability to describe its decisions.

1 Introduction

In snow bound areas avalanches cause loss of life and property worldwide. Avalanche deaths are estimated at 250 per year

(Schweizer et al., 2015). Government and private agencies are funded to reduce avalanche threat for important activities and

property e.g road/rail transport, construction, army movement etc. This effort and research funding has led to development of

several techniques to reduce avalanche threat. For a specific site [< 1 km2 ], avalanche threat is reduced by building control

structures, modification of nearby terrain or use of explosives to trigger avalanches in controlled way (Fuchs et al., 2007).

Using such techniques on each risk site over large areas is economically infeasible therefore avalanche forecasting is done to

plan passive risk reduction measures.  Individuals can use information in forecast to plan their activities in snow bound

areas.

1

5

10

15

20

25

30

https://doi.org/10.5194/nhess-2019-379
Preprint. Discussion started: 26 November 2019
c© Author(s) 2019. CC BY 4.0 License.



Avalanche forecasting aims to identify the location of snowpack weakness and its triggering risk. Observing snowpack

stability at a high spatio temporal resolution over  large terrain is a difficult problem.  Therefore stability at most risk sites is

deduced using secondary observable data  e.g meteorological and snowpack parameters from a similar representative site,

terrain parameters of the site, expected changes to snowpack by weather etc. Snow stability shows high variance with respect

to  terrain  features.  Deduction process  for  snow stability  from secondary  data  has  not  been  mathematically  formulated

therefore forecasters need to rely on their intuition of local terrain and snowpack patterns to estimate stability and collect

more information to minimise uncertainty( LaChapelle, 1980, Schweizer et al., 2008 ).  Numerical and statistical models are

important tools for adding objectivity to this process.  

Numerical models simulate the snowpack and weather processes that contribute significantly to avalanche hazard.  CROCUS

and SNOWPACK give accurate snow profile simulations at a microscale level( < 1 km2 ) for sites where meteorological data

is available (Vionnet et al., 2012; Lehning et al., 1999). Meteorological sensors cannot be setup at all risk sites therefore

interpolated meteorological data from numerical weather models like SAFRAN is used as input for SNOWPACK model

(Lehning et al., 1999). The output from SNOWPACK tells forecasters about slopes where snowpack stability is changing due

to numerically modelled snowpack processes : weak layer formation due to temperature gradients, surface or deep wetting,

compaction and refreezing (Lehning et  al.,  1999).  A limitation of  this model chain is  its  inability to account  for  some

contributory processes e.g wind loading, its accuracy can be seriously affected by errors in interpolated meteorological data. 

Statistical models take input from a specific site and use it as representative of conditions over a larger region (mesoscale ~

10 km2) to estimate the avalanche threat.  These models link weather and snowpack variables to avalanche threat using

avalanche occurrences from historical data (Buser., 2009;  Gassner et al., 2001). Information from multiple sources( possibly

redundant)  e.g  wind  loading  indexes,  local  terrain  features,  location  specific  snowfall  patterns  ,  numerical  snowpack

simulations can be included in these models (Pozdnoukhov et al., 2011) , this makes them more robust to errors in individual

parameters  compared  to  numerical  models.  Forecasts  of  numerical  models  can  be  improved  by  using  their  results  in

statistical models.  

Machine learning has been used for tasks where procedures cannot be precisely formulated but humans perform well e.g in

handwriting and speech recognition (Liang and Hu, 2015). Machine learning models are not used to automate avalanche

forecasting  process,  they  instead  help  forecasters  judgement  by  providing  information  from past  data  relevant  to  the

forecasted  day.  In  this  paper  we  build  a  machine  learning  model  using  random  forest  technique.  The  model  gives

interpretable  data  mining  outputs  and  is  convenient  to  use  for  operational  applications  due  to  its  data  efficiency  and

automation.

2

35

40

45

50

55

60

https://doi.org/10.5194/nhess-2019-379
Preprint. Discussion started: 26 November 2019
c© Author(s) 2019. CC BY 4.0 License.



Nearest neighbours model is a frequently used statistical model for avalanche forecasting (Buser., 2009;  Singh and Ganju,

2008; Gassner et al., 2001; Singh et al.,  2014) . It estimates threat by using a set of historical days most similar to the

forecasted day. It is unable to directly model the inductive reasoning process used by avalanche forecasters, this may cause

data ineffeciency. Models in (Buser, 2009; Gassner et al., 2001; Singh and Ganju, 2008; Singh et al., 2014)  required atleast 7

years training data. 

