Articles | Volume 25, issue 10
https://doi.org/10.5194/nhess-25-3853-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3853-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insights into tectonic zonation models from the clustering analysis of seismicity in southern and south-eastern Spain
Multidisciplinary Institute for Environmental Studies “Ramón Margalef” (IMEM), University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Antonella Peresan
Seismological Research Center, National Institute of Oceanography and Applied Geophysics (OGS), Sgonico, Trieste, Italy
Elisa Varini
Institute for Applied Mathematics and Information Technologies (IMATI), National Research Council (CNR), Milan, Italy
Sergio Molina
Multidisciplinary Institute for Environmental Studies “Ramón Margalef” (IMEM), University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Department of Applied Physics, University of Alicante, Ctra. San Vicente del Raspeig, s/n, 03080 Alicante, Spain
Related authors
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, Igor Gómez, Alireza Kharazian, Juan Luis Soler-Llorens, José Antonio Huesca-Tortosa, Arianna Guardiola-Villora, and Gonzalo Ortuño-Sáez
Nat. Hazards Earth Syst. Sci., 25, 515–539, https://doi.org/10.5194/nhess-25-515-2025, https://doi.org/10.5194/nhess-25-515-2025, 2025
Short summary
Short summary
We presents a comparison between different methods of computing the seismic activity rate in the time-dependent annual probability of exceedance (TD-APE) for a given earthquake in two areas: Italy (high seismicity) and Spain (moderate seismicity). Important changes in the TD-APE are seen in Italy before the L'Aquila earthquake, which can be related to foreshocks. In the case of Spain subtle changes are seen before some earthquakes. This approach could enable operational earthquake forecasting.
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, and Igor Gómez
Nat. Hazards Earth Syst. Sci., 23, 91–106, https://doi.org/10.5194/nhess-23-91-2023, https://doi.org/10.5194/nhess-23-91-2023, 2023
Short summary
Short summary
One of the most effective ways to describe the seismicity of a region is to map the b-value parameter of the Gutenberg-Richter law. This research proposes the study of the spatial cell-event distance distribution to define the smoothing kernel that controls the influence of the data. The results of this methodology depict tectonic stress changes before and after intense earthquakes happen, so it could enable operational earthquake forecasting (OEF) and tectonic source profiling.
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, Igor Gómez, Alireza Kharazian, Juan Luis Soler-Llorens, José Antonio Huesca-Tortosa, Arianna Guardiola-Villora, and Gonzalo Ortuño-Sáez
Nat. Hazards Earth Syst. Sci., 25, 515–539, https://doi.org/10.5194/nhess-25-515-2025, https://doi.org/10.5194/nhess-25-515-2025, 2025
Short summary
Short summary
We presents a comparison between different methods of computing the seismic activity rate in the time-dependent annual probability of exceedance (TD-APE) for a given earthquake in two areas: Italy (high seismicity) and Spain (moderate seismicity). Important changes in the TD-APE are seen in Italy before the L'Aquila earthquake, which can be related to foreshocks. In the case of Spain subtle changes are seen before some earthquakes. This approach could enable operational earthquake forecasting.
Antonella Peresan, Chiara Scaini, Sergey Tyagunov, and Paola Ceresa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-156, https://doi.org/10.5194/nhess-2023-156, 2023
Publication in NHESS not foreseen
Short summary
Short summary
The experience collected during a capacity building experience in Central Asia is illustrated, which consisted in the organization of a series of training workshops devoted to the different components of risk assessment, focused on earthquakes, floods and selected landslide scenarios. The activity consisted of five country-based workshops on exposure assessment in each of the Countries of Central Asia, plus three regional scale thematic workshops on hazard, vulnerability and risk modelling.
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, and Igor Gómez
Nat. Hazards Earth Syst. Sci., 23, 91–106, https://doi.org/10.5194/nhess-23-91-2023, https://doi.org/10.5194/nhess-23-91-2023, 2023
Short summary
Short summary
One of the most effective ways to describe the seismicity of a region is to map the b-value parameter of the Gutenberg-Richter law. This research proposes the study of the spatial cell-event distance distribution to define the smoothing kernel that controls the influence of the data. The results of this methodology depict tectonic stress changes before and after intense earthquakes happen, so it could enable operational earthquake forecasting (OEF) and tectonic source profiling.
