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Abstract. Even though tropical cyclones (TCs) are well doc-
umented during the intense part of their lifecycle until they
weaken, many physical and statistical properties governing
them are not well captured by gridded reanalysis or simu-
lated by Earth System Models. Thus, tracking TCs remains a
matter of interest for investigating observed and simulated
tropical cyclones. Two types of cyclone tracking schemes
are available. On the one hand, some trackers rely on physi-
cal and dynamical properties of the TCs and user-prescribed
thresholds, which make them rigid. They need numerous
variables that are not always available in the models. On the
other hand, trackers leaning on deep learning need, by nature,
large amounts of data and computing power. Besides, given
the number of physical variables required for the tracking,
they can be prone to overfitting, which hinders their transfer-
ability to climate models. This study explores the ability of
a Random Forest (RF) approach to track TCs with a lim-
ited number of aggregated variables. Our analysis focuses
on the Eastern North Pacific and North Atlantic basins, for
which 514 and 431 observed tropical cyclone track records
are available from the IBTrACS database during the 1980–
2021 period. For each 6-hourly time step, RF associates TC
occurrence or absence (1 or 0) to atmospheric situations de-
scribed by predictors extracted from the ERA5 reanalysis.
Hence, the tracking is considered a binary supervised classi-
fication problem of TC-free (zero) and TC (one) situations.
Then, situations with TC occurrences are stitched to recon-
struct TC trajectories. Results show the good ability and per-
formance of this method for tracking tropical cyclones over
both basins and good temporal and spatial generalisation. RF

has a similar TC detection rate as trackers based on TCs’
properties and a significantly lower false alarm rate. RF al-
lows us to detect TC situations for diverse predictor combi-
nations, which brings more flexibility than threshold-based
trackers. Last but not least, this study sheds light on the most
relevant variables for tropical cyclone detection.

1 Introduction

Tropical cyclones (TCs) are among the most devastating
extreme events in terms of casualties and economic losses
(Centre for Research on the Epidemiology of Disasters,
2021; UN Office for Disaster Risk Reduction, 2020). Sev-
eral conditions are necessary for their formation. TC genesis
requires warm sea surface temperatures to draw its energy
from, low wind shear and ample humidity to ensure a stable
vortex while maintaining the convection and adequate influ-
ence from the Coriolis force, combined with a pre-existing
low-pressure disturbance in the atmosphere. Thus, a vortex is
created around the depression with strengthening winds, and
fuelled by ascending humid air (Emanuel, 2003; Weaver and
Garner, 2023). It becomes a self-sufficient system that con-
tinuously draws energy from the ocean until reaching an un-
favourable environment or land (the landfall). Then, the TC
loses its energy, which causes its rapid dissipation (Kepert,
2010; Rüttgers et al., 2019).

Understanding how human-induced climate change in-
fluences TC activity remains a challenging scientific issue
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(Knutson et al., 2010; Walsh et al., 2016, 2019). Given the
incomplete theoretical understanding of TCs and the limited
observation period, studying the changes in their properties
relies on model simulations (Knutson et al., 2019, 2020). De-
spite the tremendous effort made to increase the resolution of
the Earth System Models (around 100 km for the last gener-
ation of models), it is still too low to simulate realistic TCs
(Camargo and Wing, 2016; Roberts et al., 2020). Leveraging
the recent advances in computational resources, a handful of
global simulations with atmospheric spatial resolutions be-
tween 25 and 50 km are now available and reveal a clear im-
provement in simulating TCs (Murakami et al., 2015; Walsh
et al., 2015; Roberts et al., 2020; Bourdin et al., 2024).

To study TCs simulated by global climate models, we
need algorithms to detect them objectively. Such algorithms,
known as TC trackers, are traditionally based on physical and
dynamical properties of cyclones (see Zarzycki and Ullrich,
2017; Bourdin et al., 2022, and the reference therein for de-
tails about different trackers). These algorithms identify trop-
ical cyclone points and connect them to reconstruct TC tracks
employing thresholds applied to variables. Depending on the
variables involved in the tracking process, Bourdin et al.
(2022) defined two categories of trackers: physics-based and
dynamics-based. Physics-based trackers rely on thermody-
namic properties of a tropical cyclone, such as the local mini-
mum sea-level pressure combined with a warm-core (temper-
ature anomaly or geopotential thickness). Dynamics-based
trackers rely on dynamical variables such as vorticity or other
derivatives of the velocity. Both usually include an intensity
criterion to discriminate between the systems.

The thresholds used in these trackers are tracking-scheme
specific and subjective, and may also depend on the particu-
lar TC formation basin and the TC categories (Camargo and
Zebiak, 2002; Befort et al., 2020). This may lead to a po-
tential inability of tracking schemes to generalise to other
domains or data from sources other than those used to cali-
brate the thresholds (Raavi and Walsh, 2020). To avoid sub-
jective choice of thresholds and make the tracker more flex-
ible in identifying cyclonic situations, the data-driven ma-
chine learning algorithms are the focus of this study. In-
deed, these algorithms rely on data to identify cyclones based
on different combinations of variables, independent of user-
prescribed thresholds.

For instance, the detection skills of three machine learning
approaches (Decision Trees, Random Forest, Support Vec-
tor Machines) and a model based on Linear Discriminant
Analysis have been compared for satellite data in Kim et al.
(2019a). Machine learning approaches showed better skill hit
rates, while the linear approach showed lower false alarm
rates. Among machine learning approaches, neural network-
based deep learning approaches have lately gained attention
for TC detection. Those are based on segmentation, edge de-
tection, circle fitting, and comprehensive decision for satel-
lite images (Kumler-Bonfanti et al., 2020; Wang et al., 2020;
Nair et al., 2022). Kim et al. (2019b) leveraged a Convo-

lutional Long Short-Term Memory network to detect and
forecast hurricane trajectories on Community Atmospheric
Model v5 simulation data.

However, these approaches use satellite and model data
that can be biased and mainly focus on shape detection in im-
ages. As such, they are not comparable to the physics-based
trackers previously mentioned, which have been developed
from reanalysis and evaluated with respect to observed data
and focus on TC-related physical processes. For instance,
in Bourdin et al. (2022), trackers were applied to the fifth
generation of ECMWF Reanalysis (ERA5, Hersbach et al.,
2020) and evaluated with respect to the observational record
of the International Best Track Archive for Climate Steward-
ship (IBTrACS, Knapp et al., 2010). In that context, Gardoll
and Boucher (2022) and Accarino et al. (2023) have devel-
oped convolutional neural network (CNN) architectures to
detect cyclones. They used eight and six 6-hourly variables
extracted from ERA5 in their CNN. The added value of such
approaches is the ability to constrain the detection with the
cyclone record provided by IBTrACS, by associating each
set of 6-hourly data fields with the occurrence (absence or
presence) of a cyclone (called labelling in machine learning).
This makes tracking TCs a supervised classification problem.