Decision trees and expert  systems have been used to model complex patterns  which are missed by nearest  neighbours

(Rosenthal et al., 2001; Singh and Ganju, 2008; Schweizer and Föhn, 1996; Heindrikx et al. 2014) . These techniques are

capable of using expert knowledge by modeling known forecasting rules. Unfortunately individual trees are sensitive to

small changes in data and unable to learn complex decision boundaries without overfitting (Hastie et al., 2009). Expert

systems can be designed to satisfy all the criterion mentioned above but considerable human effort and expertise is required

to build expert systems. 

(Pozdnoukhov  et  al.,   2008)  use  support  vector  machines  (SVM)  on  high  dimensional  feature  vectors  for  avalanche

forecasting. They use feature vectors from multiple data sources for geo spatial forecasting (Pozdnoukhov et al., 2011), these

vectors include several  features representing slope ,elevation, snow drift,  snow stability and meteorological  parameters.

SVM maybe difficult to interpret by a forecaster, in (Pozdnoukhov et al., 2011) it is proposed to explore the support vectors

for interpreting model outputs, some features used by authors implementation currently require manual effort to record. 

A model satisfying following criterion can be made operational at a low cost :

1. Can be trained to give acceptable performance using a low amount of historical data. This makes it useful for regions

where long and reliable historical records are unavailable.

2. Can forecast using only data collected from automated sensors. Data with high spatio-temporal resolution can be used

from a grid of sensors.

3.  Can explain  the reasoning used  to  arrive  at  conclusion and  gives  numerical  estimates  justifying the  reasoning.  The

explaination should not require significant forecasting experience to interpret.

4. Acceptable forecast skill scores for operational use, high risk days should be detected with low rate of false positives.

We use an ensemble learning technique (Random Forest) , an ensemble of decision trees gives the  prediction. Random forest

ensemble can learn complex decision boundaries and is resistant to overfitting (Briemann., 2001). Decision trees have an
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interpretable output, trees from ensemble have been used to build a descriptive forecast. Our model satisfies all four criterion

above, therefore it overcomes some of the problems caused in operational use of the models we surveyed. The model can be

deployed at sites where data of three winters is available. In future we will explore the use of transfer learning techniques to

reduce the data requirement further. 

2 Modeling Technique

2.1 Random Forest

Random forest is an ensemble learning method (Opitz and Maclin, 1999). Individual decision trees have weak performance

due to overfitting and high variance. Random forest uses a collection of decision trees to improve prediction. Each tree is

trained on a random dataset derived from the training data using a process called bagging, this ensures that individual trees

are uncorrelated (Brieman, 1996). The output of the collection for a data point is given by the mean output of trees at that

point. The ensemble model is partially interpretable and depends on few parameters. Some useful properties of model are

(Briaman and Friedman, 1984):

1. A method for ranking feature importance.

2. Robust to outliers and missing values.

3. Can handle both discrete and continuous features without special pre-processing.

4. Training process can be highly parallelized by training trees on separate threads.

5. State of the art accuracy on various tasks (Rogez et al., 2008).

2.2 Decision Trees

A decision tree describes a flow chart like process for classifying data points. Each non leaf node in the tree defines a test on

the data point, each leaf node defines a classification. To classify a point we apply the test at root node to a data point,

depending on the result we move to a child node. If child node is a non-leaf node the same process is repeated to move to

subsequent child node. This is repeated till a leaf node is reached, this leaf node defines the classification for the data point.

We demonstrate this through an example (cf Figure 1).
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Figure 1: An example tree classifying a day as moderate or low avalanche threat using avalanche occurences and snowfall data of
past 2 days.

If for some day the following parameters are known to be:

1. Snowfall in past 24 hours = 48 cm

2. Snowfall in past 48 hours = 80 cm

3. Number of avalanches in past 2 days = 0

The test  on root  is  logically  equivalent  to  testing if  there were any  avalanches  in  past  two days,  since there were  no

avalanches in past two days we move to left child node as directed by arrows. We apply the test in left child node which

returns false since snowfall was 48 cm in past 24 hours, therefore we move to right child node which classifies the day as

moderate risk.

2.3 Training Decision Trees

Training algorithms for decision trees proceed by splitting the training dataset based on a feature value such that the resulting

datasets are more homogeneous in their target variable, this splitting process continues recursively on split datasets till a

termination  criteria  is  reached  which  specifies  that  the  dataset  is  sufficiently  homogenous.  Recursive  splitting  process

naturally defines the decision tree. Each node corresponds to a dataset and the split mentioned in node corresponds to the

split decided by the training process.

Algorithm starts with splitting the entire training dataset, writes the split in root node and adds two child nodes (left child C1

and right child C2) to root. Split datasets correspond to the child nodes and are split further adding more child nodes to the

nodes C1 and C2. This process can therefore be repeated recursively till sufficiently homogenous datasets are formed which

are represented by leaf nodes. The majority classification label of points in these final homogenous datasets is taken as the

label represented by the corresponding leaf node. See code in Figure 2 for details.
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Figure 2:  Pseudocode for decision tree training.

