Articles | Volume 25, issue 11
https://doi.org/10.5194/nhess-25-4655-2025
https://doi.org/10.5194/nhess-25-4655-2025
Research article
 | 
24 Nov 2025
Research article |  | 24 Nov 2025

Ensemble random forest for tropical cyclone tracking

Pradeebane Vaittinada Ayar, Stella Bourdin, Davide Faranda, and Mathieu Vrac

Related authors

Impact of bias adjustment strategy on ensemble projections of hydrological extremes
Paul C. Astagneau, Raul R. Wood, Mathieu Vrac, Sven Kotlarski, Pradeebane Vaittinada Ayar, Bastien François, and Manuela I. Brunner
Hydrol. Earth Syst. Sci., 29, 5695–5718, https://doi.org/10.5194/hess-29-5695-2025,https://doi.org/10.5194/hess-29-5695-2025, 2025
Short summary
GeoDS (v.1.0) : a simple Geographical DownScaling model for long-term precipitation data over complex terrains
Jean-Baptiste Brenner, Aurélien Quiquet, Didier Roche, Didier Paillard, and Pradeebane Vaittinada Ayar
EGUsphere, https://doi.org/10.5194/egusphere-2025-3617,https://doi.org/10.5194/egusphere-2025-3617, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
What controls fire size in the South American Gran Chaco? Exploring atmospheric, landscape, and anthropogenic drivers
Rodrigo San Martin, Catherine Ottlé, Anna Sorenssön, Pradeebane Vattinada Ayar, Florent Mouillot, and Marielle Malfante
EGUsphere, https://doi.org/10.5194/egusphere-2025-3484,https://doi.org/10.5194/egusphere-2025-3484, 2025
Short summary
Contrasting projections of the ENSO-driven CO2 flux variability in the equatorial Pacific under high-warming scenario
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022,https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary

Cited articles

Accarino, G., Donno, D., Immorlano, F., Elia, D., and Aloisio, G.: An Ensemble Machine Learning Approach for Tropical Cyclone Localization and Tracking From ERA5 Reanalysis Data, Earth and Space Science, 10, e2023EA003106, https://doi.org/10.1029/2023EA003106, 2023. a, b, c, d, e
Befort, D. J., Kruschke, T., and Leckebusch, G. C.: Objective identification of potentially damaging tropical cyclones over the Western North Pacific, Environmental Research Communications, 2, 031005, https://doi.org/10.1088/2515-7620/ab7b35, 2020. a
Bourdin, S., Fromang, S., Dulac, W., Cattiaux, J., and Chauvin, F.: Intercomparison of four algorithms for detecting tropical cyclones using ERA5, Geosci. Model Dev., 15, 6759–6786, https://doi.org/10.5194/gmd-15-6759-2022, 2022. a, b, c, d, e, f, g, h, i, j, k
Bourdin, S., Fromang, S., Caubel, A., Ghattas, J., Meurdesoif, Y., and Dubos, T.: Tropical cyclones in global high-resolution simulations using the IPSL model, Climate Dynamics, 62, 4343–4368, https://doi.org/10.1007/s00382-024-07138-w, 2024. a
Breiman, L.: Random forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a, b, c
Download
Short summary
Tracking tropical cyclones (TCs) remains a matter of interest for investigating observed and simulated tropical cyclones. In this study, Random Forest (RF), a machine learning approach, is considered to track TCs. RF associates the TC occurrence or absence with different atmospheric configurations. Compared to trackers found in the literature, it shows similar performance for tracking TCs, better control over false alarms, more flexibility, and reveals key variables for TCs' detection.
Share
Altmetrics
Final-revised paper
Preprint