Articles | Volume 25, issue 10
https://doi.org/10.5194/nhess-25-4003-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-4003-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution monitoring of the Günz River: Assessing water quality risks for managed aquifer recharge
TUM School of Engineering and Design, Department of Civil and Environmental Engineering, Technical University of Munich (TUM), Munich, Germany
Thomas Baumann
TUM School of Engineering and Design, Department of Civil and Environmental Engineering, Technical University of Munich (TUM), Munich, Germany
Related authors
No articles found.
Lilly Zacherl and Thomas Baumann
Adv. Geosci., 65, 9–17, https://doi.org/10.5194/adgeo-65-9-2024, https://doi.org/10.5194/adgeo-65-9-2024, 2024
Short summary
Short summary
Scaling, particularly calcium carbonate precipitation in Bavaria, diminishes the efficiency of geothermal systems. To mitigate this issue, modeling for predictive maintenance is required, yet data are scarce. To address this, experimental data of the process were obtained using a new combination that allows qualitative and quantitative investigation in real time. Unfortunately, the stability of the signal degraded in long-term experiments, limiting measurements to durations of up to one day.
Tamara Michaelis, Anja Wunderlich, Thomas Baumann, Juergen Geist, and Florian Einsiedl
Hydrol. Earth Syst. Sci., 27, 3769–3782, https://doi.org/10.5194/hess-27-3769-2023, https://doi.org/10.5194/hess-27-3769-2023, 2023
Short summary
Short summary
Riverbeds are densely populated with microorganisms which catalyze ecologically relevant processes. To study this complex zone, we tested pore-water extraction with microfilter tubes. The method was found to be suitable for the measurement of dissolved solutes but less so for gases. The pumping rate during sample extraction strongly influenced gas analyses in the samples. The combination with an optical oxygen sensor and a temperature monitoring system was found to be highly valuable.
Annette Dietmaier and Thomas Baumann
Adv. Geosci., 58, 189–197, https://doi.org/10.5194/adgeo-58-189-2023, https://doi.org/10.5194/adgeo-58-189-2023, 2023
Short summary
Short summary
Data on geothermal properties are notoriously scarce, both on a good temporal and spatial resolution. We compared two data sets of a geothermal well in Bavaria (one had yearly analyses of a great number of ions, the other one tested the water every five minutes but only on a small number of variables) and found that yearly data systematically neglect seasonal variations taking place in the aquifer. Virtual sensors might help to combine the two data sets when the aquifer is well known.
Tamara Michaelis, Anja Wunderlich, Ömer K. Coskun, William Orsi, Thomas Baumann, and Florian Einsiedl
Biogeosciences, 19, 4551–4569, https://doi.org/10.5194/bg-19-4551-2022, https://doi.org/10.5194/bg-19-4551-2022, 2022
Short summary
Short summary
The greenhouse gas methane (CH4) drives climate change. Microorganisms in river sediments produce CH4 when degrading organic matter, but the contribution of rivers to atmospheric CH4 concentrations is uncertain. To better understand riverine CH4 cycling, we measured concentration profiles of CH4 and relevant reactants that might influence the CH4 cycle. We found substantial CH4 production, especially in fine, organic-rich sediments during summer and signs of microbial CH4 consumption.