In this paper we use C4.5 algorithm implemented in Scikit-learn, a python machine learning library (Bressert, 2012; Quinlan,
1993) . C4.5 splits on the attribute with highest normalised information gain. In later sections we use Gini coefficient to
measure the homogeneity of target variables. Gini coefficient of observations y1, y2 ,.... , yn  is defined by:

G ( y1, y2 ,..... , yn )=
∑∑|y i− y j|

∑∑ y j

=
∑∑|y i− y j|

n∑ y j

……. Eq (1)

If all values are almost equal G approaches 0, if few values dominate all others G approaches 1.

2.4 Random Forest Training

Trees are trained on subspaces of the dataset. A subspace is formed by drawing a random sample with replacement from

training set and then selecting a random subset of features from the drawn sample. To build the ensemble a user specified

number of decision trees are trained and stored in memory, each tree is trained on a independent random subspace of the

training data.
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3 Features and Dataset

The model has been trained and tested using snow-meteorological and avalanche occurrence observations from Bandipore-

Gurez (BG) sector in the state of Jammu & Kashmir of India (Figure 4). BG road axis mainly runs along the Kishenganga

river in Gurez and Tulel valleys at the tip of Great Himalayan Range in northwest Himalaya and connects to Bandipore town

in Kashmir valley through Razdaan pass (3300m above msl). In Gurez valley (area on west of Wampore town), 40 major

avalanche sites affect the highway stretch of about 25 kms from Jatkushu village to Wampore village. Besides, about 15

avalanche sites affect the lateral tracks. In Tulel valley (area on east of Wampore town), over 100 major and minor avalanche

sites affect the highway and lateral tracks. The formation zone altitude of avalanche sites in the area ranges from about

2350m to 4800m above msl. A snow-meteorological observatory is located near Kanzalwan. The area is characterized by

continental climate and receives moderate to heavy snowfall during winter season.

Figure 3: A perspective view of BG sector.

The set of input parameters used for forecasting risk on a day are summarized in Table 1 and Table 2. While parameters in

Table 1 can be observed in automated mode, parameters in Table 2 are derived from these along with avalanche occurrence

data to represent the events of past few days. The prediction for a day can be done automatically if avalanche occurences of

past days are known, these can be detected automatically using infrasonic sensors and radars.  
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 Table 1: Parameters used for prediction. These can be automatically recorded.

Parameter name Unit Description

MAX-TEMP Degree Celcius ( oC ) Maximum Temperature of past 24 hours

MIN-TEMP Degree Celcius ( oC ) Minimum Temperature of past 24 hours

SNOW-TEMP Degree Celcius ( oC ) Snow  surface  temperature  measured  at

0830 hours

SNOW-DEPTH Meter ( m ) Height  of  snow  surface  above  ground

level

SNOW-AMT Meter ( m ) Amount of snowfall in past 24 hours

AVG-WIND-SPEED Meter/Second  ( m/s-1 ) Average wind speed in past 24 hours

 Table 2: Parameters derived from observed parameters. *Represents parameters derived using training labels.

Parameter name Unit Description

SNOW-TEMP-DIFF Degree Celcius ( oC ) Snow  surface  temperature  difference

from past day.

SNOW-AMT-2  Meter (m) Snow fall in past 2 days.

SNOW-AMT-4  Meter (m) Snow fall in past 4 days.

SNOW-AMT-10  Meter (m) Snow fall in past 10 days.

NUM-AVALANCHES-2* None Number of avalanches in past 2 days

NUM-AVALANCHES-4* None Number of avalanches in past 4 days

AVG-WIND-SPEED-2 Meter/Second  ( m/s-1 ) Average wind speed of past 2 days

AVG-WIND-SPEED-4 Meter/Second  ( m/s-1 ) Average wind speed of past 4 days

AVG-WIND-SPEED-10 Meter/Second  ( m/s-1 ) Average wind speed of past 10 days
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4 Model performance and parameters

We define a confusion matrix of a classifier C as on a labeled dataset D as:

aij=|S ij|

Where S ij  is defined as:

S ij={x∈D :      C ( x )=i    and    label ( x )= j } Eq (2)

This matrix is used for performance analysis of classifiers. Here we derive the following measures from confusion matrix to

describe performance.

Table 3: Performance measures used for model validation.

