Articles | Volume 25, issue 1
https://doi.org/10.5194/nhess-25-287-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-287-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial identification of regions exposed to multi-hazards at the pan-European level
Tiberiu-Eugen Antofie
CORRESPONDING AUTHOR
independent researcher
formally at: Joint Research Centre, European Commission, 21027 Ispra, Italy
Stefano Luoni
Joint Research Centre, European Commission, 21027 Ispra, Italy
Aloïs Tilloy
Joint Research Centre, European Commission, 21027 Ispra, Italy
Andrea Sibilia
Uni Systems (external consultancy for the European Commission), Milan, Italy
Sandro Salari
Uni Systems (external consultancy for the European Commission), Milan, Italy
Gustav Eklund
Joint Research Centre, European Commission, 21027 Ispra, Italy
Davide Rodomonti
Uni Systems (external consultancy for the European Commission), Milan, Italy
Christos Bountzouklis
Joint Research Centre, European Commission, 21027 Ispra, Italy
Christina Corbane
Joint Research Centre, European Commission, 21027 Ispra, Italy
Related authors
No articles found.
Mohammad Hadi Bahmanpour, Alois Tilloy, Michalis Vousdoukas, Ivan Federico, Giovanni Coppini, Luc Feyen, and Lorenzo Mentaschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-843, https://doi.org/10.5194/egusphere-2025-843, 2025
Short summary
Short summary
As natural hazards evolve, understanding how extreme events interact over time is crucial. While single extremes have been widely studied, joint extremes remain challenging to analyze. We present a framework that combines advanced statistical modeling with copula theory to capture changing dependencies. Applying it to historical data reveals dynamic patterns in extreme events. To support broader use, we provide an open-source tool for improved hazard assessment.
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, Cinzia Mazzetti, and Luc Feyen
Earth Syst. Sci. Data, 17, 293–316, https://doi.org/10.5194/essd-17-293-2025, https://doi.org/10.5194/essd-17-293-2025, 2025
Short summary
Short summary
This article presents a reanalysis of Europe's river streamflow for the period 1951–2020. Streamflow is estimated through a state-of-the-art hydrological simulation framework benefitting from detailed information about the landscape, climate, and human activities. The resulting Hydrological European ReAnalysis (HERA) can be a valuable tool for studying hydrological dynamics, including the impacts of climate change and human activities on European water resources and flood and drought risks.
Aloïs Tilloy, Bruce D. Malamud, and Amélie Joly-Laugel
Earth Syst. Dynam., 13, 993–1020, https://doi.org/10.5194/esd-13-993-2022, https://doi.org/10.5194/esd-13-993-2022, 2022
Short summary
Short summary
Compound hazards occur when two different natural hazards impact the same time period and spatial area. This article presents a methodology for the spatiotemporal identification of compound hazards (SI–CH). The methodology is applied to compound precipitation and wind extremes in Great Britain for the period 1979–2019. The study finds that the SI–CH approach can accurately identify single and compound hazard events and represent their spatial and temporal properties.
Cited articles
Becker, B. J.: Combining significance levels, in: The Handbook of Research Synthesis, edited by: Cooper, H. and Hedges, L. V., Russell Sage Foundation, New York, 15–230, ISBN 978-0871542267, 1994.
Borenstein, M., Hedges, L. V., Higgins, J. P. T., and Rothstein, H. R.: Front Matter, in: Introduction to Meta-Analysis, John Wiley & Sons, Ltd, Chichester, UK, https://doi.org/10.1002/9780470743386, 2009.
Camus, P., Haigh, I. D., Nasr, A. A., Wahl, T., Darby, S. E., and Nicholls, R. J.: Regional analysis of multivariate compound coastal flooding potential around Europe and environs: sensitivity analysis and spatial patterns, Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, 2021.
Charlton, M. and Kemp, K. K.: Encyclopaedia of Geographic Information Science, SAGE Publications, Inc., 289–290, ISBN 978-1-4129-1313-3, 2008.
Chen, Z.: Is the weighted z-test the best method for combining probabilities from independent tests?, J. Evolution. Biol., 24, 926–930, 2011.