The issue with using the latter type of algorithms in the
case of TC detection is that the number of TC-related at-
mospheric situations is very low compared to TC-free sit-
uations. These algorithms trained with such data will learn
from a larger diversity of TC-free situations and thus will be
more accurate and inclined to rule for TC-free situations and,
therefore, biased towards them. In addition, neural network-
based algorithms need, by essence, large amounts of data,
which can sometimes be qualified as data greedy. This calls
for strategies to equilibrate the TC/TC-free ratio while keep-
ing enough data to obtain a robust tuning of the CNN. Gar-
doll and Boucher (2022) reduced variable fields in the North
Atlantic to 8°× 8° windows around the eye of the cyclone for
every time step with a TC and sampled for each one of these
windows two TC-free images, which drastically reduce the
data sample (28 521 images). This potentially leads to over-
fitting and limits the generalizability of the tracker by lower-
ing the diversity of TC-free situations and the spatial variabil-
ity of the potential TC location due to the choice of windows
around past TC locations. Only binary properties (TC/TC-
free) of the tracker were evaluated in Gardoll and Boucher
(2022). Accarino et al. (2023) considered non-overlapping
10°× 10° windows over the whole joint North Pacific and At-
lantic basins and opted for a data augmentation procedure of
TC situations to reach a 50/50 ratio (425 358 images). Their
CNN-based tracker produced comparable performance to the
physics-based trackers in terms of TC track detection but
generated larger numbers of false alarms, which is undesir-
able. Finally, this type of method processes large amounts of
data, which calls for large computing power (typically GPUs
in Gardoll and Boucher, 2022 and a High Performance Com-
puting infrastructure in Accarino et al., 2023). Neither of the
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studies provided a physical interpretation of the tracker’s per-
formance.

In this study, the objective is to leverage and adapt a well-
known and proven method, the Random Forest (RF, Breiman,
2001), to a TC tracking problem by associating a given at-
mospheric situation described by a limited set of predictors
to the presence or the absence of TCs. This choice has been
made by considering computing cost, the need for several
meteorological variables, and the ultimate goal of such a
tracker being the tracking of TCs in future climate simula-
tions. Indeed, having many variables implies potential over-
fitting and impeded interpretation of the results and lower
transferability to future climate simulations. Random forest
provides interpretation means and lower computational costs.
Higher data frugality will be achieved by considering simple
variable statistics instead of entire variable fields, which will
potentially improve the transferability of the tracking to cli-
mate simulations.

2 Material and Method

2.1 Data

2.1.1 International Best Track Archive for Climate
Stewardship, IBTrACS

The IBTrACS “since 1980” set (Knapp et al., 2018) was re-
trieved in this study. In the following, two basins are going to
be considered: the eastern North Pacific (ENP) and the North
Atlantic (NATL) (cf. blue contours in Fig. 1a). The U.S.
National Hurricane Centre (NHC) reports tropical cyclones’
best tracks for these basins. First, extratropical cyclones are
not considered in this study. Our study basins are limited to
30° N. Thus, only TCs are considered, and transitions to ex-
tratropical cyclones are not. For TC crossing this northward
boundary, only the portion lying below 30° N is kept. The
42 cyclone seasons between 1980 and 2021 (from June to
November in the Northern Hemisphere) are considered. At
the time of this study, tracks in 2022 and later are removed,
since some of them are still labelled provisional. Those la-
belled “spur”, not providing maximum wind and minimum
pressure, and not reaching the Tropical Storm (TS) stage, are
removed. The TS stage is decided according to the storm cat-
egory given by the values of the minimum sea level pressure
Pmin and the 10 min near-surface sustained wind u10. Based
on Table 2 of Bourdin et al. (2022), TS stage is reached when
Pmin ≤ 1005 hPa and u10 ≥ 16ms−1. Tropical cyclone stage
is reached when Pmin ≤ 990 hPa and u10 ≥ 29ms−1. Once
processed, the ENP and NATL basins respectively contain
514 and 431 tracks at a 6-hourly timestep.

2.1.2 ERA5

Our main objective is to associate climate variables and
determine the main drivers that explain the formation and

strengthening of TCs during their lifetime. Hourly esti-
mates of atmospheric variables are available in ERA5 at
0.25°× 0.25° from 1979 to the present day. While having
similar performances as JRA-55 or NCEP-CFSR for a range
of metrics (Zarzycki et al., 2021; Roberts et al., 2020), ERA5
does not perform any specific assimilation for TCs (Zarzycki
et al., 2021), motivating our choice to use ERA5 to evalu-
ate the tracker developed in this paper. 6-hourly data from
1980 to 2021 are extracted, consistent with the period of the
IBTrACS data. The choice of 6-hourly data stems from the
overall objective to track TCs in climate model simulations,
whose outputs are rarely at a higher temporal resolution. Five
variables are extracted from ERA5:

– the mean sea level pressure, MSLP (in hPa),

– the 10 m wind intensity, UV10 (in ms−1),

– the total column water vapour, TCWV (in kgm−2),

– the relative vorticity at 850 hPa pressure level, RV850
(s−1),

– the geopotential thickness between 300 and 500 hPa
pressure level, THZ300_Z500 (in m).

These variables are described in Table S1 in the Supple-
ment. These variables have been selected based on their abil-
ity to characterise specific physical properties of TCs and
their wide availability in climate model simulations’ output.
In particular, TCs have a warm core, with the most intense
winds found close to the surface. TCs are structured with an
eye at the centre, an eyewall, and spiral convective rain bands
around them. TCs are driven by diabatic processes, meaning
their energy comes from extracting oceanic moisture that re-
leases latent heat once condensed in the upper troposphere.
Considering this, MSLP characterises the spatially coherent
low-pressure structure (the eye and the eyewall), UV10 the
strong surface wind, TCWV the moisture and the potential
for rain, RV850 the TC vortex and THZ300_Z500 the upper-
level warm core associated with the local depression in the
TCs.