Cited articles
Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river flood risk at the global scale, Climatic Change, 134, 387–401, https://doi.org/10.1007/s10584-014-1084-5, 2016. a
Atlas Scientific: Raspberry-Pi-sample-code, GitHub [code], https://github.com/AtlasScientific/Raspberry-Pi-sample-code (last access: 13 October 2025), 2023. a
Bartak, R., Grischek, T., and Hoche, D.: MAR with Untreated River Water: Clogging of Basins and Coliform Removal Rates, Journal of Hydrologic Engineering, 20, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000980, 2015. a
Bartos, M., Smith, T. J., itati01, Debbout, R., Kraft, P., and Huard, D.: Pysheds, Zenodo [data set], https://doi.org/10.5281/zenodo.7942819, 2023. a, b
Basu, N. B., Destouni, G., Jawitz, J. W., Thompson, S. E., Loukinova, N. V., Darracq, A., Zanardo, S., Yaeger, M., Sivapalan, M., Rinaldo, A., and Rao, P. S. C.: Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity, Geophysical Research Letters, 37, https://doi.org/10.1029/2010GL045168, 2010. a
Bates, B., Kundzewicz, Z. W., Wu, S., and Palutikof, J., eds.: Climate Change and Water: Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, ISBN 978-92-9169-123-4, 2008. a
Bavarian Environment Agency: Bach- und Flussgebiete: Tabelle Fließgewässer in Bayern [data set], https://www.lfu.bayern.de/wasser/gewaesserverzeichnisse/bf_gebiete/index.htm (last access: 13 October 2025), 2016. a
Bavarian Environment Agency: Bayerisches Klimainformationssystem (BayKIS): Klimatool der Zukunft [data set], https://klimainformationssystem.bayern.de/klimatool/klima-der-zukunft (last access: 13 October 2025), 2023a. a
Bavarian Environment Agency: Digitale Geologische Karte von Bayern 1 : 25 000 [data set], https://www.lfu.bayern.de/geologie/geo_karten_schriften/dgk25_uab/index.htm (last access: 13 October 2025), 2023b. a
Bavarian Environment Agency: UmweltAtlas Bayern [data set], https://www.umweltatlas.bayern.de (last access: 13 October 2025), 2023c. a
Bavarian Environment Agency: BayernAtlas: Abwasserbehandlungsanlagen [data set], https://geoportal.bayern.de/bayernatlas/ (last access: 13 October 2025), 2024a. a, b
Bavarian Environment Agency: Hydrogeologische Karte 1:100 000 [data set], https://www.lfu.bayern.de/geologie/hydrogeologie_karten_daten/hk100/index.htm (last access: 13 October 2025), 2024b. a
Bavarian Environment Agency: Hochwassernachrichtendienst Bayern (Flood intelligence service Bavaria) [data set], https://www.hnd.bayern.de (last access: 13 October 2025), 2024d. a
Bavarian Surveying and Mapping Authority: OpenData: Digitales Geländemodell 1m (DGM1) [data set], https://geodaten.bayern.de/opengeodata/OpenDataDetail.html?pn=dgm1 (last access: 13 October 2025), 2022a. a
Baveye, P., Vandevivere, P., Hoyle, B. L., DeLeo, P. C., and de Lozada, D. S.: Environmental Impact and Mechanisms of the Biological Clogging of Saturated Soils and Aquifer Materials, Critical Reviews in Environmental Science and Technology, 28, 123–191, https://doi.org/10.1080/10643389891254197, 1998. a, b
BayNatSchG: Gesetz über den Schutz der Natur, die Pflege der Landschaft und die Erholung in der freien Natur, GVBl. p. 82 BayRS 791-1-U, https://www.gesetze-bayern.de/Content/Document/BayNatSchG (last access: 13 October 2025), 2011. a
Beck, H. E., McVicar, T. R., Vergopolan, N., Berg, A., Lutsko, N. J., Dufour, A., Zeng, Z., Jiang, X., van Dijk, A. I. J. M., and Miralles, D. G.: High-resolution (1 km) Köppen-Geiger maps for 1901-2099 based on constrained CMIP6 projections, Scientific Data, 10, 724, https://doi.org/10.1038/s41597-023-02549-6, 2023. a
Bernhardt, J. J., Rolfes, L., Henseler, M., and Kreins, P.: Quantification of regional irrigation demands for agriculture in Bavaria, Johann Heinrich von Thünen-Institut, https://doi.org/10.3220/PB1659520516000, 2022. a
Best, J.: Anthropogenic stresses on the world's big rivers, Nature Geoscience, 12, 7–21, https://doi.org/10.1038/s41561-018-0262-x, 2019. a