Cited articles
Baiesi, M. and Paczuski, M.: Scale-free networks of earthquakes and aftershocks, Phys. Rev. E, 69, 066106, https://doi.org/10.1103/PhysRevE.69.066106, 2004. a
Bavelas, A.: Communication Patterns in Task‐Oriented Groups, J. Acoust. Soc. Am., 22, 725–730, https://doi.org/10.1121/1.1906679, 1950. a
Benali, A., Peresan, A., Varini, E., and Talbi, A.: Modelling background seismicity components identified by nearest neighbour and stochastic declustering approaches: the case of Northeastern Italy, Stoch. Env. Res. Risk A., 34, 775–791, https://doi.org/10.1007/s00477-020-01798-w, 2020. a
Buforn, E., Sanz de Galdeano, C., and Udías, A.: Seismotectonics of the Ibero-Maghrebian region, Tectonophysics, 248, 247–261, https://doi.org/10.1016/0040-1951(94)00276-F, 1995. a
García-Mayordomo, J.: Modelo de Zonas Sismogénicas para el Cálculo de la Peligrosidad Sísmica en España, no. 5 in Riesgos geológicos/geotecnica, Instituto Geológico y Minero de España (IGME), C/ La Caleram 1 Tres Cantos – 28760 Madrid, 1 edn., ISBN 978-84-7840-964-8, http://hdl.handle.net/10261/273473, 2015a. a, b, c
García-Mayordomo, J., Insua-Arévalo, J., Martínez-Díaz, J., Perea, H., Álvarez Gómez, J., Martín-González, F., González, A., Lafuente, P., Pérez-López, R., Rodríguez-Pascua, M., Giner-Robles, J., Azañón, J., Masana, E., and Moreno, X.: Modelo integral de zonas sismogénicas de España, in: Resúmenes de la 1a Reunión Ibérica sobre Fallas Activas y Paleosismología Sigüenza, España (2010), 193–196, http://hdl.handle.net/10261/82470, 2010. a
García-Mayordomo, J., Insua-Arévalo, J. M., Martínez-Díaz, J. J., Jiménez-Díaz, A., Martín-Banda, R., Martín-Alfageme, S., Álvarez Gómez, J. A., Rodríguez-Peces, M., Pérez-López, R., Rodríguez-Pascua, M. A., Masana, E., Perea, H., Martín-González, F., Giner-Robles, J., Nemser, E. S., Cabral, J., and QAFI compilers: The Quaternary Active Faults Database of Iberia (QAFI v.2.0), J. Iber. Geol., 38, 285–302, https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39219, 2012. a, b, c, d, e, f, g, h, i
Gardner, J. K. and Knopoff, L.: Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?, B. Seismol. Soc. Am., 64, 1363–1367, https://doi.org/10.1785/BSSA0640051363, 1974. a
Gaspar-Escribano, J. M., Rivas-Medina, A., Parra, H., Cabañas, L., Benito, B., Ruiz-Barajas, S., and Martínez-Solares, J. M.: Uncertainty assessment for the seismic hazard map of Spain, Eng. Geol., 199, 62–73, https://doi.org/10.1016/j.enggeo.2015.10.001, 2015. a, b, c
González, Á.: The Spanish National Earthquake Catalogue: Evolution, precision and completeness, J. Seismol., 21, 435–471, https://doi.org/10.1007/s10950-016-9610-8, 2017. a, b, c, d
Gutenberg, B. and Ritcher, C. F.: Frequency of earthquakes in California, B. Seismol. Soc. Am., 34, 185–188, 1944. a
IGN: Catálogo de terremotos, Instituto Geográfico Nacional (IGN) [data set], https://doi.org/10.7419/162.03.2022, 2022. a, b
IGN: Descripción del tipo de Magnitud [in Spanish], Instituto Geográfico Nacional (IGN), https://www.ign.es/web/resources/docs/IGNCnig/SIS-Tipo-Magnitud.pdf, (last access: 22 May 2025), 2025. a
Kharazian, A., Molina, S., Galiana-Merino, J. J., and Agea-Medina, N.: Risk-targeted hazard maps for Spain, B. Earthq. Eng., 19, 5369–5389, https://doi.org/10.1007/s10518-021-01189-8, 2021. a