Measure name Description Expression in terms of confusion matrix

False Alarm Rate(FAR) Conditional  probability  of

returning an  avalanche day  given

underlying  day  is  non  avalanche

day.

a10

∑ ai0

Probability of Detection(POD) Conditional  probability  of

forecasting an avalanche day given

underlying day is avalanche day.

a11

∑ ai1

Precision Fraction  of  predicted  days  which

are avalanche days.

a11

a10+a11

 Heidke Skill Score (HSS) Measures   the  forecast

performance of classifier over of a

defined random

forecast (Wilks, 1995).

a11a00−a10 a01

(a11+a01 ) (a01+a00 )+(a11+a10) (a10+a00 )

Hansen Kuipers Skill Score (TSS) Measures   the  forecast

performance of classifier over of a

defined random

forecast (Wilks, 1995).
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4.1 Data Preprocessing

Model was trained on winter data from December 2010 to March 2013(Three winter seasons ), validation was done on

winter data from  December 2013 to March 2017. The dataset contains more non avalanche examples than avalanche days

[Table 4]. Training a classifier on this dataset will bias it to forecast more non avalanche days. A solution is to use cost

corrected classifiers with higher cost assigned to minority examples.  Another approach is to discard majority class data

randomly or synthetically generate more minority class data to make class sizes equal. This approach can lead to overfitted

classifier when datasets are highly skewed. 

To reduce skewness we remove from training and testing dataset all days for which avalanches are unlikely due to lack of

sufficient standing snow. We discard  examples where snow height is  less than 50cm [Table 4]. This filtering step removes

poor examples which cause overfitting of trees. See Table 4 for justification of threshold choice and summary statistics of the

dataset. When training decision trees of ensemble, the classes are weighted by their proportion in filtered dataset. 

Table 4: Summary statistics of BG axis avalanche dataset ( Dec 2010 – Mar 2017)

Number of days in winter season 120

Mean number of avalanches per season 30

Mean number of avalanches per  season when snow height

was greater than 50 cm.

29

Mean number of days out of 120 days per season when snow

height is greater than 50 cm.

81

Mean number of non-avalanche days when snow height was

greater than 50 cm.

52
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4.2 Parameter Tuning

We tune the following model parameters:

D = Maximum depth allowed for a tree added to ensemble. 

 N = Number of trees used in ensemble.

Model output is the estimated probability of an avalanche given the input parameters for the day defined in Table 1. To get a

binary classification and validate the model using scores in Table 3 a threshold is selected. If risk prediction for a day is

greater than the selected threshold it is classified as avalanche day otherwise a non avalanche day. Threshold choice sets a

trade off between the risk of missing an avalanche day against the risk of false alarm on a non avalanche day. Low threshold

values give high false alarm rates but fewer avalanche days are misclassified as non avalanche days. High threshold choice

gives few false alarms but misses more avalanche days. Forecaster can select a threshold optimal for his risk management

strategy without retraining the model. To evaluate model performance for a set of parameters (N,D) we use HSS scores

obtained against possible threshold values. 

Increasing values  of  D beyond 3  decreased  the   model  performance as  measured  by HSS on  most  threshold choices.

Increasing D leads to overfitting of individual trees and lowers their performance. This leads to lowered performance of

ensemble.

 Increasing N reduces the variance in model prediction, and smooths decision boundaries. Increasing N beyond the value

required for convergence of  model gives no significant change in risk outputs and performance. Values of N beyond 5000

had no significant impact on model performance metrics for values of D between 2 and 5. For higher values of D model

performance was unacceptable for values of N tested (2000 <= N <= 100000).
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Figure 4: HSS  at various thresholds used for parameter tuning of Random Forest model. Scores decrease for values of D beyond 3.

4.3 Model Validation

Figures 6,7 show model performance using FAR, POD and Precision scores. Precision scores show increasing trend with

threshold. Beyond threshold of 0.82 precision is set zero, this is because 0.82 is the highest predicted probability on the

testing data. This shows the difficulty of avalanche forecasting, due to unpredictable causes of avalanches classifier cannot

be  confident above the threshold.
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Figure 5: Graph showing FAR,POD and Precision scores at various       Figure 6: POD and Precision against FAR values tolerated.

threshold choices.

Table 5 : POD and Precision values for different FAR tolerated when using Random Forest model for forecasting.

FAR POD PRECISION

0.1 0.43 0.59

0.15 0.5 0.52

0.2 0.62 0.51

0.25 0.66 0.47

0.3 0.7 0.44

0.35 0.74 0.41

0.4 0.77 0.39

0.45 0.82 0.38

0.5 0.86 0.37

0.55 0.86 0.35

0.6 0.87 0.33

0.65 0.87 0.31

0.7 0.9 0.30
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For high classification threshold only days when the model  is  confident are classified as positive.  Increasing threshold

improves precision and lowers false alarms. This shows that the model estimates avalanche risk consistently, days predicted

with high confidence are more likely to be avalanche days.