Best, J. and Darby, S. E.: The Pace of Human-Induced Change in Large Rivers: Stresses, Resilience, and Vulnerability to Extreme Events, One Earth, 2, 510–514, https://doi.org/10.1016/j.oneear.2020.05.021, 2020. a, b
Bieroza, M., Acharya, S., Benisch, J., ter Borg, R. N., Hallberg, L., Negri, C., Pruitt, A., Pucher, M., Saavedra, F., Staniszewska, K., Van't Veen, S. G. M., Vincent, A., Winter, C., Basu, N. B., Jarvie, H. P., and Kirchner, J. W.: Advances in Catchment Science, Hydrochemistry, and Aquatic Ecology Enabled by High-Frequency Water Quality Measurements, Environmental Science & Technology, 57, 4701–4719, https://doi.org/10.1021/acs.est.2c07798, 2023. a
Boström, C.-E., Gerde, P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., Rannug, A., Törnqvist, M., Victorin, K., and Westerholm, R.: Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air, Environmental Health Perspectives, 110 Suppl. 3, 451–488, https://doi.org/10.1289/ehp.110-1241197, 2002. a
Briffa, J., Sinagra, E., and Blundell, R.: Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 6, e04691, https://doi.org/10.1016/j.heliyon.2020.e04691, 2020. a
Bukowska, B., Mokra, K., and Michałowicz, J.: Benzoapyrene-Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity, International Journal of Molecular Sciences, 23, https://doi.org/10.3390/ijms23116348, 2022. a
Burkhardt, M., Rossi, L., and Boller, M.: Diffuse release of environmental hazards by railways, Desalination, 226, 106–113, https://doi.org/10.1016/j.desal.2007.02.102, 2008. a
Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., and Smith, V. H.: Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen, Ecological Applications, 8, 559–568, https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2, 1998. a
Cerejeira, M. J., Viana, P., Batista, S., Pereira, T., Silva, E., Valério, M. J., Silva, A., Ferreira, M., and Silva-Fernandes, A. M.: Pesticides in Portuguese surface and ground waters, Water research, 37, 1055–1063, https://doi.org/10.1016/S0043-1354(01)00462-6, 2003. a
Chalbot, M.-C., Vei, I., Lykoudis, S., and Kavouras, I. G.: Particulate polycyclic aromatic hydrocarbons and n-alkanes in recycled paper processing operations, Journal of Hazardous Materials, 137, 742–751, https://doi.org/10.1016/j.jhazmat.2006.04.003, 2006. a
Crameri, F.: Scientific colour maps, Zenodo [data set], https://doi.org/10.5281/zenodo.8409685, 2023. a
Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., Bear, J., Schwarz, J., Wang, W., Fernandez, E., Stefan, C., Pettenati, M., van der Gun, J., Sprenger, C., Massmann, G., Scanlon, B. R., Xanke, J., Jokela, P., Zheng, Y., Rossetto, R., Shamrukh, M., Pavelic, P., Murray, E., Ross, A., Bonilla Valverde, J. P., Palma Nava, A., Ansems, N., Posavec, K., Ha, K., Martin, R., and Sapiano, M.: Sixty years of global progress in managed aquifer recharge, Hydrogeology Journal, 27, 1–30, https://doi.org/10.1007/s10040-018-1841-z, 2019. a
DIN 38404-3: German standard methods for the examination of water, waste water and sludge – Physical and physical-chemical parameters (group C) – Part 3: Determination of absorption in the range of the ultraviolet radiation, Spectral absorptions coefficient (C3), https://doi.org/10.31030/9634006, 2005. a
DIN EN ISO 7027-1: Water quality – Determination of turbidity - Part 1: Quantitative methods, https://doi.org/10.31030/2399299, 2016. a
Droppo, I. G., Liss, S. N., Williams, D., Nelson, T., Jaskot, C., and Trapp, B.: Dynamic existence of waterborne pathogens within river sediment compartments. Implications for water quality regulatory affairs, Environmental Science & Technology, 43, 1737–1743, https://doi.org/10.1021/es802321w, 2009. a
Ebeling, P., Kumar, R., Lutz, S. R., Nguyen, T., Sarrazin, F., Weber, M., Büttner, O., Attinger, S., and Musolff, A.: QUADICA: water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany, Earth System Science Data, 14, 3715–3741, https://doi.org/10.5194/essd-14-3715-2022, 2022. a
