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We are grateful for your careful attention to manuscript and suggestions for improving it.
We have fixed the issues suggested. Editing quality of manuscript has been improved.

Our pointwise response is listed below:

(2) This issue has been fixed. We use hazard to refer the damage potential of
avalanche, risk measures the chance of damage to an exposed object.

(3) We could not find full names of some models in their original papers. [SNOWPACK
, CROCUS ].

(4) We cited the following additional papers using Machine Learning to do Avalanche
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Hazard Mapping, avalanche detection, forecasting, snow density prediction from me-
teorological variables:

Choubin, B., Borji, M., Mosavi, A., Sajedi-Hosseini, F., Singh, V.P., Shamshirband,
S.: Snow avalanche hazard prediction using machine learning methods. Journal of
Hydrology, 577, p.123929, https://doi.org/10.1016/j.jhydrol.2019.123929 ,2019.

Davis, R.E., Elder, K., Howlett, D. and Bouzaglou, E.. 1999. Relating storm and
weather factors to dry slab avalanche activity at Alta, Utah, and Mammoth Mountain,
California, using classification and regression trees. Cold Reg. Sci. Technol., 30(1-3),
79-90

Melgysund, V., Leira, B., Hgiseth, K.V., Lisg, K.R.: Predicting snow den-
sity using meteorological data. Meteorological Observations, 14, 413 — 423,
https://doi.org/10.1002/met.40, 2007.

Rahmati, O., Ghorbanzadeh, O., Teimurian, T., Mohammadi, F., Tiefenbacher, J.P,,
Falah, F., Pirasteh, S., Ngo, P.T., Bui, D.T.: Spatial Modeling of Snow Avalanche Using
Machine Learning Models and Geo-Environmental Factors: Comparison of Effective-
ness in Two Mountain Regions, Remote Sensing, https://doi.org/10.3390/rs11242995 ,
2019.

Rubin, M.J., Camp, T., Herwijnen. A.V., Schweizer. J.: Automatically Detecting
Avalanche Events in Passive Seismic Data, 11th International Conference on Ma-
chine Learning and Applications, Boca Raton , FL, USA, 12 — 15 Dec. 2012,
https://doi.org/10.1109/ICMLA.2012.12, 2012.

Schirmer, M., Lehning M., Schweizer, J.,: Statistical forecasting of regional avalanche
danger using simulated snow-cover data. Journal of Glaciology, 55(193), 761 — 768,
https://doi.org/10.3189/002214309790152429, 2009.

Thuring, T., Schoch, M., Herwijnen, A.V., Schweizer, J.: Robust snow
avalanche detection using supervised machine learning with infrasonic
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sensor arrays, Cold Regions Science and technology, 111, pp. 60-65,
https://doi.org/10.1016/j.coldregions.2014.12.014, 2015.

Additional literature about avalanche climatology, avalanche forecasting, snow stabil-
ity evaluation has been cited: [in discussion section , revised section is atteched as
discussion.pdf ]

Hageli, P, McClung, D. M. : Avalanche characteristics of a transitional snow cli-
matedARColumbia Mountains, British Columbia, Canada. Cold Regions Science and
Technology, 37, pp. 255-276, https://doi.org/10.1016/S0165-232X(03)00069-7 , 2003.

Haegeli, P, McClung, D. M.. Expanding the snowaARclimate classification
with avalancheaARrelevant information: Initial description of avalanche win-
ter regimes for southwestern Canada. Journal of Glaciology, 53, 266-276.
https://doi.org/10.3189/172756507782202801, 2007

Mock C.J., Birkeland K.W. : Snow Avalanche Climatology of the Western
United States Mountain Ranges, Bulletin of the American Meteoroligical Society ,
https://doi.org/10.1175/1520-0477(2000)081<2367:SACOTW>2.3.CO;2, 2000.

Shandro, B., Haegeli, P.: Characterizing the nature and variability of avalanche hazard
in western Canada, Natural Hazards and Earth System Sciences, 18, pp. 1141-1158,
https://doi.org/10.5194/nhess-18-1141-2018 , 2018.