2.1.3 Data-set preparation

Several steps are followed to prepare the data. First, both
basins are patched by 20°× 10° overlapping boxes (see
shaded blue boxes in Fig. 1b), totalling 20 and 16 boxes
respectively for ENP and NATL. This is done to deal with
cases where two or more TCs occur at the same time in a
given basin. Then, for every box, a vector of zeros and ones
is constructed as follows: a box containing an IBTrACS point
reaching TS intensity (Pmin ≤ 1005 hPa and u10 ≥ 16ms−1)
is coded 1, and 0 otherwise at every timestep. Thus, the TC
tracking problem is handled as a binary classification prob-
lem.
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Figure 1. (a) Eastern North Pacific (ENP) and the North Atlantic (NATL) basins, with the TCs tracks and the associated wind intensity (in
m s−1) used in this study. (b) Boxes patching both basins. Only every second box is shown to improve clarity.

Then, ERA5 predictors associated with these binary vec-
tors are built as follows: instead of considering the whole
variable field within a box, only four statistics of that field
are considered: minimum, mean, maximum and standard de-
viation. Thus, for a given timestep, the atmospheric situation
within a box is described by a set of 20 predictors (5 cli-
mate variables× 4 statistics). Those predictors are labelled
with the physical variable name attached to the statistic cor-
responding suffix (min, mean, max, sd). For instance, MSLP-
min, MSLPmean, MSLPmax and MSLPsd are obtained for
MSLP. Finally, for a given basin, the binary vector and the
associated set of predictors of every box are concatenated
and standardised (i.e. centred and divided by the standard
deviation). Note that standardisation is not necessary for
the current application of random forests. However, it has
been made here to anticipate tracking TCs in climate mod-
els with biases compared to ERA5. The standardisation re-
moves part of the mean and variance biases of the climate
models and potentially eases the transferability to the tracker
to climate models without recalibration. A table, with about
600 000 and 490 000 rows, is respectively obtained for ENP
and NATL.

No formal test has been performed to demonstrate that us-
ing these four single-value statistics instead of the whole field
in the box was better. Since only the presence or absence of a
TC within one box, regardless of its position, is sought, these
four statistics summarising the spatial structure are preferred
to describe the whole 20°× 10° box. Furthermore, the ERA5
spatial resolution is 0.25°, resulting in 3200 grid-points per
box for each physical variable. Using 16 000 predictors to
predict a single outcome does not seem reasonable.

2.2 Methods

2.2.1 Ensemble Random Forest for unbalanced data
and experimental set-up

Random Forest (RF, Breiman, 2001; Hastie et al., 2009) is
a supervised machine-learning algorithm based on generat-
ing an ensemble (“forest”) of decision trees grown in paral-
lel, referred to as bagging in machine learning. Each deci-
sion tree in the forest separates the target variable into homo-
geneous groups according to a sequence of if-else decision
rules applied to the predictors. In our binary classification
framework, each new separation according to a decision rule
between the nodes has been performed via maximal impu-
rity reduction, using the Gini index as an impurity function
(Breiman et al., 1984). A random subset of data is provided
for each tree (the in-the-bag dataset), and a random subset of
covariates is tried at each node in each tree, bringing robust-
ness to the classification. In this paper, such an implemen-
tation of RF is provided by the R package “ranger” (Wright
and Ziegler, 2017) and follows the approach developed in
Malley et al. (2012) to obtain the probabilities of a diagnosis
of diabetes or appendicitis given sets of medical tests. Each
classification tree gives a probability on the 0/1 class of a da-
tum by taking the majority vote in a terminal node. The av-
erage probability of the trees is the RF probability estimate
for class occurrence for each datum. A grid-search is per-
formed on the three key parameters: (i) the number of trees,
(ii) the random number of features considered to perform the
best split to grow the trees and (iii) the minimal size of end
nodes (not shown). Results showed that the impact of the hy-
perparameters is quite minimal, and no configuration of the
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hyperparameters yielded significantly better results. There-
fore, the hyperparameters were set to the default values: 500
trees, 4 randomly chosen features to perform the best split
and a minimal end node size of 10.

In the case of TC tracking, an imbalanced data problem
presents itself. Indeed, the class “presence of TC” is under-
represented with only 2.1 % (resp. 2.6 %) of the data for
NATL (resp. ENP). This results in low-performing RF due to
two phenomena: (i) successive partitioning of the data when
growing the decision trees causes them to ’see’ fewer and
fewer of the rarer class, thus fitting more and more to the
majority class (“absence of TC”); and (ii) interactions be-
tween covariates can go unlearned by the decision trees due
to the sparseness of the data induced by partitioning (He and
Garcia, 2009). Kuhn (2013) discussed resampling methods
that can resolve class imbalances, but there is little consensus
on the best approach. Siders et al. (2020) compared different
approaches and showed that combining the subsampling of
the majority class with an ensemble of random forest (ERF),
i.e., the use of multiple random forests with different sub-
sampling of that majority class, gave the best performance.

In this study, the ERF approach is leveraged to tackle
the class imbalance issue. The subsampling of the major-
ity class is performed by setting the number of zeros as n
times the number of ones. Several setups are tested with n ∈
{10,15,20,25,30,35} and referred to as “n-times” setup,
and one setup is referred to as “FULL” without subsampling.
To evaluate the effect of the subsampling, for each n, 100
RFs are performed with a different subset of zeros provided
to each RF. Three experiments are set for each basin:

1. Calibration experiment. one training of the ERF is made
using the whole data during the 1980–2021 period and
validated over the same period, where all the tracks are
sought to be reconstructed. It is only performed as a
first-order evaluation of the tracker and its ability to re-
produce the training data.

2. Validation experiment. a 6-fold cross-validation (see
Fig. 2) where yellow years within each fold (35 years)
are used to train the ERF. The validation is performed
over tracks reconstructed for all the validation years
(in blue) from the six folds, allowing for validating
ERF over the whole 1980–2021 period. This cross-
validation is chosen to minimise the effect of any poten-
tial trend and interannual variability in the TC statistics
(frequency, intensity) and the changes in IBTrACS data
quality. Most of the ERF evaluations will rely on this
experiment.

3. Test experiment. from the training performed over the
whole period in the calibration experiment for ENP
(resp. NATL) basin, the TC tracks over the NATL (resp.
ENP) are reconstructed over the same period. This is
done to evaluate the generalizability of ERF.

Depending on the experiment, setup and basin, the train-
ing of one RF took between 1 and 10 min when performed
on a laptop with an 11th Gen Intel® Core(™) i7-1165G7 @
2.80GHz with height cores and 16 Go RAM and between 30
seconds and less than three and a half minutes when per-
formed on a computing node Intel® Xeon® CPU E5-2650 v2
@ 2.60GHz with 16 cores and 65 Go of RAM (8 Go would
be sufficient).