European Environment Agency: European waters: Assessment of status and pressures 2018, https://doi.org/10.2800/303664, 2018. a
Fröhlich, H. L., Breuer, L., Frede, H.-G., Huisman, J. A., and Vaché, K. B.: Water source characterization through spatiotemporal patterns of major, minor and trace element stream concentrations in a complex, mesoscale German catchment, Hydrological Processes, 22, 2028–2043, https://doi.org/10.1002/hyp.6804, 2008. a
Garcia-Armisen, T. and Servais, P.: Partitioning and Fate of Particle-Associated E. coli in River Waters, Water Environment Research, 81, 21–28, https://doi.org/10.2175/106143008x304613, 2009. a
Gemeindeverwaltung Markt Obergünzburg: Ortsvorstellung Obergünzburg, https://www.oberguenzburg.de/kultur-und-tourismus/ortsvorstellung-oberguenzburg (last access: 13 October 2025), 2024. a
Glaser, C., Zarfl, C., Rügner, H., Lewis, A., and Schwientek, M.: Analyzing Particle-Associated Pollutant Transport to Identify In-Stream Sediment Processes during a High Flow Event, Water, 12, 1794, https://doi.org/10.3390/w12061794, 2020a. a
Glaser, C., Zarfl, C., Werneburg, M., Böckmann, M., Zwiener, C., and Schwientek, M.: Temporal and spatial variable in-stream attenuation of selected pharmaceuticals, Science of the Total Environment, 741, 139 514, https://doi.org/10.1016/j.scitotenv.2020.139514, 2020b. a
Huber, A., Bach, M., and Frede, H. G.: Pollution of surface waters with pesticides in Germany: modeling non-point source inputs, Agriculture, Ecosystems & Environment, 80, 191–204, https://doi.org/10.1016/S0167-8809(00)00145-6, 2000. a
IAWR, AWBR, ARW, RIWA-Rijn, IAWD, AWE, AWWR, RIWA-Meuse, and RIWA-Scheldt: European River Memorandum for Quality Assurance of Drinking Water Production, https://www.awwr.de/fileadmin/awwr_de/content/download/european_river_memorandum_2020_en.pdf (last access: 13 October 2025), 2020. a
IGRAC: MAR Portal, https://ggis.un-igrac.org/view/marportal (last access: 13 October 2025), 2020. a
Jasechko, S., Seybold, H., Perrone, D., Fan, Y., Shamsudduha, M., Taylor, R. G., Fallatah, O., and Kirchner, J. W.: Rapid groundwater decline and some cases of recovery in aquifers globally, Nature, 625, 715–721, https://doi.org/10.1038/s41586-023-06879-8, 2024. a
Konstantinou, I. K., Hela, D. G., and Albanis, T. A.: The status of pesticide pollution in surface waters (rivers and lakes) of Greece: Part I: Review on occurrence and levels, Environmental Pollution, 141, 555–570, https://doi.org/10.1016/j.envpol.2005.07.024, 2006. a
Lange, F. T., Scheurer, M., and Brauch, H.-J.: Artificial sweeteners–a recently recognized class of emerging environmental contaminants: a review, Analytical and Bioanalytical Chemistry, 403, 2503–2518, https://doi.org/10.1007/s00216-012-5892-z, 2012. a
Lippera, M. C., Werban, U., Rossetto, R., and Vienken, T.: Understanding and predicting physical clogging at managed aquifer recharge systems: A field-based modeling approach, Advances in Water Resources, 177, 104462, https://doi.org/10.1016/j.advwatres.2023.104462, 2023. a
Ma, S., Song, Y., Ye, X., Du, X., and Ma, J.: Clogging and Water Quality Change Effects of Typical Metal Pollutants under Intermittent Managed Aquifer Recharge Using Urban Stormwater, International Journal of Environmental Research and Public Health, 18, https://doi.org/10.3390/ijerph182413272, 2021. a
Merel, S. and Snyder, S. A.: Critical assessment of the ubiquitous occurrence and fate of the insect repellent N,N-diethyl-m-toluamide in water, Environment International, 96, 98–117, https://doi.org/10.1016/j.envint.2016.09.004, 2016. a
Müller, M. E., Werneburg, M., Glaser, C., Schwientek, M., Zarfl, C., Escher, B. I., and Zwiener, C.: Influence of Emission Sources and Tributaries on the Spatial and Temporal Patterns of Micropollutant Mixtures and Associated Effects in a Small River, Environmental Toxicology and Chemistry, 39, 1382–1391, https://doi.org/10.1002/etc.4726, 2020. a