Luque-Espinar, J. A. and Mateos, R. M.: Hydrochemical changes in thermal waters related to seismic activity: The case of the 2020–2021 seismic sequence in Granada (S Spain), J. Hydrol., 627, 130390, https://doi.org/10.1016/j.jhydrol.2023.130390, 2023. a
López-Casado, C., Peláez-Montilla, J., and Henares-Romero, J.: Sismicidad en la Cuenca de Granada, in: La cuenca de Granada: estructura, tectónica activa, sismicidad, geomorfología y dataciones existentes, edited by: Sanz de Galdeano, C., Peláez-Montilla, J., and López-Garrido, A. C., 218, Granada, ISBN 8469955616, 2001. a
Martínez‐Garzón, P., Zaliapin, I., Ben‐Zion, Y., Kwiatek, G., and Bohnhoff, M.: Comparative Study of Earthquake Clustering in Relation to Hydraulic Activities at Geothermal Fields in California, J. Geophys. Res.-Sol. Ea., 123, 4041–4062, https://doi.org/10.1029/2017JB014972, 2018. a, b
Molina, S., Navarro, M., Martínez-Pagán, P., Pérez-Cuevas, J., Vidal, F., Navarro, D., and Agea-Medina, N.: Potential damage and losses in a repeat of the 1910 Adra (Southern Spain) earthquake, Nat. Hazards, 92, 1547–1571, https://doi.org/10.1007/s11069-018-3263-6, 2018. a
Ogata, Y.: Space-Time Point-Process Models for Earthquake Occurrences, Ann. I. Stat. Math., 50, 379–402, https://doi.org/10.1023/A:1003403601725, 1998. a
Papadakis, G., Vallianatos, F., and Sammonds, P.: Non-extensive statistical physics applied to heat flow and the earthquake frequency–magnitude distribution in Greece, Physica A, 456, 135–144, https://doi.org/10.1016/j.physa.2016.03.022, 2016. a
Peresan, A. and Gentili, S.: Seismic clusters analysis in Northeastern Italy by the nearest-neighbor approach, Phys. Earth Planet. In., 274, 87–104, https://doi.org/10.1016/j.pepi.2017.11.007, 2018. a
Peresan, A. and Gentili, S.: Identification and characterisation of earthquake clusters: a comparative analysis for selected sequences in Italy and adjacent regions, B. Geofis. Teor. Appl., 61, 57–80, https://doi.org/10.4430/bgta0249, 2020. a
Reasenberg, P. A.: Second-order moment of central California seismicity, 1969–1982, J. Geophys. Res.-Sol. Ea., 90, 5479–5495, https://doi.org/10.1029/JB090iB07p05479, 1985. a
Reasenberg, P. A. and Jones, L. M.: Earthquake Hazard After a Mainshock in California, Science, 243, 1173–1176, https://doi.org/10.1126/science.243.4895.1173, 1989. a
Rohatgi, V. K. and Ehsanes Saleh, A. K. M.: An Introduction to Probability and Statistics, John Wiley & Sons, Inc., ISBN 9781118799642, https://doi.org/10.1002/9781118799635, 2015. a
Saccorotti, G., Carmona, E., Ibàñez, J. M., and Del Pezzo, E.: Spatial characterization of Agron, southern Spain, 1988–1989 seismic series, Phys. Earth Planet. In., 129, 13–29, https://doi.org/10.1016/S0031-9201(01)00203-5, 2002. a
Stich, D., Morales, J., López-Comino, J. Á., Araque-Pérez, C., Azañón, J. M., Dengra, M. Á., Ruiz, M., and Weber, M.: Seismogenic structures and active creep in the Granada Basin (S-Spain), Tectonophysics, 882, 230368, https://doi.org/10.1016/j.tecto.2024.230368, 2024. a
