Articles | Volume 25, issue 12
https://doi.org/10.5194/nhess-25-4941-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4941-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Identification of rainfall thresholds for debris-flow occurrence through field monitoring data
Elena Ioriatti
CORRESPONDING AUTHOR
Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Bologna (BO), 40126, Italy
Mauro Reguzzoni
Hortus S.r.l., Gallarate (VA), 21013, Italy
Edoardo Reguzzoni
Hortus S.r.l., Gallarate (VA), 21013, Italy
Andreas Schimmel
Andreas Schimmel – Alpine Monitoring Systems (ALMOSYS), Mkt. Piesting, 2753, Austria
Luca Beretta
Direzione Generale Territorio e Sistemi Verdi, Lombardia Region, Milano (MI), 20124, Italy
Massimo Ceriani
Professional Geologist, Cardano al Campo (VA), 21010, Italy
Matteo Berti
Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Bologna (BO), 40126, Italy
Related authors
Matteo Berti, Marco Pizziolo, Michele Scaroni, Mauro Generali, Vincenzo Critelli, Marco Mulas, Melissa Tondo, Francesco Lelli, Cecilia Fabbiani, Francesco Ronchetti, Giuseppe Ciccarese, Nicola Dal Seno, Elena Ioriatti, Rodolfo Rani, Alessandro Zuccarini, Tommaso Simonelli, and Alessandro Corsini
Earth Syst. Sci. Data, 17, 1055–1074, https://doi.org/10.5194/essd-17-1055-2025, https://doi.org/10.5194/essd-17-1055-2025, 2025
Short summary
Short summary
In May 2023, Emilia-Romagna, Italy, experienced heavy rainfall that led to severe flooding and initiated thousands of landslides on slopes thought to be stable. Collaborating with the Civil Protection Agency, our team created a detailed map documenting 80,997 affected areas. This comprehensive dataset is crucial for research on climate change and assists in planning and risk management by demonstrating how climate change can alter our understanding of landslide susceptibility.
Nicola Dal Seno, Giuseppe Ciccarese, Davide Evangelista, Elena Loli Piccolomini, Alessandro Corsini, and Matteo Berti
EGUsphere, https://doi.org/10.5194/egusphere-2025-4267, https://doi.org/10.5194/egusphere-2025-4267, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The extreme rainfall in Emilia-Romagna in May 2023 caused over 80,000 landslides. Mapping them manually was slow and demanding, so we tested artificial intelligence to speed up this process. We applied two models in different areas using satellite and aerial images. Both produced useful maps that can guide emergency teams, although performance was lower in complex terrains. Our results show that AI can support faster disaster response in future events.
Matteo Berti, Marco Pizziolo, Michele Scaroni, Mauro Generali, Vincenzo Critelli, Marco Mulas, Melissa Tondo, Francesco Lelli, Cecilia Fabbiani, Francesco Ronchetti, Giuseppe Ciccarese, Nicola Dal Seno, Elena Ioriatti, Rodolfo Rani, Alessandro Zuccarini, Tommaso Simonelli, and Alessandro Corsini
Earth Syst. Sci. Data, 17, 1055–1074, https://doi.org/10.5194/essd-17-1055-2025, https://doi.org/10.5194/essd-17-1055-2025, 2025
Short summary
Short summary
In May 2023, Emilia-Romagna, Italy, experienced heavy rainfall that led to severe flooding and initiated thousands of landslides on slopes thought to be stable. Collaborating with the Civil Protection Agency, our team created a detailed map documenting 80,997 affected areas. This comprehensive dataset is crucial for research on climate change and assists in planning and risk management by demonstrating how climate change can alter our understanding of landslide susceptibility.
Cited articles
Abancó, C., Hürlimann, M., Moya, J., and Berenguer, M.: Critical rainfall conditions for the initiation of torrential flows. Results from the Rebaixader catchment (Central Pyrenees), J. Hydrol., 541, 218–229, https://doi.org/10.1016/j.jhydrol.2016.01.019, 2016.
Aleotti, P.: A warning system for rainfall-induced shallow failures, Eng. Geol., 73, 247–265, https://doi.org/10.1016/j.enggeo.2004.01.007, 2004.
