Articles | Volume 25, issue 2
https://doi.org/10.5194/nhess-25-675-2025
https://doi.org/10.5194/nhess-25-675-2025
Brief communication
 | 
13 Feb 2025
Brief communication |  | 13 Feb 2025

Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand

Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah

Related authors

Trends in national and regional scale drought in New Zealand
Daniel G. Kingston and Eleanor J. Treadwell
Proc. IAHS, 383, 307–314, https://doi.org/10.5194/piahs-383-307-2020,https://doi.org/10.5194/piahs-383-307-2020, 2020
Short summary
Understanding and predicting large-scale hydrological variability in a changing environment
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020,https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Intercomparison of different uncertainty sources in hydrological climate change projections for an alpine catchment (upper Clutha River, New Zealand)
Andreas M. Jobst, Daniel G. Kingston, Nicolas J. Cullen, and Josef Schmid
Hydrol. Earth Syst. Sci., 22, 3125–3142, https://doi.org/10.5194/hess-22-3125-2018,https://doi.org/10.5194/hess-22-3125-2018, 2018
The European 2015 drought from a hydrological perspective
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017,https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
The European 2015 drought from a climatological perspective
Monica Ionita, Lena M. Tallaksen, Daniel G. Kingston, James H. Stagge, Gregor Laaha, Henny A. J. Van Lanen, Patrick Scholz, Silvia M. Chelcea, and Klaus Haslinger
Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017,https://doi.org/10.5194/hess-21-1397-2017, 2017
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Verifying the relationships among the variabilities of summer rainfall extremes over Japan in the d4PDF climate ensemble, Pacific sea surface temperature, and monsoon activity
Shao-Yi Lee, Sicheng He, and Tetsuya Takemi
Nat. Hazards Earth Syst. Sci., 25, 2225–2253, https://doi.org/10.5194/nhess-25-2225-2025,https://doi.org/10.5194/nhess-25-2225-2025, 2025
Short summary
Tree fall along railway lines: modelling the impact of wind and other meteorological factors
Rike Lorenz, Nico Becker, Barry Gardiner, Uwe Ulbrich, Marc Hanewinkel, and Benjamin Schmitz
Nat. Hazards Earth Syst. Sci., 25, 2179–2196, https://doi.org/10.5194/nhess-25-2179-2025,https://doi.org/10.5194/nhess-25-2179-2025, 2025
Short summary
The probabilistic skill of extended-range heat wave forecasts over Europe
Natalia Korhonen, Otto Hyvärinen, Virpi Kollanus, Timo Lanki, Juha Jokisalo, Risto Kosonen, David S. Richardson, and Kirsti Jylhä
Nat. Hazards Earth Syst. Sci., 25, 1865–1879, https://doi.org/10.5194/nhess-25-1865-2025,https://doi.org/10.5194/nhess-25-1865-2025, 2025
Short summary
An appraisal of the value of simulated weather data for quantifying coastal flood hazard in the Netherlands
Cees de Valk and Henk van den Brink
Nat. Hazards Earth Syst. Sci., 25, 1769–1788, https://doi.org/10.5194/nhess-25-1769-2025,https://doi.org/10.5194/nhess-25-1769-2025, 2025
Short summary
Insights into thunderstorm characteristics from geostationary lightning jump and dive observations
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025,https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary

Cited articles

Copernicus Climate Change Service: ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://cds.climate.copernicus.eu (last access: 19 September 2022). 
Cox, D. and Lavers, D. A.: Using the EFI for water vapour flux at the UK Met Office Flood Forecasting Centre, ECMWF Newsletter, 165, https://www.ecmwf.int/en/newsletter/165/news/using-efi-water-vapour-flux-uk-met-office-flood-forecasting-centre (last access: 9 February 2025), 2020. 
ECMWF: Meteorological Archival Retrieval System (MARS), https://www.ecmwf.int/en/forecasts/access-forecasts/access-archive-datasets (last access: 6 June 2022), 2022.  
Guan, B. and Waliser, D. E.: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies, J. Geophys. Res.-Atmos., 120, 12514–12535, https://doi.org/10.1002/2015JD024257, 2015. 
Download
Short summary
Extreme rainfall comprises a major hydrohazard for New Zealand and is commonly associated with atmospheric rivers – narrow plumes of very high atmospheric moisture transport. Here, we focus on improved forecasting of these events by testing a forecasting tool previously applied to similar situations in western Europe. However, our results for New Zealand suggest the performance of this forecasting tool may vary depending on geographical setting.
Share
Altmetrics
Final-revised paper
Preprint