2.2.2 Track reconstruction and matching

In a given box, if ERF gives a probability of TC above 0.5,
the location of the TC is estimated by the position of the min-
imum of MSLP in that box. From there, tracks are recon-
structed from one TC location to the next. 24 h gaps within
a radius of 450 km are allowed during the reconstruction. A
track is kept only if it lasts at least 24 h. Different thresholds
below and above 0.5 have been tested (not shown). The result
was (i) that the higher the threshold, the lower the ability to
detect TC and (ii) that the lower the threshold, the higher the
false alarms. This behaviour was quasi-linear, so we chose
0.5 to be performant in detecting while having a low false
alarm rate. One can adapt this level according to the desired
applications.

The track-matching procedure used in this study is simi-
lar to the one in (Bourdin et al., 2022). Let us consider, at
time ti , a point di of a detected track D. It is associated with
the closest points of a given observed track O at each time
ti that is located closer than 300 km (with a possibility that
such a point does not exist). In Bourdin et al. (2022), a sensi-
tivity analysis was conducted on the 300 km distance limit in
Appendix D. In a nutshell, it was shown that results are not
sensitive to this limit, and 300 km was selected as a reason-
able value. Points of O associated with any point of track D
are denoted as OD-paired. It is composed of NOD elements.
There are four possibilities:

1. NOD= 0: None of the points of D has been paired to a
point inO, andD is considered to be a false alarm (FA),

2. NOD> 0 and all the points in OD-paired belong to the
same observed trackO:D is a match forO and consid-
ered a hit (Hit),

3. NOD> 0 and all the points inOD-paired belong to mul-
tiple observed tracks: D is a match for the observed
track having the largest number of paired points and
considered a hit (Hit),

4. None of the points of a givenO has been matched:O is
a miss (Miss).

A final treatment is performed to complete the matching: if
an observed track is paired with two or more detected tracks,
these detected tracks are merged into a single track. It hap-
pens when parts of the same observed tracks are detected
separately due to the filtering consisting of coding 0 every
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Figure 2. Scheme of the “Validation experiment”: 6-fold cross-validation scheme over the 1980–2021. Yellow years are used for the calibra-
tion and blue for validation. One out of six years is used for validation, making seven out of 42 per fold.

timestep in the observation IBTrACS that do not reach TS
intensity.

2.2.3 Evaluation metrics and analysis

The first evaluated aspect is the performance of ERF in terms
of binary classification. For that, the Matthews correlation
coefficient (MCC, Matthews, 1975) is used as a measure of
the quality of binary (two-class) classifications. It has been
introduced by Yule (1912) and its values range from −1 to
+1. A score of 1 represents a perfect prediction, 0 an av-
erage random prediction, and −1 an inverse prediction. The
MCC is particularly useful when the classes are imbalanced,
as it accounts for the imbalance in the calculation. It is simi-
lar to the Pearson correlation coefficient in its interpretation.
The MCC is more informative than other metrics in evalu-
ating binary classification because it takes into account the
balance ratios of the four categories of the contingency (or
confusion) matrix: true positives (TP), true negatives (TN),
false positives (FP), false negatives (FN) (Chicco and Jur-
man, 2020). The MCC is computed from the confusion ma-
trix (see Table A1):

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

. (1)

The second aspect evaluated is the ability of ERF to re-
produce observed TC tracks. Once all tracks are labelled
Hit, Miss, and FA two detection skills metrics are defined,
the Probability of Detection (POD, sometimes referred to
as “Hit Rate”) and the False Alarm Rate (FAR): POD=

Hit
Hit+Miss ; FAR= FA

FA+Hit . POD and FAR are expressed in %,
and good performance is achieved when POD is high and
FAR is low.

Another aim of this paper is to provide some physical in-
terpretation to the presence or absence of a TC given an at-
mospheric situation. Breiman (2001) proposed to evaluate
the importance of a predictor variable (or feature)Xj for pre-
dicting Y (here the probability) by adding up the weighted
impurity decreases pt1i(st , t) for all nodes t where Xj is
used, averaged over all trees φm (for m= 1, . . .,M) in the
forest:

Importance(Xj )=
1
M

M∑
m=1

∑
t∈φm

1(jt = j)
[
p(t)1i(st , t)

]
, (2)

where p(t) is the proportion Nt
N

of samples reaching node
t , jt denotes the identifier of the predictor used for splitting
node t and 1i(st , t) is the impurity decrease at split st . For
each one of the 20 predictors, the feature importance is then
the contribution in % of each variable to the total reduction
of impurity.

Then the idea is to determine the importance of each pre-
dictor in the prediction of every single outcome (all zeros and
ones) by RF. This is performed by computing the SHapley
Additive exPlanation (or SHAP) values with the method pro-
posed by Lundberg et al. (2020) with an implementation for
tree-based algorithms provided in the R package “treeshap”
(Komisarczyk et al., 2023). The general idea of SHAP values
is to explain each outcome of RF as a sum of the effect ϕi of
each predictor Xi . The SHAP value is ϕi , which stems from
a concept introduced in cooperative game theory (Shapley,
1951). The idea is to determine the average contribution of a
predictor to a specific prediction (here, a probability) to every
combination of predictors. This can be written as follows:

ϕi =
1

# predictors
×

∑
combinations excluding Xi

marginal contribution of Xi to combination
# combinations excluding Xi of this size

. (3)

Once the SHAP values ϕi for all predictors Xi and for every
outcome of the RF are computed, SHAP-based partial de-
pendence plots are obtained by plotting ϕi against Xi . These
plots will help to interpret the presence of TC given an at-
mospheric situation described by a set of predictors Xi and
explore the evolution of TC probability according to the evo-
lution of predictor Xi .

2.2.4 UZ algorithm

For comparison purposes, we use the UZ algorithm, a
physics-based detection scheme developed in Zarzycki and
Ullrich (2017) and implemented in TempestExtremes (Ull-
rich et al., 2021). It was shown in Bourdin et al. (2022)
to have good detection scores with a particularly low False
Alarm Rate. The UZ scheme relies on a 2-step procedure.
The first step is the detection step to identify candidate TC
points. These candidates are MSLP local minima associated
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with an upper-level warm core, which is measured by the
geopotential thickness between 300 and 500 hPa pressure
levels. The second step is the stitching step to link candidates
and reconstruct tracks. The tracks must be associated with a
maximum wind speed of at least 10 m s−1 over at least 54 h.
For more technical details, the reader is redirected to Zarzy-
cki and Ullrich (2017); Ullrich et al. (2021); Bourdin et al.
(2022).