Müller, M. E., Zwiener, C., and Escher, B. I.: Storm Event-Driven Occurrence and Transport of Dissolved and Sorbed Organic Micropollutants and Associated Effects in the Ammer River, Southwestern Germany, Environmental Toxicology and Chemistry, 40, 88–99, https://doi.org/10.1002/etc.4910, 2021. a
Nasrabadi, T., Ruegner, H., Schwientek, M., Bennett, J., Fazel Valipour, S., and Grathwohl, P.: Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships, PloS one, 13, e0191314, https://doi.org/10.1371/journal.pone.0191314, 2018. a
Neale, P. A., Braun, G., Brack, W., Carmona, E., Gunold, R., König, M., Krauss, M., Liebmann, L., Liess, M., Link, M., Schäfer, R. B., Schlichting, R., Schreiner, V. C., Schulze, T., Vormeier, P., Weisner, O., and Escher, B. I.: Assessing the Mixture Effects in In Vitro Bioassays of Chemicals Occurring in Small Agricultural Streams during Rain Events, Environmental Science & Technology, 54, 8280–8290, https://doi.org/10.1021/acs.est.0c02235, 2020. a
Oppenheimer, J., Eaton, A., Badruzzaman, M., Haghani, A. W., and Jacangelo, J. G.: Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions, Water Research, 45, 4019–4027, https://doi.org/10.1016/j.watres.2011.05.014, 2011. a
Passerat, J., Ouattara, N. K., Mouchel, J.-M., Rocher, V., and Servais, P.: Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River, Water Research, 45, 893–903, https://doi.org/10.1016/j.watres.2010.09.024, 2011. a
Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C. U., and Mohan, D.: Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods, Chemical Reviews, 119, 3510–3673, https://doi.org/10.1021/acs.chemrev.8b00299, 2019. a
Rügner, H., Schwientek, M., Beckingham, B., Kuch, B., and Grathwohl, P.: Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments, Environmental Earth Sciences, 69, 373–380, https://doi.org/10.1007/s12665-013-2307-1, 2013. a
Rügner, H., Schwientek, M., Egner, M., and Grathwohl, P.: Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory, Science of the Total Environment, 490, 191–198, https://doi.org/10.1016/j.scitotenv.2014.04.110, 2014. a
Saavedra, F., Musolff, A., von Freyberg, J., Merz, R., Knöller, K., Müller, C., Brunner, M., and Tarasova, L.: Winter post-droughts amplify extreme nitrate concentrations in German rivers, Environmental Research Letters, 19, 024007, https://doi.org/10.1088/1748-9326/ad19ed, 2024. a
Scheurer, M., Storck, F. R., Graf, C., Brauch, H.-J., Ruck, W., Lev, O., and Lange, F. T.: Correlation of six anthropogenic markers in wastewater, surface water, bank filtrate, and soil aquifer treatment, Journal of Environmental Monitoring, 13, 966–973, https://doi.org/10.1039/c0em00701c, 2011. a, b
Smith, V. H.: Eutrophication of freshwater and coastal marine ecosystems: a global problem, Environmental Science and Pollution Research International, 10, 126–139, https://doi.org/10.1065/espr2002.12.142, 2003. a
Song, Y., Du, X., and Ye, X.: Analysis of Potential Risks Associated with Urban Stormwater Quality for Managed Aquifer Recharge, International Journal of Environmental Research and Public Health, 16, https://doi.org/10.3390/ijerph16173121, 2019. a, b
Stumm, W. and Morgan, J. J.: Aquatic chemistry: Chemical equilibria and rates in natural waters, A Wiley-Interscience publication, John Wiley & Sons Inc, New York and Chichester and Brisbane and Toronto and Singapore, third Edn., ISBN 9780471511847, 1996. a
TrinkwEGV: Verordnung über Einzugsgebiete von Entnahmestellen für die Trinkwassergewinnung (Federal Law Gazette 2023 I No. 346), https://www.gesetze-im-internet.de/trinkwegv/TrinkwEGV.pdf (last access: 13 October 2025), 2023. a