Ciurean, R., Gill, J. C., Reeves, H., O'Grady, S. K., Donald, K., and Aldridge, T.: Review of multi-hazards research and risk assessments, British Geological Survey Engineering Geology & Infrastructure Programme, Open Report OR/18/057, British Geological Survey, UK, https://nora.nerc.ac.uk/id/eprint/524399 (last access: 17 January 2025), 2018.
Claassen, J. N., Ward, P. J., Daniell, J., Koks, E. E., Tiggeloven, T., and de Ruiter, M. C.: A new method to compile global multi-hazard event sets, Sci. Rep.-UK, 13, 1–14, https://doi.org/10.1038/s41598-023-40400-5, 2023.
Cousineau, D. and Chartier, S.: Outliers Detection and Treatment: A Review, International Journal of Psychological Research, 3, 58–67, 2010.
Cutter, S. L., Ash, K. D., and Emrich, C. T.: The geographies of community disaster resilience, Global Environ. Change, 29, 65–77, https://doi.org/10.1016/j.gloenvcha.2014.08.005, 2014.
Cover, T. M. and Hart, P. E.: Nearest Neighbor Pattern Classification, IEEE T. Inform. Theory, IT-13, 21–27, 1967.
Dallo, I., Stauffacher, M., and Marti, M.: What defines the success of maps and additional information on a multi-hazard platform?, Int. J. Disast. Risk Re., 49, 101761, https://doi.org/10.1016/j.ijdrr.2020.101761, 2020.
Daňhelka, J.: August 2002 flood in the Czech Republic: meteorological causes and hydrological response, Geografie, 109, 84–92, https://doi.org/10.37040/geografie2004109020084, 2004.
De Angelis, S., Malamud, B. D., Rossi, L., Taylor, F. E., Trasforini, E., and Rudari, R.: A multi-hazard framework for spatial–temporal impact analysis, Int. J. Disast. Risk Re., 73, 102829, https://doi.org/10.1016/j.ijdrr.2022.102829, 2022.
De Fino, M., Tavolare, R., Bernardini, G., Quagliarini, E., and Fatiguso, F.: Boosting urban community resilience to multi-hazard scenarios in open spaces: A virtual reality – serious game training prototype for heat wave protection and earthquake response, Sustain. Cities Soc., 99, 104847, https://doi.org/10.1016/j.scs.2023.104847, 2023.
De Pippo, T., Donadio, C., Pennetta, M., Petrosino, C., Terlizzi, F., and Valente, A.: Coastal hazard assessment and mapping in Northern Campania, Italy, Geomorphology, 97, 451–466, https://doi.org/10.1016/j.geomorph.2007.08.015, 2008.
EEA – European Environment Agency: Corine Land Cover 2018 (CLC2018), https://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2018 (last access: 16 January 2025), 2018.
EUR-Lex: 52014SC0134 – EN – EUR-Lex, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52014SC0134 (last access: 18 October 2023), 2014.
European Civil Protection Knowledge Network: Data & Tools, https://civil-protection-knowledge-network.europa.eu/knowledge-network-science/data-tools (last access: 18 October 2023), 2021.
European Commission: Overview of Natural and Man made Disaster Risks the European Union May Face, https://op.europa.eu/en/publication-detail/-/publication/285d038f-b543-11e7-837e-01aa75ed71a1 (last access: 16 January 2025), 2017.
European Commission: Overview of Natural and Man-made Dis aster Risks the European Union May Face, https://op.europa.eu/en/publication-detail/-/publication/89fcf0fc-edb9-11eb-a71c-01aa75ed71a1/language-en/format-PDF/source-236404726 (last access: 16 January 2025), 2020.
European Commission: Forging a climate-resilient Europe – The new EU Strategy on Adaptation to Climate Change, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0082 (last access: 18 October 2023), 2021.
Figueiredo, R., Paupério, E., and Romão, X.: Understanding the impacts of the October 2017 Portugal wildfires on cultural heritage, Heritage, 4, 2580–2598, https://doi.org/10.3390/heritage4040146, 2021.
Fisher, R.: Statistical methods for research workers, Oliver and Boyd, Edinburgh, ISBN 978-1178814261, 1932.