3 Results

3.1 Zero class subsampling choice

As mentioned in the method Sect. 2.2.1, random forest is sub-
ject to being biased toward the majority (here, zero) class
when applied to unbalanced data. In this section, the results
of ERF for different subsampling over the NATL basin are
used to select the best one. The MCCs for the validation ex-
periment, given in the top panel of Fig. 3, are quite similar for
the different sub-samplings. It ranges from a little below 0.74
for the FULL setting to a little above 0.75 for the 20-times
setting, with very little difference between the 15-times and
25-times settings.

POD and FAR metrics for the validation experiment are
respectively given in the middle and bottom panels of Fig. 3.
The POD decreases almost linearly from 85 % to 73 % from
the “10-times” to the “FULL” setting. Similarly, the FAR
also decreases from 18 % to 5 %. This indicates that a good
ability to detect TCs goes along with a high level of gener-
ating false alarms. This also explains the similar MCC met-
rics for the different settings, indicating some compensation
between the four categories of the confusion matrix. The
subsampling “25-times” setup has the medium performance,
with POD around 78 % and FAR around 8 % (see Fig. 3), is
chosen.

The other result drawn from Fig. 3 is that the effect of the
sampling of zeros given an n-times setup on MCC, POD,
and FAR is very marginal, considering the narrow boxplots.
It means that even though the tracks reconstructed from the
average probability obtained from the 100 RFs are used in
the following of this study, a lower number of RFs would be
sufficient.

3.2 ERF detection analysis

Figure 4 shows four examples of TC tracks reconstructed
over the NATL basin for the validation year 2017, from
the average probability obtained from the 100 RFs with the
“25-times” setup. Similar reconstructed tracks for the ENP
basin with a similar ERF setup are shown in Fig. S1. TC
tracks reconstructed from ERA5 with ERF are very close
to the observed tracks from IBTrACS, even though the tra-
jectories have very different shapes. Note the long gap in
the Harvey cyclone (Fig. 4a) is due to the filtering con-
sisting of selecting only the time steps reaching TS inten-

Figure 3. Validation experiment boxplots of MCC (top), POD (mid-
dle) and FAR (bottom) obtained over validation years obtained for
the 100 RFs of different ERF with different subsampling of non-
TC situations (i.e. zeros), for the NATL basin. The top and bottom
fences are situated at 1.5 times the interquartile range from the box,
and the dots are the values beyond these fences. The orange line
represents the median value. Violet symbols represent the metrics
for the tracks obtained from the average of the probabilities given
by the 100 RFs of ERF.

sities (see Sect. 2.1.1). Table 1 gives the POD and FAR
metrics for the tracks reconstructed from the average prob-
ability from ERF for calibration, validation, and test experi-
ments for the “25-times” setup for both basins. For the vali-
dation experiment, POD are respectively 77.5 % and 77.8 %
for ENP and NATL basins. FAR are respectively 8.7 % and
7.9 % for ENP and NATL basins. For calibration experi-
ments, POD are above 90 % and FAR is around 2 % for both
basins. Note that the choice of validation data (one year ev-
ery 6 years) in the cross-validation scheme in the study was
only one possibility among others. A test (not shown), with
a 6-fold cross-validation scheme in which validation years
are stacked (1980–1986,. . .,2015–2021), yielded similar re-
sults for the validation experiment, and results are even bet-
ter when only the last fold, with the latest validation years
(2015–2021), is considered.

In the following, the statistical and physical properties of
the detected tracks are investigated. Figure 5a shows the track
duration histograms for the observed, ERF-detected tracks
(Hit and FA) and missed tracks. ERF-based Hits have a dura-
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Figure 4. ERF-based TC tracks reconstructed over validation year 2017 for the NATL for the “25-times” setup. (a) Harvey, (b) Irma, (c) Jose
and (d) Maria.

Table 1. POD and FAR for tracks reconstructed from average probability from ERF for calibration, validation, and test experiments for the
“25-times” setup and for UZ in %. Multi-basin refers to POD and FAR from ERF applied to both ENP and NATL basins under the “25-times”
setup discussed in Sect. 4.1. The right part of the table, referred to as “Ablation experiments”, gives the POD and FAR for ERF experiments
conducted with a reduced number of predictors discussed in Sect. 4.2

Main experiments Ablation experiments

ENP NATL ENP NATL

POD FAR POD FAR POD FAR POD FAR

Calibration 91.1 2.0 93.6 2.3 89.7 4.1 89.5 3.6
Validation 77.5 8.7 77.8 7.9 77.2 11.9 76.7 13.2
UZ 76.4 24.1 78.4 15.0 – – – –

Test NATL (calib.) ENP (calib) NATL (calib) ENP (calib.)

76.6 15 68.4 7.8 73.5 15.5 69.3 15.5

Multi-basin

Calibration 91.8 3.1 90.9 2.4 90.5 5.5 87.8 3.1
Validation 79.2 9 74.8 5.3 78.1 13.7 70.1 8.3

tion distribution quite similar to IBTrACS tracks, but with
substantial differences for short-duration tracks (1 to 3 d).
These short-duration tracks have a typically short lifespan
and are of lower intensity. This discrepancy is supported
by the duration distribution of Miss tracks, which is mainly
short-duration tracks (the majority of them last between 2
and 4 d). False alarms are also of the same duration. Differ-
ences in probabilities of TCs given by ERF associated with
every time step of Hit, FA, and Miss of tracks are then in-
vestigated. Figure 5b shows TC probabilities conditionally
on its labelling as Hit, Miss, or FA. Probabilities associated
with Hit tracks (median above 0.9) are substantially differ-
ent compared to those associated with FA (median a little
above 0.6). This means that even if FA tracks are detected

(probability> 0.5) by ERF, FA are less likely to happen than
Hits. Miss tracks are associated with very low probabilities,
meaning they are completely missed by ERF while having
been recorded in IBTrACS.

To investigate how these different tracks diverge in na-
ture, the maximum wind and minimum sea level pressure
associated with these different types of tracks are consid-
ered. Figure 6c shows the scatter plot of maximum surface
wind against minimum sea level pressure associated with ev-
ery timestep of observed, detected (Hit and FA) and missed
tracks. Figure 6a and b, respectively, give the associated max-
imum wind and sea level pressure histograms. In general, and
as already pointed out in Bourdin et al. (2022) and Dulac
et al. (2024), the wind-pressure relationship in ERA5 is dif-
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Figure 5. Statistical properties of IBTrACS (purple), ERF-detected TC tracks: Hit (blue) and FA (yellow) and ERF-missed tracks: Miss
(green). (a) TC tacks duration histograms, (b) Boxplot of ERF-based average probabilities associated with each time step of Hit, FA, and
Miss tracks.