Badoux, A., Graf, C., Rhyner, J., Kuntner, R., and McArdell, B. W.: A debris-flow alarm system for the Alpine Illgraben catchment: design and performance, Nat. Hazards, 49, 517–539, https://doi.org/10.1007/s11069-008-9303-x, 2009.
Bernard, M., Barbini, M., Berti, M., Boreggio, M., Simoni, A., and Gregoretti, C.: Rainfall-Runoff Modeling in Rocky Headwater Catchments for the Prediction of Debris Flow Occurrence, Water Resour. Res., 61, e2023WR036887, https://doi.org/10.1029/2023WR036887, 2025.
Berti, M. and Simoni, A.: Experimental evidences and numerical modelling of debris flow initiated by channel runoff, Landslides, 2, 171–182, https://doi.org/10.1007/s10346-005-0062-4, 2005.
Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach, J. Geophys. Res., 117, F04006, https://doi.org/10.1029/2012JF002367, 2012.
Berti, M., Bernard, M., Gregoretti, C., and Simoni, A.: Physical Interpretation of Rainfall Thresholds for Runoff-Generated Debris Flows, J. Geophys. Res.-Earth Surf., 125, https://doi.org/10.1029/2019JF005513, 2020.
Bishop, C. M.: Fisher's linear discriminant, in: Pattern Recognition and Machine Learning, Springer, New York, NY, USA, ISBN 9780387310732, 186–189, 2006.
Brunetti, M. T., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., and Guzzetti, F.: Rainfall thresholds for the possible occurrence of landslides in Italy, Nat. Hazards Earth Syst. Sci., 10, 447–458, https://doi.org/10.5194/nhess-10-447-2010, 2010.
Cannon, S. H., Gartner, J. E., Wilson, R. C., Bowers, J. C., and Laber, J. L.: Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California, Geomorphology, 96, 250–269, https://doi.org/10.1016/j.geomorph.2007.03.019, 2008.
Ceriani, M., Lauzi S., Padovan N.: Rainfall thresholds triggering debris flows in the alpine area of Lombardia Region, Central Alps – Italy, in: Proceedings of Man and Mountain '94, First International Congress for the Protection and Development of Mountain Environment, Ponte di Legno (BS), Italy, 20–24 June 1994, 123–139, 1994.
Coe, J. A., Kinner, D. A., and Godt, J. W.: Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado, Geomorphology, 96, 270–297, https://doi.org/10.1016/j.geomorph.2007.03.017, 2008.
Crosta, G. B. and Frattini, P.: Distributed modelling of shallow landslides triggered by intense rainfall, Nat. Hazards Earth Syst. Sci., 3, 81–93, https://doi.org/10.5194/nhess-3-81-2003, 2003.
Deganutti, M. A., Marchi, L., and Arattano, M.: Rainfall and debris-flow occurrence in the Moscardo basin (Italian Alps), in: Debris-Flow Hazard Mitigation: Mechanics, Prediction, and Assessment, edited by: Wieczorek, G. F. and Naeser, N. D., Balkema, Rotterdam, ISBN 905809149X, 67–72, 2000.
DiGOS Potsdam GmbH: DATA-CUBE3: User Manual, Version 2020-05, DiGOS Potsdam GmbH, Potsdam, Germany, 24 pp., https://digos.eu/wp-content/uploads/2020/07/DATA-CUBE-User-Manual-2020-05.pdf (last access: 28 June 2025), 2020.
Dunkerley, D.: Identifying individual rain events from pluviograph records: a review with analysis of data from an Australian dryland site, Hydrol. Process., 22, 5024–5036, https://doi.org/10.1002/hyp.7122, 2008.
Fisher, R. A.: The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7, 179–188, https://doi.org/10.1111/j.1469-1809.1936.tb02137.x, 1936.
Francq, B. G. and Govaerts, B. B.: Measurement methods comparison with errors-in-variables regressions. From horizontal to vertical OLS regression, review and new perspectives, Chemometrics and Intelligent Laboratory Systems, 134, 123–139, https://doi.org/10.1016/j.chemolab.2014.03.006, 2014.
