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Abstract. The European Commission Disaster Risk Man-
agement Knowledge Centre (DRMKC) has developed and
hosts a web platform, the Risk Data Hub (RDH), designed
to facilitate access to and sharing of curated, EU-wide risk
data, tools, and methodologies, ultimately supporting disas-
ter risk management (DRM) initiatives. Based on the RDH
data, we propose a methodology for the identification of re-
gions with multi-hazard exposure at the pan-European level
(EU27+UK). This methodology aims to support disaster risk
management (DRM) decision-making processes at both na-
tional and subnational levels in the EU. By employing a
meta-analysis approach and aggregating the hotspots of ex-
posure to single hazards, we provide an objective, statisti-
cally robust assessment of the European multi-hazard land-
scape at the finest spatial subdivision level, local adminis-
trative units (LAUs). Our results suggest that 21.4 % of Eu-
ropean LAUs are exposed to multiple natural hazards, af-
fecting around 87 million people (18.8 % of the European
population). Furthermore, nearly half this population is ex-
posed to more than three hazards. We find that beyond pop-
ulation density, the income level (i.e. high, medium, low) is
the primary driver that influences risk status at the local level,
within both rural and urban areas. On average, we find higher
multi-hazard exposure for people living in high-income ur-
ban areas or low-income rural areas. We further validate our
results by comparing them with empirical data on fatalities
and disaster events, revealing a relatively high correlation
between statistically significant multi-hazard hotspots and
fatalities (r = 0.59). By providing a detailed assessment of

multi-hazard exposure at the pan-European scale, this study
contributes to a better integration of multi-hazard risks in Eu-
ropean disaster risk management plans.

1 Introduction

Since the beginning of the 21st century, several international
frameworks, such as the Hyogo Framework for Action (UN-
ISDR, 2005) and the Sendai Framework for Disaster Risk
Reduction 2015–2030, have endorsed the multi-hazard ap-
proach for disaster risk reduction. Additionally, a “needs and
gaps” analysis conducted as part of the preparation of the
European Commission Staff Working Document “Overview
of natural and man-made disaster risks the European Union
may face” identified a significant knowledge and data gap in
multi-hazard assessments (EUR-Lex, 2014; European Com-
mission, 2017, 2020).

It is now well recognized in the research community
that for an adequate understanding of disaster risk potential
within a region, it is essential to move from a single-hazard to
a multi-hazard approach (Marzocchi et al., 2009; Kappes et
al., 2012a; Gill and Malamud, 2014; Tilloy et al., 2019; Ward
et al., 2022). Multi-hazard interrelations can lead to a com-
bined impact that is different from the sum of each hazards’
impacts taken separately. To assess the potential hazards and
risks to which a region is exposed, some studies have em-
ployed an approach that combines independent analysis of
individual hazards (Granger et al., 1999; van Westen et al.,
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2002; Greiving et al., 2006; Grünthal et al., 2006; Marzoc-
chi et al., 2012; Forzieri et al., 2016). This approach, often
referred to as “multi-layer hazards”, superposes natural haz-
ards over a region. Conversely, other studies explicitly con-
sidered hazard interrelations (Tarvainen et al., 2006; Han et
al., 2007; De Pippo et al., 2008; Kappes et al., 2010, 2012b;
van Westen et al., 2014; Liu et al., 2016; Sadegh et al., 2018;
Gill et al., 2020; Claassen et al., 2023; Lee et al., 2024). How-
ever, these assessments are often based on case studies within
limited spatial extension, addressing a limited number of per-
ils or hazards and a limited number of sectors (Ciurean et al.,
2018; Tilloy et al., 2019).