Figure 6. Physical properties of IBTrACS (purple), ERF-detected TC tracks: Hit (blue) and FA (yellow) and ERF-missed tracks: Miss
(green). (a) histograms of maximum surface wind [in m s−1], (b) histograms of minimum sea level pressure [in hPa] and (c) the scatter
plot of maximum surface wind against minimum sea level pressure. Vertical lines indicate the TC intensity classification Saffir-Simpson
Hurricane Scale thresholds of 10 min sustained wind. Horizontal lines indicate pressure thresholds based on Klotzbach et al. (2020).
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Figure 7. Average probability (top row), minimum sea level pressure, Pmin [in hPa] and maximum wind U10max [in m s−1] for Miss tracks
(left column) and FA tracks (right column). Colours are saturated for Pmin and U10max.

ferent from the one in the observations (purple dots versus
the rest). Detected TCs are weaker than observed ones. In
particular, Hit tracks barely reach category 4 when consider-
ing ERA5 minimum sea level pressure, and it is even worse
when considering ERA5 maximum wind: Hit tracks barely
reach category 3. In addition, these figures also provide in-
sight into the FA and Miss tracks. Miss tracks are, for the ma-
jority of them, associated in ERA5 with minimum pressure
above 1005 hPa and maximum wind below 16 m s−1, which
are the TS intensity threshold. It means that these tracks are
missed because ERA5 is failing to represent these TCs cor-
rectly. Concerning FA tracks when examining Fig. 6a–c, the
maximum winds and minimum pressure are located around
16 m s−1 and 1005 hPa pressure, which are again the thresh-
old for TS intensity. Thus, these FA tracks may be related
to the uncertainty of ERF, which associates an atmospheric
situation with a TC even though none has been observed.

Figure 7 shows Miss and FA tracks distributed over the
NATL basin and the associated ERF-based average proba-
bility, the minimum pressure and the maximum wind. Miss
tracks are distributed over the entire domain and confirm the
results of low probability and intensity in Figs. 5 and 6. How-
ever, one track shows high probability, intense wind and low
pressure pictured in reddish colours in the three left-hand
side panels of Fig. 7. This track illustrates one drawback of
dividing the basin into 20°× 10° overlapping boxes: ERF can
only detect one TC at a time within a box. However, two TCs
may happen at the same time within one box. Figure 8 shows
the IBTrACS track of the TC IRIS spotted in Fig. 7 and the
stronger TC HUGO occurring at the same time. The proba-

Figure 8. Example of TC IRIS that has been missed by ERF due
to the presence of a stronger TC HUGO and the associated Pmin
[in hPa].

bility, the pressure, and the wind associated with the missed
TC IRIS in Fig. 7 are those of the strong TC HUGO. The
FA tracks are mostly distributed at the edge of the domain.
In particular, they are located in areas where TCs are typi-
cally weaker: the primary development region (eastern part
of the domain between 10 and 20° N) where TCs are devel-
oping, and coastal areas where they disappear. This can be
related to the uncertain aspect of these tracks that are yielded
by lower probabilities.

Similar figures for the ENP basin are given in Figs. S2
to S5 and give similar conclusions as for the NATL basin.
The major difference is that the distinction in terms of in-
tensity between Hit and FA is less obvious based on ERA5.
The wind-pressure relationship in ERA5 compared to the ob-
servation is even worse for ENP, where TCs barely reach
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category 2 intensity for the wind and pressure scale. The
median probability of Hit and FA tracks is closer (0.8 vs.
0.65) and yields a higher FAR ratio. Even though the ma-
jority of FA tracks are associated with wind and pressure
around 16 m s−1 and 1005 hPa, some of them present more
intense values. One hypothesis may be that these tracks have
not been recorded in IBTrACS.

3.3 Physical interpretation

In this section, the contribution of the different predictors
to the detection of TCs is analysed to provide physical in-
sights into the presence or absence of a TC. Figure 9 shows
that for both basins, the six variables with the largest feature
importance are the same: RV850sd, MSLPmin, UV10max,
RV850max, THz300_z500max and TCWVmax. These pre-
dictors are physically well-founded in explaining the pres-
ence of a cyclone. RV850sd characterises the singularity of
the vortex within a box: the higher it is, the more the TC
vorticity stands out from the vorticity of the rest of the area
within a box. It is more important than the RV850max, the
fourth most important variable. Then, UV10max and MSLP-
min are the following most important variables. This makes
sense, since they are associated with the strong surface winds
and the location of the cyclone’s eye, respectively. The fol-
lowing variables are the TCWVmax and THz300_z500max.
The former reflects the potential for rain and the moisture
lifted by the TC; the latter characterises the upper-level warm
core associated with the TC. Note that the order of impor-
tance is slightly different between the basins. For instance,
maximum wind is more important than sea level pressure for
the NATL basin, while it is the opposite for the ENP basin.
It may result from the different wind-pressure relationships
between both basins (see Figs. 6c and S3c). TCWVmax is
less important in explaining the presence of the TC situation
for the ENP basin.

Feature importance quantifies the average contribution of
a given predictor in discriminating TC from non-TC situa-
tions. However, it would be interesting to determine the con-
tribution of each predictor to each outcome of an RF. Indeed,
we want to evaluate the ability of RFs to learn the relevance
of each predictor to drive each TC/non-TC prediction. This is
provided by the SHAP-based partial dependency plots shown
in Fig. 10 for the NATL basin. This figure pictures the re-
lationship between the six top predictors (according to fea-
ture importance) and their respective SHAP values. Note that
given the computing time, SHAP values are computed for
only one RF among the 100 RFs of the calibration exper-
iment and the “25-times” setup. These partial dependence
plots are probably very similar for the 100 RFs, given the
small dispersion of the MCC, POD and FAR performances’
metrics (see Fig. 3) and feature importance (see Fig. 9). Let
us consider the partial dependency plot in panel a of Fig. 10.
On the abscissa is given the physical range of RV850sd and
the associated SHAP values on the ordinate. It shows the con-

tribution of RV850sd given its value to the probability value
of TC occurrence.

The partial dependence is distinct between the “zero” and
the “one” populations, with marginal overlap. For the zeros,
the SHAP values are always very close to 0, while for the
ones, the SHAP values always steeply increase when the as-
sociated predictor increases (except MSLPmin, SHAP values
increase when it decreases). For these six predictors, SHAP
values tend to reach a cap value after the predictors reach
a certain level, and they even decrease for MSLPmin and
UV10max. This means that the contribution of these pre-
dictors in discriminating TC from non-TC situations does
not change when reaching an intense value. This figure also
shows that TC situations can occur for a large range of val-
ues and diverse combinations of these predictor values. This
advocates for TC tracking approaches that bring more flex-
ibility than threshold-based approaches. Similar results can
be drawn based on Fig. S6 for the ENP basin. This analysis
highlights the advantages of using random forest over tradi-
tional trackers that rely on the sequential use of thresholds,
as most variables exhibit nonlinear interdependencies.

