Experience of short term earthquake precursors with VLF–VHF electromagnetic emissions
Abstract. Electromagnetic anomalies (EMA) covering a wide range of frequencies from ULF, VLF up to VHF have been observed before recent destructive earthquakes in continental Greece. We show that the features of these signals are possibly correlated with the fault model characteristics of the associated earthquake and with the degree of geotectonic heterogeneity within the focal zone. The time evolution of these electromagnetic sequences reveals striking similarities to that observed in laboratory acoustic and electromagnetic emissions during different stages of failure preparation process in rocks. If we consider that the same dynamics governs the large-scale earthquakes and the microscopic scale sample rheological structure, the results of this analysis suggest that the recorded EMA might reflect the nucleation phase of the associated impending earthquake. We focus on the rise of the statistical view of earthquakes. We find electro-magnetic fingerprints of an underlying critical mechanism. Finally, we conclude that it is useful to combine ULF and VLF-VHF field measurements in an attempt to enhance the understanding of the physics behind these observations and thus to improve the quality of earthquake prediction. Further, the identification of an EMA as a seismogenic one supports the characterization of a sequence of shocks as foreshocks at the time they occur, further helping the earthquake prediction effort.