Talebi, M., Zare, M., and Peresan, A.: Quantifying the features of earthquake clusters in north-Central Iran, based on nearest-neighbor distances and network analysis, Phys. Earth Planet. In., 353, 107215, https://doi.org/10.1016/j.pepi.2024.107215, 2024. a, b
Uhrhammer, R. A.: Characteristics of northern and southern California seismicity, Earthquake Notes, 57, 21–37, 1986. a
van Stiphout, T., Zhuang, J., and Marsan, D.: Seismicity declustering, in: Community Online Resource for Statistical Seismicity Analysis (CORSSA), CORSSA, 1–25, https://doi.org/10.5078/corssa-52382934, 2012. a
Varini, E., Peresan, A., and Zhuang, J.: Topological Comparison Between the Stochastic and the Nearest-Neighbor Earthquake Declustering Methods Through Network Analysis, J. Geophys. Res.-Sol. Ea., 125, e2020JB019718, https://doi.org/10.1029/2020JB019718, 2020. a
Vidal-Sánchez, F.: Terremotos relevantes y su impacto en Andalucía., in: Curso sobre Prevención Sísmica-Instituto Andaluz de Geofísica, 24, Universidad de Granada, https://raco.cat/index.php/AnuariVerdaguer/article/view/262467, 1993. a
Wiemer, S.: A Software Package to Analyze Seismicity: ZMAP, Seismol. Res. Lett., 72, 373–382, https://doi.org/10.1785/gssrl.72.3.373, 2001. a
Zaliapin, I. and Ben-Zion, Y.: Earthquake clusters in southern California I: Identification and stability, J. Geophys. Res.-Sol. Ea., 118, 2847–2864, https://doi.org/10.1002/jgrb.50179, 2013a. a, b, c
Zaliapin, I. and Ben-Zion, Y.: Earthquake clusters in southern California II: Classification and relation to physical properties of the crust, J. Geophys. Res.-Sol. Ea., 118, 2865–2877, https://doi.org/10.1002/jgrb.50178, 2013b. a, b, c
Zaliapin, I. and Ben-Zion, Y.: A global classification and characterization of earthquake clusters, Geophys. J. Int., 207, 608–634, https://doi.org/10.1093/gji/ggw300, 2016. a
Zaliapin, I. and Ben-Zion, Y.: Earthquake Declustering Using the Nearest-Neighbor Approach in Space-Time-Magnitude Domain, J. Geophys. Res.-Sol. Ea., 125, e2018JB017120, https://doi.org/10.1029/2018JB017120, 2020. a, b, c
Zaliapin, I., Gabrielov, A., Keilis-Borok, V., and Wong, H.: Clustering Analysis of Seismicity and Aftershock Identification, Phys. Rev. Lett., 101, 018501, https://doi.org/10.1103/PhysRevLett.101.018501, 2008. a, b, c
Zhuang, J.: Second-Order Residual Analysis of Spatiotemporal Point Processes and Applications in Model Evaluation, J. Roy. Stat. Soc. B, 68, 635–653, https://doi.org/10.1111/j.1467-9868.2006.00559.x, 2006. a
Zhuang, J., Ogata, Y., and Vere-Jones, D.: Stochastic Declustering of Space-Time Earthquake Occurrences, J. Am. Stat. Assoc., 97, 369–380, https://doi.org/10.1198/016214502760046925, 2002. a
Short summary
South and south-eastern Spain has the highest seismicity in the country, but inconsistent fault data limit its use in seismic hazard assessment. This study applies the nearest-neighbour (NN) algorithm and graph theory to analyse clustering patterns. Two regions (western and eastern) with higher and lower (respectively) clustering complexities are identified. The results suggest alternative seismic zonation models, which could improve seismic hazard assessment.
South and south-eastern Spain has the highest seismicity in the country, but inconsistent fault...
Altmetrics
Final-revised paper
Preprint