Gariano, S. L., Brunetti, M. T., Iovine, G., Melillo, M., Peruccacci, S., Terranova, O., Vennari, C., and Guzzetti, F.: Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy, Geomorphology, 228, 653–665, https://doi.org/10.1016/j.geomorph.2014.10.019, 2015.
Gariano, S. L., Melillo, M., Peruccacci, S., and Brunetti, M. T.: How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering?, Nat. Hazards, 100, 655–670, https://doi.org/10.1007/s11069-019-03830-x, 2020.
Gregoretti, C. and Dalla Fontana, G.: The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff, Hydrol. Process., 22, 2248–2263, https://doi.org/10.1002/hyp.6821, 2008.
Gregoretti, C., Degetto, M., Bernard, M., Crucil, G., Pimazzoni, A., De Vido, G., Berti, M., Simoni, A., and Lanzoni, S.: Runoff of small rocky headwater catchments: Field observations and hydrological modeling, Water Resour. Res., 52, 8138–8158, https://doi.org/10.1002/2016WR018675, 2016.
Guzzetti, F., Stark, C. P., and Salvati, P.: Evaluation of Flood and Landslide Risk to the Population of Italy, Environ. Manage., 36, 15–36, https://doi.org/10.1007/s00267-003-0257-1, 2005.
Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database 1972–2007, Nat. Hazards Earth Syst. Sci., 9, 913–925, https://doi.org/10.5194/nhess-9-913-2009, 2009.
Hirschberg, J., Badoux, A., McArdell, B. W., Leonarduzzi, E., and Molnar, P.: Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment, Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, 2021.
Hoch, O. J., McGuire, L. A., Youberg, A. M., and Rengers, F. K.: Hydrogeomorphic recovery and temporal changes in rainfall thresholds for debris flows following wildfire, J. Geophys. Res.-Earth Surf., 126, e2021JF006374, https://doi.org/10.1029/2021JF006374, 2021.
ISPRA: Geological Map of Italy 1:50 000, Sheet 057 “Malonno”, Istituto Superiore per la Protezione e la Ricerca Ambientale, https://doi.org/10.15161/OAR.IT/211479, 2012.
Iverson, R. M.: The physics of debris flows, Rev. Geophys., 35, 245–296, https://doi.org/10.1029/97RG00426, 1997.
Iverson, R. M.: Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897–1910, https://doi.org/10.1029/2000WR900090, 2000.
Jakob, M. and Hungr, O. (Eds.): Debris-Flow Hazards and Related Phenomena, Springer Praxis Books, Springer, Berlin, https://doi.org/10.1007/b138657, 2005.
Kirpich, Z. P.: Time of concentration of small agricultural watersheds, Civ. Eng., 10, 362, 1940.
Marra, F.: Rainfall thresholds for landslide occurrence: systematic underestimation using coarse temporal resolution data, Nat. Hazards, 95, 883–890, https://doi.org/10.1007/s11069-018-3508-4, 2019.
Marra, F., Nikolopoulos, E. I., Creutin, J. D., and Borga, M.: Radar rainfall estimation for the identification of debris-flow occurrence thresholds, J. Hydrol., 519, 1607–1619, https://doi.org/10.1016/j.jhydrol.2014.09.039, 2014.
Marra, F., Nikolopoulos, E. I., Creutin, J. D., and Borga, M.: Space–time organization of debris flows-triggering rainfall and its effect on the identification of the rainfall threshold relationship, J. Hydrol., 541, 246–255, https://doi.org/10.1016/j.jhydrol.2015.10.010, 2016.
Martelloni, G., Segoni, S., Fanti, R., and Catani, F.: Rainfall thresholds for the forecasting of landslide occurrence at regional scale, Landslides, 9, 485–495, https://doi.org/10.1007/s10346-011-0308-2, 2012.
Melchiorre, C. and Frattini, P.: Modelling probability of rainfall-induced shallow landslides in a changing climate, Otta, Central Norway, Climatic Change, 113, 413–436, https://doi.org/10.1007/s10584-011-0325-0, 2012.
