Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
Volume 4, issue 2
Nat. Hazards Earth Syst. Sci., 4, 315–322, 2004
https://doi.org/10.5194/nhess-4-315-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Multidisciplinary approaches in natural hazards

Nat. Hazards Earth Syst. Sci., 4, 315–322, 2004
https://doi.org/10.5194/nhess-4-315-2004
© Author(s) 2004. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  16 Apr 2004

16 Apr 2004

Probabilistic high-resolution forecast of heavy precipitation over Central Europe

C. Marsigli, A. Montani, F. Nerozzi, and T. Paccagnella C. Marsigli et al.
  • ARPA-SIM, Bologna, Italy

Abstract. The limited-area ensemble prediction system COSMO-LEPS has been running operationally at ECMWF since November 2002. Five runs of the non-hydrostatic limited-area model Lokal Modell (LM) are available every day, nested on five selected members of three consecutive 12-h lagged ECMWF global ensembles. The limited-area ensemble forecasts range up to 120h and LM-based probabilistic products are disseminated to several national weather services. COSMO-LEPS has been constructed in order to have a probabilistic system with high resolution, focussing the attention on extreme events in regions with complex orography. In this paper, the performance of COSMO-LEPS for a heavy precipitation event that affected Central Europe in August 2002 has been examined. At the 4-day forecast range, the probability maps indicate the possibility of the overcoming of high precipitation thresholds (up to 150mm/24h) over the region actually affected by the flood. Furthermore, one out of the five ensemble members predicts 4 days ahead a precipitation structure very similar to the observed one.

Publications Copernicus
Download
Citation
Altmetrics