Sharma, S.S., Ganju, A.: Complexities of avalanche forecasting in Western Hi-
malaya aAT an overview, Cold Regions Science and Technology, 31(2), pp. 95-102,
https://doi.org/10.1016/S0165-232X(99)00034-8 , 2000.

Thumlert, S., Bellaire, S., Jamieson, B.: Relating avalanches to largeaARscale ocean—
atmospheric oscillations. In International Snow Science Workshop , Banff Canada, 29
September ,pp. 481-485 , 2014.

(5) Stated as objectives. [ introduction rewritten and attached as intro.pdf ]
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(6) All figure numbers have been corrected.

(7) The time of observation of SNOW_TEMP(Snow Surface Temperature) is 8:30
AM(Morning) , mentioned as 0830 hours here. We have given time as 8:30AM.

(8) Rewritten that it is derived using past avalanche activity , so there is no confusion.
(9) Cited Wilks.

(10) This is written in the first sentence of section 4.1. We can write this in captions of
tables/graphs if it improves readability.

(11) All figure numbers have been corrected.

(12) The area is large with several avalanche sites, it may be difficult to visualize them
in this paper.

(13) We have summarised the modeling conditions and details of evaluation procedure
at the start of section 4.2.

(14) The performance is acceptable for operational forecast [ Table 6 ], model is recom-
mended due to this performance with low amount of data and its ease of automation.
Performance can be improved with lesser data, this is an area for future research: we
have built a transfer learning model prototype with better performance and data effe-
ciency. Adding other simulated snowpack data can also bring improvements.

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-
2019-379, 2019.
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Data efficient Random Forest model for avalanche forecasting
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Abstract.

Fast downslope release of snow (avalanche) i a serious hazard to people

g in snow bound mountains. Released snow

mass can gain sufficient momentum on its down slope path to kill humans, uproot trees and rocks, destroy buildings. Direct

reduction of avalanche threat is done by building control structures to add mechanical support to snowpack and reduce or
deflect downward avalanche flow. On large terrains it is economically infeasible to use these methods on each hazard sie.

‘Therefore forecasting and avoiding avalanches is the only feasible method to reduce hazard, but sufficient snow stability
data for accurate forecasting is generally unavailable and difficult to collect. Forecasters infer snow stability from their
knowledge of local weather, terrain and sparsely available snowpack observations. This inference process is vulnerable to
human bias therefore machine learning models are used to find patterns from past data and generate helpful outputs t©
minimise and quantify uncertainty in forecasting process. These machine learning techniques require long past records of
avalanches which are difficult to obtain. In this paper we propose a data efficient Random Forest model (o address his
problem. The model can generate a descriptive forecast showing reasoning and patterns which are difficult to observe
manually. Our model advances the field by being inexpensive and convenient for operational forecasting due 10 its data

efficiency, amenable to automation and ability to describe its decisions.

1 Introduction
In snow bound areas avalanches cause loss of lfe and property worldwide. Avalanche deaths are estimated at 250 per year
(Schweizer et al., 2015). Government and private agencies are funded to reduce avalanche risk for important activities and

property e.g. roadail transport, construction, border patrolling etc. This effort has led 1o development of several

techniques to reduce avalanche risk. Avalanche hazard mapping is done to estimate the long term hazard at each slope in a

region (Choubin et al,, 2019; Rahmai et al,, 2019). The map is used to plan active risk reduction methods e.g. building
control structures, modification of nearby terrain or use of explosives to trigger avalanches in controlled way (Fuchs et al.,
2007). Using active techniques at each hazard site is economically infeasible therefore avalanche forecasting is practised to
reduce avalanche exposure. Individuals can use information in forecast to minimise short term risk in snow bound areas.