In this context, our study aligns with the first definition of
multi-layer hazards, as we examine the combined exposure
levels of several natural hazards over a region, recognizing
that hazard interrelations can result in an impact distinct from
the sum of individual hazard impacts. This is exemplified by
events such as the Portugal wildfires and flash floods of Oc-
tober 2017, where both hazards occurred in relatively close
succession (Figueiredo et al., 2021), both affecting the same
buildings and infrastructure. Similarly, the floods and subse-
quent dam failure in the Czech Republic during the summer
of 2002 had a devastating impact, causing significant damage
to buildings, infrastructure, and agricultural land and exacer-
bating the destruction by affecting structures already weak-
ened by the floods (Daňhelka, 2004).

Research on multi-hazard analysis has underscored several
critical gaps that request attention for more effective multi-
hazard assessments. These gaps include the following:

– data quality (e.g. incomplete, outdated) that hampers
accurate multi-hazard assessments (Cutter et al., 2014;
Gentile et al., 2022),

– the complexity of hazard interrelations (Gill and Mala-
mud, 2016; Lee et al., 2024),

– temporal dynamics (Fuchs and Thaler, 2018; De Ange-
lis et al., 2022),

– the varying vulnerabilities across hazards (Saaty, 1987;
UNISDR, 2004).

Additionally, there has been limited attention given to
uncertainty and sensitivity analyses in multi-hazard assess-
ments (Haasnoot et al., 2013; Camus et al., 2021). Most
multi-hazard assessments tend to overlook the implications
of climate change (IPCC, 2012; Gallina et al., 2016; Ghan-
bari et al., 2021). The effective communication of multi-
hazard risks to stakeholders also remains a challenge (Dallo
et al., 2020; De Fino et al., 2023).

The Risk Data Hub (RDH) platform of the Disaster Risk
Management Knowledge Centre (DRMKC) aims to address
these multiple challenges. The platform serves as a central
hub for accessing and sharing curated, European-wide risk
data and methodologies, providing essential support for dis-
aster risk management (DRM) and climate change adaptation

(CCA) actions at both the national and the subnational level
(European Civil Protection Knowledge Network, 2021; Eu-
ropean Commission, 2021). Within the RDH development,
we propose a methodology that is accessible, scalable, and
replicable even at the subnational and local level for the iden-
tification of regions exposed to multi-hazards.

The multi-hazard methodological approach is the main
goal of this study, focused on addressing four major chal-
lenges:

1. identification of regions with significant multi-hazard
potential,

2. identification of exposure relationships between assets
and multiple hazards,

3. quantification of multi-hazard exposure,

4. transferability of the method.

These challenges are further constrained by the wide scale
of our analysis (European coverage); the alignment to a com-
mon hazard definition; and practical implementation on the
online web platform, the RDH.

This study addresses Challenge 1 by introducing a novel
methodology that identifies, at a pan-European scale, regions
(local administrative units, LAUs) exhibiting statistically sig-
nificant exposure to multi-hazards (p value< 0.10). Our ap-
proach employs a meta-analysis technique, which serves as
a robust significance test (Hak et al., 2016), allowing us to
integrate and synthesize disparate findings. By combining
the hotspots of exposure to individual hazards, we generate a
unified result that effectively resolves the challenge posed by
divergent and potentially contradictory independent findings.
Notably, this study represents the first application of spatial
pattern analysis (clusters/hotspots) in conjunction with meta-
analysis to assess multi-hazard exposure.

Moreover, regarding Challenge 2, the proposed methodol-
ogy enables the identification of regions exposed to multi-
hazards, considering the distinct typology of assets and their
varying vulnerabilities. This directly reveals relationships be-
tween asset types and threats, offering valuable insights for
the identification of the DRM pathways in multi-hazard as-
sessment (Ward et al., 2022). This is a key aspect of the
multi-hazard analysis presented in this study, namely the ex-
amination of the relationships between specific assets (pop-
ulation and residential built-up areas, respectively) and a
range of natural hazards, including landslides, coastal flood-
ing, river flooding, earthquakes, wildfires, and subsidence.