Melillo, M., Brunetti, M. T., Peruccacci, S., Gariano, S. L., and Guzzetti, F.: An algorithm for the objective reconstruction of rainfall events responsible for landslides, Landslides, 12, 311–320, https://doi.org/10.1007/s10346-014-0471-3, 2015.
Montgomery, D. R. and Dietrich, W. E.: A physically based model for the topographic control on shallow landsliding, Water Resour. Res., 30, 1153–1171, https://doi.org/10.1029/93WR02979, 1994.
Nikolopoulos, E. I., Crema, S., Marchi, L., Marra, F., Guzzetti, F., and Borga, M.: Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence, Geomorphology, 221, 286–297, https://doi.org/10.1016/j.geomorph.2014.06.015, 2014.
Pan, H.-L., Jiang, Y.-J., Wang, J., and Ou, G.-Q.: Rainfall threshold calculation for debris flow early warning in areas with scarcity of data, Nat. Hazards Earth Syst. Sci., 18, 1395–1409, https://doi.org/10.5194/nhess-18-1395-2018, 2018.
Papa, M. N., Medina, V., Ciervo, F., and Bateman, A.: Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems, Hydrol. Earth Syst. Sci., 17, 4095–4107, https://doi.org/10.5194/hess-17-4095-2013, 2013.
Postance, B., Hillier, J., Dijkstra, T., and Dixon, N.: Comparing threshold definition techniques for rainfall-induced landslides: A national assessment using radar rainfall, Earth Surf. Proc. Land., 43, 553–560, https://doi.org/10.1002/esp.4202, 2018.
Ramos-Cañón, A. M., Prada-Sarmiento, L. F., Trujillo-Vela, M. G., Macías, J. P., and Santos-R, A. C.: Linear discriminant analysis to describe the relationship between rainfall and landslides in Bogotá, Colombia, Landslides, 13, 671–681, https://doi.org/10.1007/s10346-015-0593-2, 2016.
Schimmel, A., Hübl, J., McArdell, B. W., and Walter, F.: Automatic Identification of Alpine Mass Movements by a Combination of Seismic and Infrasound Sensors, Sensors, 18, 1658, https://doi.org/10.3390/s18051658, 2018.
Simoni, A., Bernard, M., Berti, M., Boreggio, M., Lanzoni, S., Stancanelli, L. M., and Gregoretti, C.: Runoff-generated debris flows: Observation of initiation conditions and erosion–deposition dynamics along the channel at Cancia (eastern Italian Alps), Earth Surf. Proc. Land., 45, 3556–3571, https://doi.org/10.1002/esp.4981, 2020.
Soil Conservation Service (SCS): Section 4: Hydrology, in: National Engineering Handbook, U.S Department of Agriculture, Washington, DC, 1972.
Staley, D. M., Gartner, J. E., and Kean, J. W.: Objective definition of rainfall intensity–duration thresholds for post-fire flash floods and debris flows in the area burned by the Waldo Canyon Fire, Colorado, USA, in: Engineering Geology for Society and Territory – Volume 2, edited by: Lollino, G., Giordan, D., Crosta, G. B., Corominas, J., Azzam, R., Wasowski, J., and Sciarra, N., Springer International Publishing, Cham, Switzerland, 621–624, https://doi.org/10.1007/978-3-319-09057-3_103, 2015.
Wei, Z. L., Shang, Y. Q., Liang, Q. H., and Xia, X. L.: A coupled hydrological and hydrodynamic modeling approach for estimating rainfall thresholds of debris-flow occurrence, Nat. Hazards Earth Syst. Sci., 24, 3357–3379, https://doi.org/10.5194/nhess-24-3357-2024, 2024.
Short summary
We propose a new method to define rainfall thresholds for debris flows and increased stream activity. Developed in an Alpine catchment, it relies on monitoring data and is suited to early warning in data-scarce settings with few recorded debris-flow events. The study examines sensitivity to rain-gauge placement and to the criteria used to define rainfall events.
We propose a new method to define rainfall thresholds for debris flows and increased stream...
Altmetrics
Final-revised paper
Preprint