At smaller values of FAR the POD shows greater rate of increase. Rate of POD increase for FAR values more than 0.5 is

low. Avalanches depend on complex situations not represented by training data therefore the model is not confident when

avalanches occur due to such reasons. Simpler situations e.g. high snowfall and snow height can be easily captured by model

at lower FAR. Increasing FAR beyond a threshold gives lower gains because the threat from simpler avalanche situations

( detected at lower FAR ) can be predicted with high confidence but complex situations may not be captured and model

misses such avalanche days. 

We use statistics from Table 5 and Table 4 to find an acceptable FAR vs POD trade-off for operational forecasting.  For

example  FAR of  0.3 and  POD of  0.7 implies  that  of  52  non avalanche days approximately  15 were  misclassified  as

avalanche days and of 29 avalanche days approximately 21 were classified correctly [Refer to Table 6]. Therefore  the model

detected 21/30 avalanche days in entire season by warning for 36 days.  Table 6 gives such operational performance metrics

of the model for various values of  FAR.

Figure 7: Validation of model against avalanche activity in BG axis from December 2013 to March 2014. Vertical line represents an

avalanche day. Blue curve shows the model predicted avalanche probability.
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Table 6: Operational forecasting metrics of Random Forest model for BG axis.

FAR Mean  number  of  avalanche  days

detected out of 29

Mean number of warnings given

0.2 18 / 29 28

0.3 21/29 36

0.4 22/29 42

0.5 25/29 51

4.4 Comparisons with similar models

We compared the model with similar models based on its skill scores, selection of features, data efficiency and descriptive

forecasting[ Table 7 ].  The model uses lesser data, gives informative descriptive forecasts and acceptable skill. Sufficient

historical avalanche data is not available for most places therefore a data efficient model is required for forecasting.

Table 7: Model comparisons with Random Forest model. HSS scores depend strongly on the training and testing datasets used.

Modeling Technique used Highest HSS (TSS)

score achieved

Training Data Used Use  of   features

measured  which

cannot  be

automatically

measured currently

Descriptive

Forecasting.

Support Vector Machines (Pozdnoukhov

et al., 2008)

HSS = 0.62

TSS = 0.63

10 years data (1991

–  2000)  Lochaber

region, Scotland.

Yes Suggested as future

work. By exploring

support  vectors  of

trained model.

Calibrated nearest neighbours (Singh et

al., 2014)

HSS = 0.31 14  years  (1999  –

2012) CT Axis.

Yes Returns  a  list  of

similar  days

measured  by

calibrated metric.

Calibrated nearest neighbours (Purves et

al., 2003)

TSS = 0.61 8 years data, 1991 –

1998,  Lochaber.

Yes Returns  a  list  of

nearest  days  and
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region , Scotland their  attributes,

visualisations of list

attributes  and  geo

map  locations  of

similar days.

Random Forest (This model). HSS =0.41

TSS = 0.42

3  Years  (  2010  –

2013) BG Axis.

No Implemented by 

displaying  decision

trees  in  ensemble

which  predict  high

risk output.

Descriptive Forecast (Data mining outputs) from a model is used by forecasters to understand the causes of avalanche threat.

This information is used to find high risk slopes, estimate the type and magnitude of avalanches. Descriptive forecast  given

by nearest neighbours is a list of most similar days to the day being forecasted. From this list forecaster makes inferrences

about important variables contributing and high risk slopes. Understanding interactions between variables is difficult using

this approach since numerical data about variable combinations causing high risk is unavailable. Forecasters have to  use

only few similar days, therefore variable interactions are deduced from experience largely.

Descriptive forecast by visualising trees can give information which cannot be gained using a list of nearest neighbours.

Decision trees show the critical variables for a day and the range of values of these variable which were historically related

to high avalanche threat. Trees can show important interactions between variables and give useful numerical data[Refer sec

5.1]. The output of a decision tree can be interpreted as a forecasting heuristic with confidence estimates from past data [See

section 5 .1 for details and examples].

5. Descriptive Forecasting

Descriptive forecast includes information to analyse avalanche threat. Examples of descriptive forecast from some frequently

used models:

a. Nearest neighbours model lists similar days and their attributes (Singh and Ganju, 2008; Singh et al., 2014; Purves

et al. 2003).
b. Expert systems list applicable rules (Singh and Ganju, 2008;  Schweizer and Föhn, 1996).
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c. Support Vector Machines can list vectors which define the maximal margin hyperplane (Pozdnoukhov et al., 2008).