Fix, E. and Hodges, J. L.: Nonparametric Discrimination: Consistency Properties, Randolph Field, Texas, Project 21-49-004, Report No. 4, https://doi.org/10.2307/1403796, 1951.
Florczyk, A. J., Corbane, C., Schiavina, M., Pesaresi, M., Maffenini, L., Melchiorri, M., Politis, P., Sabo, F., Freire, S., Ehrlich, D., Kemper, T., Tommasi, P., Airaghi, D., and Zanchetta, L.: GHS-UCDB R2019A – GHS Urban Centre Database 2015, multitemporal and multidimensional attributes, JRC Data Catalogue, https://doi.org/10.2905/53473144-B88C-44BC-B4A3-4583ED1F547E, 2019.
Forzieri, G., Feyen, L., Russo, S., Vousdoukas, M., Alfieri, L., Outten, S., Migliavacca, M., Bianchi, A., Rojas, R., and Cid, A.: Multi-hazard assessment in Europe under climate change, Climatic Change, 137, 105–119, https://doi.org/10.1007/s10584-016-1661-x, 2016.
Fotheringham, A. S. and Wong, D. W. S.: The modifiable areal unit problem in multivariate statistical analysis, Environ. Plann. A, 23, 1025–1044, 1991.
Freire, S., Kemper, T., Pesaresi, M., Florczyk, A., and Syrris, V.: Combining GHSL and GPW to improve global population mapping, in: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2541–2543, hhttps://doi.org/10.1109/IGARSS.2015.7326329, 2015.
Fuchs, S. and Thaler, T. (Eds.): Vulnerability and Resilience to Natural Hazards, Cambridge University Press, https://doi.org/10.1017/9781316651143, 2018.
Gaillard, J. C. and Mercer, J.: From knowledge to action: Bridging gaps in disaster risk reduction, Prog. Hum. Geog., 37, 93–114, https://doi.org/10.1177/0309132512446717, 2013.
Gallina, V., Torresan, S., Critto, A., Sperotto, A., Glade, T., and Marcomini, A.: A review of multi-risk methodologies for natural hazards: consequences and challenges for a climate change impact assessment, J. Environ. Manage., 168, 123–132, https://doi.org/10.1016/j.jenvman.2015.11.011, 2016.
Gentile, R., Cremen, G., Galasso, C., Jenkins, L. T., Manandhar, V., Menteşe, E. Y., Guragain, R., and McCloskey, J.: Scoring, selecting, and developing physical impact models for multi-hazard risk assessment, Int. J. Disast. Risk Re., 82, 103365, https://doi.org/10.1016/j.ijdrr.2022.103365, 2022.
Getis, A. and Ord, J. K.: The Analysis of Spatial Association by Use of Distance Statistics, Geogr. Anal., 24, 189–206, https://doi.org/10.1111/j.1538-4632.1992.tb00261.x, 1992.
Ghanbari, M., Arabi, M., Kao, S. C., Obeysekera, J., and Sweet, W.: Climate change and changes in compound coastal-riverine flooding hazard along the U.S. coasts, Earths Future, 9, e2021EF002055, https://doi.org/10.1029/2021EF002055, 2021.
Gill, J. C. and Malamud, B. D.: Reviewing and visualizing the interactions of natural hazards, Rev. Geophys., 52, 680–722, 2014.
Gill, J. C. and Malamud, B. D.: Hazard interactions and interaction networks (cascades) within multi-hazard methodologies, Earth Syst. Dynam., 7, 659–679, https://doi.org/10.5194/esd-7-659-2016, 2016.
Gill, J. C., Malamud, B. D., Barillas, E. M., and Guerra Noriega, A.: Construction of regional multi-hazard interaction frameworks, with an application to Guatemala, Nat. Hazards Earth Syst. Sci., 20, 149–180, https://doi.org/10.5194/nhess-20-149-2020, 2020.
Granger, K., Jones, T., Leiba, M., and Scott, G.: Community Risk in Cairns: A Multi-Hazard Risk Assessment, Commonwealth of Australia Publishing, Canberra, https://pid.geoscience.gov.au/dataset/ga/33548 (last access: 16 January 2025), 1999.