Valhondo, C., Martínez-Landa, L., Carrera, J., Díaz-Cruz, S. M., Amalfitano, S., and Levantesi, C.: Six artificial recharge pilot replicates to gain insight into water quality enhancement processes, Chemosphere, 240, 124826, https://doi.org/10.1016/j.chemosphere.2019.124826, 2020. a
van Bebber, W. J.: Die Wettervorhersage: Eine gemeinverständliche praktische Anleitung zur Wettervorhersage auf Grundlage der Zeitungs-Wetterkarten und Zeitungs-Wetterberichte : für alle Berufsarten, Enke, https://books.google.de/books?hl=de&lr=&id=02TzQ4VqZCQC (last access: 13 October 2025), 1898. a
Verlicchi, P., Al Aukidy, M., and Zambello, E.: Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment – a review, Science of the Total Environment, 429, 123–155, https://doi.org/10.1016/j.scitotenv.2012.04.028, 2012. a
Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., and Tilman, D. G.: Human Alteration of the Global Nitrogen Cycle: Sources and Consequences, Ecological Applications, 7, 737–750, https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2, 1997. a
Water Board Kempten: Hochwasserschutz Günztal, https://www.wwa-ke.bayern.de/projekte/hws_guenztal (last access: 13 October 2025), 2024. a
Werner, B. J., Musolff, A., Lechtenfeld, O. J., de Rooij, G. H., Oosterwoud, M. R., and Fleckenstein, J. H.: High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment, Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, 2019. a
WFD: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy (Water Framework Directive), https://eur-lex.europa.eu/eli/dir/2000/60/oj (last access: 13 October 2025), 2000. a
Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., and Wade, A. J.: A review of the potential impacts of climate change on surface water quality, Hydrological Sciences Journal, 54, 101–123, https://doi.org/10.1623/hysj.54.1.101, 2009. a
Wijesiri, B. and Goonetilleke, A.: Urban Water Quality, in: Urban Stormwater and Flood Management, edited by: Jegatheesan, V., Applied Environmental Science and Engineering for a Sustainable Future Ser, 49–68, Springer, Cham, ISBN 978-3-030-11817-4, https://doi.org/10.1007/978-3-030-11818-1_3, 2019. a
World Health Organization: Guidelines for drinking-water quality, ISBN 978-92-4-004506-4, 2022. a
Wunsch, A., Liesch, T., and Broda, S.: Deep learning shows declining groundwater levels in Germany until 2100 due to climate change, Nature Communications, 13, 1221, https://doi.org/10.1038/s41467-022-28770-2, 2022. a
Yarnell, S. M., Petts, G. E., Schmidt, J. C., Whipple, A. A., Beller, E. E., Dahm, C. N., Goodwin, P., and Viers, J. H.: Functional Flows in Modified Riverscapes: Hydrographs, Habitats and Opportunities, BioScience, 65, 963–972, https://doi.org/10.1093/biosci/biv102, 2015. a
Zaidi, M., Ahfir, N.-D., Alem, A., El Mansouri, B., Wang, H., Taibi, S., Duchemin, B., and Merzouk, A.: Assessment of clogging of managed aquifer recharge in a semi-arid region, Science of The Total Environment, 730, 139107, https://doi.org/10.1016/j.scitotenv.2020.139107, 2020. a
Zouboulis, A. and Tolkou, A.: Effect of Climate Change in Wastewater Treatment Plants: Reviewing the Problems and Solutions, in: Managing Water Resources under Climate Uncertainty, edited by: Shrestha, S., Anal, A. K., Salam, P. A., and van der Valk, M., Springer Water, 197–220, Springer-Verlag, ISBN 978-3-319-10466-9, https://doi.org/10.1007/978-3-319-10467-6_10, 2014. a
Short summary
River water can be used to refill depleted underground reserves impacted by climate change and human use. In this study, we assessed water quality in Bavaria's Günz River by analyzing watershed risks, using continuous monitoring, and conducting laboratory tests for pollutants. High flows showed strong dilution of almost all parameters. The results indicated that the river is a suitable source for groundwater recharge.
River water can be used to refill depleted underground reserves impacted by climate change and...
Altmetrics
Final-revised paper
Preprint