Precise estimates for variable combinations and their range related to high avalanche threat  are difficult  to make using

descriptive forecasts generated by nearest neighbours model.  Our model can describe important variables and their relation

to avalanche risk by visualising decision trees predicting high risk. Decision tree shows a set of conditions justifying the

avalanche threat and confidence estimates from past data.  For models mentioned in section 4.4 such conditions need to be

infered  manually, causing  more  subjective  bias.  The reasoning  given  by  the  model  can  help  forecasters  validate  their

assumptions about the current situation or alert them if these assumptions are invalid.

5.1 Decision tree visualisation and results

A path from root to a leaf node in a decision tree can be interpreted as a sequence of conditions. Forecasting rules can be

defined by these condition sequences.  Descriptive forecast is generated by visualising trees predicting highest avalanche

threat  probability.  Visualised  trees  give  rule  based  forecasting  logic  and  the  strength  of  its  predictive  value.  In  our

experiments the trees show  non-trivial logic which may be difficult to discover otherwise.

We show here a sample descriptive forecast for BG axis on 1-Feb-17, a day classified as high risk with predicted avalanche

probability  0.54  .  Ten  decision  trees  which  predicted  probabilities  greater  than  or  equal  to  0.9  were  visualised.  Most

visualised trees show that snowfall in past 10 days and high wind speed caused risk. Tree in Figure 9 demonstrates this

reasoning pattern: 

Figure 8: Tree demonstrating risk factors on 1 – Feb – 17 at BG axis, selected from ensemble for visualisation due to its high risk

output.
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Following the reasoning path from root to red leaf node we get the following heuristic satisfied for the present day:

If Standing snow > 79.5 AND Snow fall in past 10 days > 134.5 AND Average wind speed in past 10 days > 5.0 then the risk

of avalanche is high ( > 90% ) 

Such reasoning is known to experienced forecasters. In this case model gives numerical estimates for intuition. Trees can

also suggest patterns which are difficult for forecasters to observe manually. Figure 10 demonstrates such a pattern , this was

visualised for descriptive forecast of 28-Mar-17.

Figure 9: Tree demonstrating risk factors on 28 – Mar – 17 at BG axis,selected for visualisation from ensemble due to its high risk

output.The tree indicates that melting maybe a major reason for threat. Numerical thresholds obtained can be helpful for further

data mining.

Suggested rule satisfied for day is:

     -2.75 <   MIN_TEMP <= -0.75   AND MAX_TEMP >= 1.75 then avalanche risk is high.

The temperature bounds show that  snow melt  maybe causing high threat.  We check this hypothesis by additional  data

mining.  Statistics from a filtered database containing only days which satisfy these bounds are compared to same statistics

from the original database[Table 8].  Other features correlated to the temperature bounds may be causing actual threat. To

rule this out we made a simple univariate analysis, variables with significantly different distributions in filtered and original

sets were analysed. Of these we believe only snow height is a variable leading to significant changes in hazard levels. To
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analyse  effect of snow height we make another filtered dataset from the original data containing only days where snow

height is greater than the mean snow height of temperature filtered data. Statistics from these three datasets are compared in

Table 8.

Table 8: Verification of decision tree output by comparing statistics of data  filtered using  tree output and unfiltered/control

datasets.

Statistic Original Dataset [ Unfiltered ] Filtered  Dataset  [  by

temperature bounds]

Filtered  Dataset  [  by  snow

height > 100 cm ]

Avalanche  Probability  on  a

day

0.21 0.43 0.4

Mean Standing Snow 81 cm 101 cm 145 cm

Probability of avalanche after

snow fall between 0 to 20 cm.

0.27 0.61 0.45

Probability of avalanche after

snow  fall  between  20  to  40

cm.

0.41 0.68 0.5

Probability of avalanche after

snow fall more than 40cm.

0.51 0.71 0.58

Snowfall causes significantly higher risk when the temperature bounds are satisfied. In our analysis the contribution of

temperature  was much higher  than standing  snow height  [see Table  8].  Higher  triggering  risks  after  snowfall  at  these

temperatures is likely due to the formation of melt freeze crusts and higher snow density at higher temperatures.  When rule

is satisfied and no snowfall occurs the risk is higher than days when mean snow height is much higher , this suggests

significant melting instability.

Temperature bounds can be similarly used in data base queries to get other important information from past data. Past high

risk slopes which triggered under such temperature conditions, size of avalanches triggered, stability and snow profile data

collected under similar temperature conditions can be searched from filtered databases.
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6. Discussion

The model gives acceptable forecast accuracy of triggering risk by fresh snowfall or other natural causes. In 51 warnings it

detected 25 out of an average of 29 avalanche days per winter [ Table 6 ]. On average half warnings of natural triggering are

true,  this  precision  is  reasonable  given  the  difficulty  of  predicting  natural  avalanches.  The  false  alarms  can  indicate

untriggered snow instability. Descriptive forecast can provide more information about nature of these instabilities and their

probable locations.