Greiving, S., Fleischhauer, M., and Lückenkötter, J.: A methodology for an integrated risk assessment of spatially relevant hazards, J. Environ. Plann. Man., 49, 1–19, 2006.
Grünthal, G., Thieken, A. H., Schwarz, J., Radtke, K. S., Smolka, A., and Merz, B.: Comparative risk assessment for the city of Cologne-storms, floods, earthquake, Nat. Hazards, 38, 21–44, 2006.
Haasnoot, M., Kwakkel, J. H., Walker, W. E., and ter Maat, J.: Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world, Global Environ. Change, 23, 485–498, https://doi.org/10.1016/j.gloenvcha.2012.12.006, 2013.
Hak, T., van Rhee, H., and Suurmond, R.: How to interpret results of meta-analysis, SSRN, https://doi.org/10.2139/ssrn.3241367, 2016.
Han, J., Wu, S., and Wang, H.: Preliminary study on geological hazard chains, Earth Science Frontiers, 14, 11–20, https://doi.org/10.1016/S1872-5791(08)60001-9, 2007.
Hansjürgens, B. and Antes, R.: Economics and management of climate change: risks, mitigation and adaptation, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-77658-5, 2008.
IPCC: Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, ISBN 978-1-107-02506-6, 2012.
ISO: ISO 3166-1 – Codes for the representation of names of countries and their subdivisions – Part 1: Country codes, International Organization for Standardization, Geneva, Switzerland, https://www.iso.org/obp/ui/en/#iso:std:iso:3166:-1:ed-4:v1:en (last access: 17 January 2025), 2020.
Jelinski, D. E. and Wu, J.: The modifiable areal unit problem and implications for landscape ecology, Landscape Ecol., 11, 129–140, 1996.
Kappes, M. S., Keiler, M., and Glade, T.: From single- to multi-hazard risk analyses: a concept addressing emerging challenges, in: Mountain Risks: Bringing Science to Society, edited by: Malet, J. P., Glade, T., and Casagli, N., CERG Editions, Strasbourg, France, 351–356, ISBN 2-9518317-1-5, 2010.
Kappes, M. S., Frigerio, S., and Malet, J. P.: Multi-hazard exposure analyses with multirisk – a platform for user-friendly analysis, 12th Congress INTERPRAEVENT, April 2012, Grenoble, France, 487–495, 2012a.
Kappes, M. S., Gruber, K., Frigerio, S., Bell, R., Keiler, M., and Glade, T.: The multirisk platform: the technical concept and application of a regional scale multihazard exposure analysis tool, Geomorphology, 151–152, 139–155, https://doi.org/10.1016/j.geomorph.2012.01.024, 2012b.
Kappes, M. S., Keiler, M., von Elverfeldt, K., and Glade, T.: Challenges of analyzing multi-hazard risk: a review, Nat. Hazards, 64, 1925–1958, 2012c.
Koks, E. E., Rozenberg, J., Zorn, C., Tariverdi, M., Vousdoukas, M., Fraser, S. A., Hall, J. W., and Hallegatte, S.: A global multi-hazard risk analysis of road and railway infrastructure assets, Nat. Commun., 10, 2677, https://doi.org/10.1038/s41467-019-10442-3, 2019.
Kwan, M.-P.: The Uncertain Geographic Context Problem, Ann. Assoc. Am. Geogr., 102, 958–968, https://doi.org/10.1080/00045608.2012.687349, 2012.
Lancaster, H.: The combination of probabilities: An application of orthonormal functions, Aust. J. Stat. 3, 20–33, 1961.
Lee, R., White, C. J., Adnan, M. S. G., Douglas, J., Mahecha, M. D., O'Loughlin, F. E., Patelli, E., Ramos, A. M., Roberts, M. J., Martius, O., Tubaldi, E., van den Hurk, B., Ward, P. J., and Zscheischler, J.: Reclassifying historical disasters: From single to multi-hazards, Sci. Total Environ., 912, 169120, https://doi.org/10.1016/j.scitotenv.2023.169120, 2024.
Lipták, T.: On the combination of independent tests, Magyar Tud. Akad. Mat. Kutato Int. Közl, 3, 171–196, 1958.