3.4 Comparison with UZ

POD and FAR for UZ in both basins are reported in Table 1.
POD are close to those of ERF (Validation experiment) with
1 % lower POD for ENP (76.4 %) and less than 1 % higher
(78.4 %) for NATL. However, FAR, which reaches 24.1 % in
the ENP and 15 % in the NATL, amounts to almost three and
two times the ERF scores, which is undesirable.

Figures 5 to 7 have been reproduced for UZ and both
basins. They have been added to the Supplement as Figs. S7
to S12. Panel b of Fig. 5 and the two top panels of Fig. 7,
showing the probability associated with the tracks, are ir-
relevant for UZ. For both basins, the track properties ob-
tained from UZ are similar to those obtained with ERF (see
Figs. S7, S8, S10 and S11). The main difference resides in the
properties of missed tracks. These tracks are similarly short
but more frequent and slightly more intense (higher maxi-
mum wind and lower SLP). Properties of FAs are similar for
UZ and ERF in the NATL basin. In the ENP basin, FAs from
UZ are significantly more frequent and intense than the FAs
generated by ERF. The spatial distribution of Miss and FA of
the UZ tracker is also similar to that of ERF (Figs. S9 and
S12). Miss tracks are distributed over the entire domain with
low intensity, and FA tracks are mostly located in the pri-
mary development region and coastal areas, where TCs are
typically weaker.

To further explore the similarities and differences between
UZ and ERF, Fig. 11 shows the number of tracks that are
common for observations (IBTrACS, IB) and tracks that
are detected by ERF (Validation experiment and “25-times”
setup) and UZ. A large portion of the tracks of IBTrACS
are detected by both UZ and ERF (335/252 for ENP/NATL
basins), and some tracks are only detected by UZ (28/31 for
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Figure 9. Boxplot of Gini-based feature importances from the 100 RFs of the ERF for the calibration experiment and the “25-times” setup
for (a) ENP and (b) NATL.

Figure 10. Partial dependence plot for top six predictors (a)–(f) obtained for one of the 100 RFs of the calibration experiment and the
“25-times” setup for the NATL basin. Contour lines indicate the density of the scatter plot between one predictor and the associated SHAP
values. Yellow and blue characterise, respectively, the density of the zeros (probability< 0.5) and the ones (probability> 0.5) population.
Vertical and horizontal lines, respectively, indicate the median of the predictors and the associated SHAP values for both populations. The
distributions of the predictors and SHAP values are also given conditionally to both populations.
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ENP/NATL basins) or ERF (27/22 for ENP/NATL basins). In
total, the Hit numbers are similar in both methods. UZ pro-
duces more FAs (115/50 for ENP/NATL basins) than ERF
(41/31 for ENP/NATL basins). Finally, there are no common
FAs between ERF and UZ. This means the FA appear for
different reasons in the two methods.

4 Sensitivity test

4.1 Need for regional tracker

In this study, ERF has been applied separately for each basin,
which is uncommon in the literature. Usually, the tracking al-
gorithm is applied over multiple basins (Bourdin et al., 2022;
Accarino et al., 2023). This has been done to test the spatial
generalizability of the ERF approach. This ability of ERF
is based on the test experiment, which consists of recon-
structing the tracks of the ENP basin using the ERF fitted for
the calibration experiment (“25-times”) setup for the NATL
basin and vice versa (see Sect. 2.2.1). Table 1 reports the FAR
and POD for these test experiments. POD and FAR are re-
spectively 76.6 % and 15 % for the ENP basin and 68.4 %
and 7.8 % for the NATL. In the case of ENP, the test POD
is similar to the validation one, while the FAR is degraded.
It is the opposite for NATL. This shows a certain specificity
of the TC tracking according to the basin, which may stem
from different factors. For instance, the latitudinal distribu-
tion of the cyclones is quite different between both basins:
for the ENP basin, TC tracks are mostly located between
10 and 20° N (see Fig. 1) while they are distributed all over
the basin for NATL. Thus, this may involve different pro-
cesses between TC in NATL and ENP. Differences in feature
importance in Fig. 9 between the two basins may be an il-
lustration of that. This can also be due to the differences in
the quality of TC representation between the two basins in
ERA5. For example, differences in the wind-pressure rela-
tionship between both basins illustrate this quality difference
(see Figs. 6c and S3c).

To highlight the need for a regional tracker, ERF has been
carried out under the “25-times” setup for the data pooled
from both basins, referred to as “Multi-basin”. Table 1 gives
the POD and FAR for calibration and validation experiments.
Compared to basin-specific experiments, the performances
are close, with slightly better POD and slightly worse FAR
for the ENP basin. In contrast, it is the opposite for the NATL
basin, with larger differences. The better performance for the
ENP basin can be explained by its higher weight on the ERF
training, given its larger data size (see Sect. 2.1.3) and the
small total number of TCs. The results remain, nevertheless,
better than UZ (see Table 1). It is therefore up to the user to
decide if either one ERF for all basins or one specific ERF
for each basin is necessary by considering if the loss of per-
formance of the Multi-basin ERF compared to the regional
ERF is acceptable or not.

4.2 Ablation experiment

An ablation experiment is conducted to get a more parsimo-
nious ERF by reducing the number of predictors. Based on
the feature importance (Fig. 9), the top six predictors are kept
(see Sect. 3.3). Such a model is expected to generalise better,
have a smoother behaviour when looking at partial depen-
dencies, and be potentially more intrinsically interpretable.

In this section, the Calibration and Validation (for regional
and Multi-basin) and Test (for regional) experiments have
been performed under the “25-times” setup. The right part
of Table 1 gives the POD and FAR from all experiments
carried out with a reduced number of predictors. For all ex-
periments, PODs are only slightly reduced but remain very
close to the POD without the ablation. Interestingly, FARs
are more strongly degraded (sometimes doubled) with the
ablation. This means that predictors with lower feature im-
portance control FA, indicating that we ought to be cautious
when removing predictors. SHAP-based partial dependency
plots for the validation experiment are given in Figs. S13 and
S14 for the Validation experiment and both basins. In gen-
eral, these figures are similar to those of ERF performed with
the full set of predictors. The only difference is the better dis-
tinction between “zero” and “one” populations, which can
result from the higher FA rate.