 The example in Figure 10 gives the following rule:

-2.75 <   MIN_TEMP <= -0.75   AND MAX_TEMP >= 1.75 then avalanche risk is high( > 90% natural triggering risk).

The rule seems to predict melt avalanches, such a simple yet effective rule in terms of temperature only is difficult to find for

a forecaster.  The data mining results in table 8 show that snowfall when the rule is satisfied leads to higher triggering

probability. This is due to combination of factors: formation of melt freeze crusts and higher density of fresh snow at higher

temperatures. The fresh snow bonds poorly with crust , due to its higher density it is also more likely to slip from crust.

When rule is satisfied and no snowfall occurs the risk is higher than days when mean snow height is much higher , this

suggests significant melting instability.

Such complicated reasoning was accounted by model without any significant feature engineering effort. An explanation of

data effeciency is that decision trees model such reasoning and ensemble accounts for the different causes of avalanches.

Variables involved for avalanche threat are  different for various situations therefore in avalanche datasets the important

variables involved in causing threat vary across the sample space. Nearest neighbour models are unable to adopt to this

variation in feature importance, they use the same distance metric to forecast in every neighbourhood of sample space. Trees

in ensemble consider different features important hence this method can account for the differences in important variables.

The trees trained with splitting features matching the important features for input day give higher probabilty outputs than

other trees. 

Prediction is made using only parameters which can be measured automatically.  Therefore such models can use data from

dense sensor grid to improve performance.  If additional parameters are required to improve forecasting process, less record

of  these new parameters  is  required for  training an  updated model.  Therefore  data effeciency  of  a  model  implies  that

economic returns from setting up and updating a sensor grid can be obtained in a reasonable time period. We expect the

following approaches are promising for improvement of data effeciency:
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1. Use of transfer learning techniques to use data from several regions to forecast in a region where long avalanche data

records are unavailable.

2. Inclusion of numerical snowpack simulation data into input features.

3.  Tuning of algorithm for avalanche forecasting, changing the bagging and feature splitting procedures to account for

differing importance of various situations in forecasting.

7. Conclusions

Requirement of long term training data is a significant problem in operational use of machine learning models for avalanche

forecasting.  Data efficiency can reduce the cost  of training a new model for a location or retraining an existing model to use

different data.  This paper demonstrates the use of Random Forest technique for avalanche forecasting on a dataset from BG-

axis.  The model shows significantly higher data effeciency than current operational models surveyed. This is likely due to

the ability of decision trees to model specific avalanche forecast  knowledge and the ensemble modeling the stochastic

properties of data. The model gives acceptable forecast skill while using low amount of training data [3 winters data]. Future

work can explore reducing the data requirements further by using transfer learning techniques and specialised tuning for

avalanche forecasting.

Data  used  by  model  for  prediction  on  a  day  can  be  collected  automatically, forecasts  can  be  generated  automatically.

Automated data collected in high volume from a dense sensor grid can be used for generating forecasts. Data efficiency and

automated forecasting make the model economical for operational forecasting aplications.  

Descriptive forecasting by visualising decision trees can give reasons for avalanche threat and help forecasters  judgement by

giving  them  numerical  estimates  and  qualitative  analysis  of  situation.  Variable  combinations  causing  threat  and  risk

probabilities given the variable ranges are clear from decision trees.  Further data mining can be done using these ranges and

variables to find high risk slopes and type of instabilities. 
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Tables

 Table 1: Parameters used for prediction. These can be automatically recorded.

Parameter name Unit Description

MAX-TEMP Degree Celcius ( oC ) Maximum Temperature of past 24 hours

MIN-TEMP Degree Celcius ( oC ) Minimum Temperature of past 24 hours

SNOW-TEMP Degree Celcius ( oC ) Snow  surface  temperature  measured  at

0830 hours

SNOW-DEPTH Meter ( m ) Height  of  snow  surface  above  ground

level

SNOW-AMT Meter ( m ) Amount of snowfall in past 24 hours

AVG-WIND-SPEED Meter/Second  ( m/s-1 ) Average wind speed in past 24 hours
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 Table 2: Parameters derived from observed parameters. *Represents parameters derived using training labels.

Parameter name Unit Description

SNOW-TEMP-DIFF Degree Celcius ( oC ) Snow  surface  temperature  difference

from past day.

SNOW-AMT-2  Meter (m) Snow fall in past 2 days.

SNOW-AMT-4  Meter (m) Snow fall in past 4 days.

SNOW-AMT-10  Meter (m) Snow fall in past 10 days.