Avalanche forecasting aims to identify the locations of snowpack weakness, their spatial distribution and sensitivity to

riggering (Statham et. al. 2018). Observing snowpack stability at a high spatio-temporal resolution over large terrain is a

1t problem. Therefore stability at most risk sites is deduced using secondary observable data.e.g. meteorological and
snowpack parameters from a similar representative site, terain parameters of the site, expected changes to snowpack by
imminent weather etc. Snow stability shows high variance with respect to terrain features (Gaume et al., 2014). Deduction
process for snow stability from secondary data has not been mathematically formulated therefore forecasters need 1o rely
on their intuition of local terrain and snowpack pattems to estimate stability and collect more information to minimise
uncertainty (LaChapelle, 1980; Schweizer et al., 2008; McClung and Schaerer, 2006). Numerical and statistical models are
important tools for adding objectivity to this process.

C5

6. Discussion

‘The model gives acceptable forecast accuracy of tiggering probability by fresh snowfall o other natural causes. In 51

warnings it detected 25 out of an average of 29 avalanche days per winter [Table 6]. On average half of total warnings of
natural wiggering are true, This precision is reasonable given the difficulty of forecasting natural avalanches. The false
alarms can indicate un-triggered snow instability. Descriptive forecast can provide more information about nature of these
instabilities and their probable locations.

Consider the rule of figure 9 example:

275< MIN_TEMP <= 075 AND MAX_TEMP >= 175 then avalanche proba

h (> 90% natural wiggering
probability).

“This rule seems to predict melt avalanches. Such a simple yet effective rule in terms of temperature only i difficult (o find
for a forecaster. We checked this hypothesis by additional data mining, Statistics from a filtered database containing only
days which satisy these bounds are compared to same statistics from the original unfiltered database [Table 8]. Other
features correlated to the temperature bounds may be causing hazard. To rule this out we made a simple univariate analysis,
where variables with significantly different distributions in filtered and original sets were analysed. Of these we believe
only snow height s a variable leading to significant changes in hazard levels. To analyse effect of snow height, we applied
another filtering 1o get data where snow height s greater than the mean snow height of temperature filtered data, Statstics
from these three datasets are compared in Table 8

“The data mining results in Table 8 show that snowfall when the rule is satisfied leads to higher triggering probability. This
is due to combination of factors: formation of melt freeze crusts and higher density of fresh snow at higher temperatures
(Statham et al., 2014; Melaysund et al., 2007 ). The fresh snow bonds poorly with crust and due to ts higher density it is
also more likely o slip from crust. When rule is satisfied and no snowfall occurs, the triggering probability is higher than
days when mean snow height is much higher. This suggests significant melting instability.

“The model inferred the effect of a critical snowpack structure (melt freeze crust) from meteorological data. Capturi

g more

complex properties of these structures e.g. persistence and strength require further feature engineering. Effect of persistent

snowpack structures and climatic oscillations on avalanche activity has been analysed in detail by many researchers
(Latemser and Schncebel, 2003; Hegeli and McClung, 2003; Thumlert, et al. 2014). The resuling characterisations of
avalanche climates can be used to derive relevant indexes (o forecast (Haegeli and McClung, 2007; Shandro and Haegeli,
2018). Example above demonstrates that the model can be expected to account for these complex effects using simple and
relevant extracted features.

An explanation of data efficiency is that decision trees model such reasoning and ensemble accounts for the different
causes of avalanches. Variables involved for avalanche hazard are different for various situations therefore in avalanche
datasets the important variables involved in causing hazard vary across the sample space. Nearest neighbour models are
unable to adapt o this variation in feature importance as they use the same distance metric to forecast in every
neighbourhood of sample space. Trees in ensemble accord importance to different features hence this method can account
for the differences in important variables. The rees trained with splitting features matching the important features for input
day give higher probability outputs than other trees.

Prediction is made using parameters which can be measured automatically 0o, Therefore such models can use data from
dense sensor grid to improve performance. If additional parameters are required to improve forecasting process, only a few
records of these new parameters are required for training an updated model. Therefore data efficiency of a model implies
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