Liu, B., Siu, Y. L., and Mitchell, G.: Hazard interaction analysis for multi-hazard risk assessment: a systematic classification based on hazard-forming environment, Nat. Hazards Earth Syst. Sci., 16, 629–642, https://doi.org/10.5194/nhess-16-629-2016, 2016.
Marzocchi, W., Mastellone, M., Di Ruocco, A., Novelli, P., Romeo, E., and Gasparini, P.: Principles of Multi-Risk Assessment: Interactions Amongst Natural and Man-Induced Risks, European Commission, Directorate-General for Research, Environment Directorate, Luxembourg, 72 pp., ISBN 978-92-79-07963-4, https://doi.org/10.2777/30886, 2009.
Marzocchi, W., Garcia-Aristizabal, A., Gasparini, P., Mastellone, M., and Di Ruocco, A.: Basic principles of multi-risk assessment: a case study in Italy, Nat. Hazards, 62, 551–573, 2012.
McFarland, L., Huang, Y., Wang, L., and Malfertheiner, P.: Systematic review and meta-analysis: Multi-strain probiotics as adjunct therapy for Helicobacter pylori eradication and prevention of adverse events, United Eur. Gastroenterol. J., 4, 546–561, https://doi.org/10.1177/2050640615617358, 2015.
Openshaw, S.: The Modifiable Areal Unit Problem, CATMOG 38, GeoBooks, Norwich, https://doi.org/10.1007/s11069-012-0092-x, 1984.
Peter, A. G. and van Bergeijk, L.: Macroeconomics of Natural Disasters: Strengths and Weaknesses of Meta-Analysis Versus Review of Literature, Risk Anal., 35, 1050–1072, 2015.
Rey, S. J. and Anselin, L.: PySAL: A Python Library of Spatial Analytical Methods, Review of Regional Studies, 37, 5–27, 2007.
Saaty, R. W.: The analytic hierarchy process – what it is and how it is used, Math. Model., 9, 161–176, https://doi.org/10.1016/0270-0255(87)90473-8, 1987.
Sadegh, M., Moftakhari, H., Gupta, H. V., Ragno, E., Mazdiyasni, O., Sanders, B., Matthew, R., and Agha Kouchak, A.: Multihazard scenarios for analysis of compound extreme events, Geophys. Res. Lett., 45, 5470–5480, 2018.
SciPy: Statistics (scipy.stats) – SciPy v1.10.1 Manual, https://docs.scipy.org/doc/scipy/tutorial/stats.html (last access: 16 January 2025), 2024.
Stillwell, J., Daras, K., Bell, M., and Lomax, N.: The IMAGE studio: a tool for internal migration analysis and modelling, Appl. Spat. Anal. Polic., 7, 5–23, 2014.
Stouffer, S., DeVinney, L., and Suchmen, E.: The American soldier: Adjustment during army life, vol. 1, Princeton University Press Princeton, USA, ISBN 978-0691056286, 1949.
Tarvainen, T., Jarva, J., and Greiving, S.: Spatial pattern of hazards and hazard interactions in Europe, in: Natural and Technological Hazards and Risks Affecting the Spatial Development of European Regions, edited by: Schmidt-Thomé, P., Geological Survey of Finland, Espoo, Finland, 42, 83–91, https://scholar.google.com/scholar_lookup?hl=en&volume=42&publication_year=2006&journal=Special+Paper+of+the+Geological+Survey+of+Finland&issue=83&author=T.+Tarvainen&author=J.+Jarva&author=S.+Greiving&title=Spatial+pattern+of+hazards+and+hazard+interactions+in+Europe (last access: 16 January 2025), 2006.
Tiberiu-79: Tiberiu-79/Spatial-identification-of-regions-exposed-to-multi-hazards-at-pan-European-level-EMHERG-: v2.0.0 (v2.0.0), Zenodo [code]m https://doi.org/10.5281/zenodo.14190957, 2024.
Tiberiu-79: Spatial-identification-of-regions-exposed-to-multi-hazards-at-pan-European-level-EMHERG-, GitHub [data set], https://github.com/Tiberiu-79/Spatial-identification-of-regions-exposed-to-multi-hazards-at (last access: 16 January 2025), 2025.