To explore how many variables can be removed without
deteriorating the performance of the tracker, a recursive fea-
ture elimination on the 6-fold cross-validation set-up (valida-
tion experiment) has been performed. It consists of eliminat-
ing the least important variable at each iteration. The results
(not shown here) show that the performance of ERF remains
stable until we remove 12 to 14 variables, which roughly
corresponds to the number of variables we kept for the sen-
sitivity test. The exception resides in FAR, which shows a
50 % increase when we remove no more than 6 variables,
confirming the role of the least important in controlling the
false alarms.

5 Summary and perspectives

In this study, we used random forest for tracking tropical cy-
clones in the eastern North Pacific and North Atlantic basins
over the 1980–2021 period by associating atmospheric sit-
uations described by five climatic predictors extracted from
ERA5 with observational IBTrACS records of tropical cy-
clones. More precisely, the tracking problem in this paper
was equivalent to performing binary classification over im-
balanced data containing substantially more TC-free situa-
tions than TC. This imbalance problem was addressed by
combining an ensemble of random forests with the subsam-
pling of TC-free situations. Before applying this method, the
amount of data fed to it was reduced by considering four
statistics of each predictor instead of its whole field (mini-
mum, mean, maximum and standard deviation). In addition,
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Figure 11. Number of tracks in common between observed tracks (IBTrACS, IB) and detected tracks from ERF and UZ for the following
case: all three datasets, two out of the three and tracks specific to a dataset for the Validation experiment and “25-times” setup. (a) ENP and
(b) NATL basins.

basins were patched by overlapping boxes. In this way, our
approach was able to learn the characteristics related to the
presence of the TC inside a box, regardless of its position.
It allowed us to detect cyclones that occur simultaneously
within one basin or in both basins (for the multi-basin exper-
iments).

Our data-driven ERF tracker showed good performances
for detecting TC tracks: In validation, POD/FAR of
77.5 %/8.7 % and 77.8 %/7.9 % were obtained for the ENP
and the NATL basins, respectively. Compared to the physics-
based UZ tracker, used as a benchmark in this study, ERF
showed similar POD but better (i.e., lower) FAR. UZ was
chosen because it was the most accurate among the physics-
based trackers (Bourdin et al., 2022), and it was also better
than other data-driven trackers (e.g., the deep learning ap-
proach in Accarino et al., 2023). ERF has the advantage of
requiring low computing power (see Sect. 2.2.1). Tracks de-
tected by ERF have similar duration frequencies to IBTrACS
tracks, except for short (2 to 4 d) and lower intensity tracks
(see Figs. 5 and 6). Missed and false alarm tracks are mainly
short tracks (1 to 3 d). Detected TCs have weaker intensity
in ERA5 than in IBTrACS, due to ERA5 systematically un-
derestimating TC intensity. So much so that it is likely that
some cyclones are missing because they were reanalysed as
too weak to be detected. False alarm tracks are very close to
the tropical storm intensity thresholds and thus illustrate the
uncertainties of ERF. These tracks are located in developing
and landfall areas of cyclones, where their signal is less clear
and more uncertain.

For both basins, the six most important variables for de-
tecting the presence of TCs are the same and characterise the
main physical and thermodynamic properties of TCs. The
order of importance differs between the basins, highlight-
ing potential specificities in the TC patterns and processes
depending on the basin. Relying on the SHAP-based par-
tial dependency plots, we showed that TCs can be detected
through potentially diverse combinations of predictor values.
This brings more flexibility than physics-based approaches
that need user-prescribed thresholds.

Two aspects of our ERF trackers were then tested: the spa-
tial generalizability of ERF, and the possibility of reducing
the number of predictors. When the tracking was performed
in one basin based on an ERF calibration performed on the
other basin (resp. on both basins): (i) for ENP, the POD
is similar (resp. improved) and the FAR is degraded (resp.
similar), and (ii) for NATL, the POD is degraded (resp. de-
graded) and the FAR is similar (resp. improved). This shows
an overall good ability for spatial generalizability of ERF,
while showing potential need for regional tracking that can
stem from the specificities of TC tracks and the differences
in ERA5 quality between both basins. The ablation experi-
ment showed that reducing the number of predictors accord-
ing to their feature importance does not change (or only very
marginally) the POD, but strongly degrades the FAR for all
experiments. This showed a certain control over false alarms
of the removed predictors.

As future work, the next focus will be on extending the
tracking for all the basins at a global scale. Some tests will
also be necessary to choose the minimum number of RF
(lower than 100) and to determine which predictors con-
trol FAs and which predictors to remove without degrading
the performance of the tracker. From there, the major chal-
lenge will be to apply ERF to Earth System Models from the
Coupled Model Intercomparison Project phase 6 (CMIP6,
Eyring et al., 2016) and, in particular, to the subset of CMIP6
simulations from the High Resolution Model Intercompar-
ison Project (HighResMIP, Haarsma et al., 2016). Indeed,
HighResMIP simulations are better at simulating TCs, and
their tracking has already been done with other physics-based
trackers (Roberts et al., 2020).

The primary target will be to apply the ERF tracker cali-
brated from ERA5 directly to HighResMIP simulations with-
out any new ERF calibration. This raises the question of the
transferability of the ERF calibrated from ERA5 to the mod-
els. This issue is two-fold: first, is there a need for bias cor-
rection? And second, will ERF be transferable to future cli-
mate projections given the climate change signal? The first
question will deal with the possibility of a mismatch be-
tween the models and ERA5, preventing ERF from detect-
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ing cyclones. The second one will address the possibility that
climate change will induce nonstationarity strong enough to
prevent ERF from detecting cyclones.

Multiple applications can be foreseen. For instance, we
will study the statistical and physical properties of TCs de-
tected under climate change. More precisely, we will be
able to compare them to the cyclones detected by physical-
based trackers and evaluate the complementary added value
brought by the flexibility of ERF for detecting cyclones. Fur-
thermore, the differences in the relation between the pre-
dictors and the TC presence probability for the models and
ERA5 will be evaluated using the partial dependency plots.
Another application can be dedicated to climate change attri-
bution studies by comparing the properties of TCs in simula-
tions realised under controlled emission scenarios and future
climate scenarios.

Ultimately, we would like to make our method widely
available. Hence, efforts will be made to make it easy to use
through open-source software.

Appendix A: Tables

Table A1. Confusion Matrix.

Prediction

0 1

Observations
0 TN FP

1 FN TP

true positives (TP), true negatives (TN),
false positives (FP), false negatives (FN)
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