NUM-AVALANCHES-2* None Number of avalanches in past 2 days

NUM-AVALANCHES-4* None Number of avalanches in past 4 days

AVG-WIND-SPEED-2 Meter/Second  ( m/s-1 ) Average wind speed of past 2 days

AVG-WIND-SPEED-4 Meter/Second  ( m/s-1 ) Average wind speed of past 4 days

AVG-WIND-SPEED-10 Meter/Second  ( m/s-1 ) Average wind speed of past 10 days
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Table 3: Performance measures used for model validation.

Measure name Description Expression in terms of confusion matrix

False Alarm Rate(FAR) Conditional  probability  of

returning an  avalanche day  given

underlying  day  is  non  avalanche

day.

a10

∑ ai0

Probability of Detection(POD) Conditional  probability  of

forecasting an avalanche day given

underlying day is avalanche day.

Precision Fraction  of  predicted  days  which

are avalanche days.

a11

a10+a11

 Heidke Skill Score (HSS) Measures   the  forecast

performance of classifier over of a

defined random

forecast (Wilks, 1995).

a11a00−a10 a01

(a11+a01 ) (a01+a00 )+(a11+a10) (a10+a00 )

Hansen Kuipers Skill Score (TSS) Measures   the  forecast

performance of classifier over of a

defined random

forecast (Wilks, 1995).

28

695

700

https://doi.org/10.5194/nhess-2019-379
Preprint. Discussion started: 26 November 2019
c© Author(s) 2019. CC BY 4.0 License.



Table 4 : POD and Precision values for different FAR tolerated when using Random Forest model for forecasting.

FAR POD PRECISION

0.1 0.43 0.59

0.15 0.5 0.52

0.2 0.62 0.51

0.25 0.66 0.47

0.3 0.7 0.44

0.35 0.74 0.41

0.4 0.77 0.39

0.45 0.82 0.38

0.5 0.86 0.37

0.55 0.86 0.35

0.6 0.87 0.33

0.65 0.87 0.31

0.7 0.9 0.30
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Table 5: Summary statistics of BG axis avalanche dataset ( Dec 2010 – Mar 2017)

Number of days in winter season 120

Mean number of avalanches per season 30

Mean number of avalanches per  season when snow height

was greater than 50 cm.

29

Mean number of days out of 120 days per season when snow

height is greater than 50 cm.

81

Mean number of non-avalanche days when snow height was

greater than 50 cm.

52
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Table 6: Operational forecasting metrics of Random Forest model for BG axis.

FAR Mean  number  of  avalanche  days

detected out of 29

Mean number of warnings given

0.2 18 / 29 28

0.3 21/29 36

0.4 22/29 42

0.5 25/29 51
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Table 7: Model comparisons with Random Forest model. HSS scores depend strongly on the training and testing datasets used.

Modeling Technique used Highest HSS (TSS)

score achieved

Training Data Used Use  of   features

measured  which

cannot  be

automatically

measured currently

Descriptive

Forecasting.

Support Vector Machines (Pozdnoukhov

et al., 2008)

HSS = 0.62

TSS = 0.63

10 years data (1991

–  2000)  Lochaber

region, Scotland.

Yes Suggested as future

work. By exploring

support  vectors  of

trained model.

Calibrated nearest neighbours (Singh et

al., 2014)

HSS = 0.31 14  years  (1999  –

2012) CT Axis.

Yes Returns  a  list  of

similar  days

measured  by

calibrated metric.

Calibrated nearest neighbours (Purves et

al., 2003])

TSS = 0.61 8 years data, 1991 –

1998,  Lochaber.

region , Scotland

Yes Returns  a  list  of

nearest  days  and

their  attributes,

visualisations of list

attributes  and  geo

map  locations  of

similar days.

Random Forest (This model). HSS =0.41 3  Years  (  2010  – No Implemented by 
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TSS = 0.42 2013) BG Axis. displaying  decision

trees  in  ensemble

which  predict  high

risk output.

Table 8: Verification of decision tree output by comparing statistics of data  filtered using  tree output and unfiltered/control

datasets.

Statistic Original Dataset [ Unfiltered ] Filtered  Dataset  [  by

temperature bounds]

Filtered  Dataset  [  by  snow

height > 100 cm ]

Avalanche  Probability  on  a

day

0.21 0.43 0.4

Mean Standing Snow 81 cm 101 cm 145 cm

Probability of avalanche after

snow fall between 0 to 20 cm.

0.27 0.61 0.45

Probability of avalanche after

snow  fall  between  20  to  40

cm.

0.41 0.68 0.5

Probability of avalanche after

snow fall more than 40cm.

0.51 0.71 0.58
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