Tilloy, A., Malamud, B. D., Winter, H., and Joly-Laugel, A.: A review of quantification methodologies for multi-hazard interrelationships, Earth-Sci. Rev., 196, 102881, https://doi.org/10.1016/j.earscirev.2019.102881, 2019.
UNISDR – UN International Strategy for Disaster Reduction: Living with Risk: A Global Review of Disaster Reduction Initiatives, United Nations, Geneva, https://www.undrr.org/publication/living-risk-global-review-disaster-reduction-initiatives? (last access: 17 January 2017), 2004.
van Westen, C., Kappes, M. S., Luna, B. Q., Frigerio, S., Glade, T., and Malet, J. P.: Medium-Scale Multi-hazard Risk Assessment of Gravitational Processes, in: Mountain Risks: From Prediction to Management and Governance, Advances in Natural and Technological Hazards Research, vol. 34, edited by: Van Asch, T., Corominas, J., Greiving, S., Malet, J. P., and Sterlacchini S., Springer, Dordrecht, eBook ISBN 978-94-007-6769-0, 2014.
van Westen, C. J., Montoya, L., Boerboom, L., and Badilla Coto, E.: Multi-hazard risk assessment using GIS in urban areas: a case study for the city of Turrialba, Costa Rica, 120–136, https://api.semanticscholar.org/CorpusID:129619800 (last access: 16 January 2025), 2002.
Ward, P. J., Daniell, J., Duncan, M., Dunne, A., Hananel, C., Hochrainer-Stigler, S., Tijssen, A., Torresan, S., Ciurean, R., Gill, J. C., Sillmann, J., Couasnon, A., Koks, E., Padrón-Fumero, N., Tatman, S., Tronstad Lund, M., Adesiyun, A., Aerts, J. C. J. H., Alabaster, A., Bulder, B., Campillo Torres, C., Critto, A., Hernández-Martín, R., Machado, M., Mysiak, J., Orth, R., Palomino Antolín, I., Petrescu, E.-C., Reichstein, M., Tiggeloven, T., Van Loon, A. F., Vuong Pham, H., and de Ruiter, M. C.: Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment, Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, 2022.
Whitlock, M. C.: Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach, J. Evolution. Biol., 18, 1368–1373, 2005.
Wilkinson, B.: A statistical consideration in psychological research, Psychol. Bull., 48, 156–158, https://doi.org/10.1037/h0059111, 1951.
Yoon, S., Baik, B., and Park, T.: Powerful p-value combination methods to detect incomplete association, Sci. Rep.-UK, 11, 6980, https://doi.org/10.1038/s41598-021-86465-y, 2021.
Zaykin, D., Zhivotovsky, L., Westfall, P., and Weir, B.: Truncated product method for combining P-values, Genet. Epidemiol., 22, 170–185, 2002.
Zaykin, D. V.: Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis, J. Evolution. Biol., 24, 1836–1841, https://doi.org/10.1111/j.1420-9101.2011.02297.x, 2011.
Zhao, M. and Jingchao, C.: Improvement and Comparison of Weighted k Nearest Neighbors Classifiers for Model Selection, Journal of Software Engineering, 10, 109–118, 2016.
Executive editor
The paper presents a methodology for spatial identification of regions exposed to multi-hazards at pan European level, thus offering a significant contribution to the knowledge gap of decision makers and stakeholders which are still lacking a place-specific information of the proneness of their region to multi-hazard events as opposed to single hazard events.
The paper presents a methodology for spatial identification of regions exposed to multi-hazards...
Short summary
This is the first study that uses spatial patterns (clusters/hotspots) and meta-analysis in order to identify the regions at a European level at risk of multi-hazards. The findings point out the socioeconomic dimension as a determining factor in the potential risk of multi-hazards. The outcome provides valuable input for the disaster risk management policy support and will assist national authorities on the implementation of a multi-hazard approach in national risk assessment preparation.
This is the first study that uses spatial patterns (clusters/hotspots) and meta-analysis in...
Altmetrics
Final-revised paper
Preprint