We tackle Challenge 3 by summing the assets found only
for the regions exposed to multi-hazards with a high level of
significance. This approach does not enable the examination
of hazard interrelations when quantifying the impacts from
multi-hazards. Nevertheless, our methodology offers a spa-
tially explicit understanding of the specific assets exposed to
multiple hazards, enabling the identification of which hazard
is most likely to contribute to potential impacts.

Nat. Hazards Earth Syst. Sci., 25, 287–304, 2025 https://doi.org/10.5194/nhess-25-287-2025



T.-E. Antofie et al.: Spatial identification of regions exposed to multi-hazards at pan-European level 289

Ultimately, our study addresses Challenge 4 by demon-
strating that the developed methodology is transferable
across different contexts, thereby overcoming the limitations
of previous studies that relied on case-study-specific data and
methods. Notably, the methodological approach presented in
this study has already been implemented on the Risk Data
Hub platform, leveraging existing pan-European data that are
hosted and shared through the platform.

We structure the study as follows: after the Introduction,
we describe the data and the methodologies used (Sect. 2). In
the Results section (Sect. 3), based on our identified regions,
we provide a statistical analysis looking at different socioe-
conomic features. Then a validation exercise is performed
(Sect. 4), which is followed by the Discussions (Sect. 5) and
Conclusions (Sect. 6).

2 Data and methodologies

We present the methodological approach in three steps: first,
we describe the underlying exposure data and methodology
that create the basis for our single- and multiple-hazard anal-
ysis (1). We then present the methodological approach used
to identify hotspots for single hazards’ exposure (2). Finally,
we present the meta-analysis methodology used to combine
the hotspots of single hazards’ exposure and to identify re-
gions with significant multi-hazard potential (3). Figure 1 de-
picts a representation of the entire methodological chain.

2.1 The exposure data and methodology

2.1.1 The areal dimension

The multi-hazard spatial coincidence is assessed at the level
of the areal dimension, represented by local administrative
units (LAUs). LAUs are the finest hierarchical subdivision
of the European economic territory for which statistics are
available. LAUs are provided by the statistical office of the
European Union (Eurostat) and represent the administrative
units of municipalities and communes of Europe. In the
present study, we use the 2013 version of LAUs covering the
EU27+UK and the European Free Trade Association (EFTA)
countries. LAUs are used as statistical areas for multi-hazard
exposure and hotspot analysis. Administrative directives, or-
ganizations, and operational services are coordinated at the
level of administrative entities, and they become of high rel-
evance when linked down to the local level, challenging the
gap in the scale of policy and scale of practice (Gaillard and
Mercer, 2013).

Here we consider 122 034 LAUs on which we perform the
aggregations and statistical analysis. Their average area is
39.6 km2, the maximum area is 20 688 km2 (Kiruna, Swe-
den), and the minimum area is 0.2 km2 (Thorpe Hamlet,
UK). LAUs present heterogeneities across Europe in terms
of area covered, especially in northern part of Europe (e.g.

Scandinavia) but remain rather homogeneously distributed
within the national boundaries (Fig. 2).

Despite being a well-established geographic concept, the
process of aggregating higher-resolution data to larger ad-
ministrative units comes with a potential source of error
known as the modifiable areal unit problem (MAUP). Two is-
sues related to the MAUP presented in the literature (Fother-
ingham and Wong, 1991; Jelinski and Wu, 1996; Openshaw,
1984) are scaling and zonation effects (Charlton and Kemp,
2008). These generally alter the variance structure of the data
when aggregated due to disconnection across scales and to
different ways of subdividing the geographical space at the
same scale (Stillwell et al., 2014). In order to minimize the
MAUP effect, recommended practices focus on using smaller
areal unit (e.g. LAUs rather than provinces or countries) for
data aggregation (Kwan, 2012). This reduces the potential
errors in spatial pattern distortion without entirely removing
them.

2.1.2 Input hazard and exposure data

The exposure data are built on the relationship between haz-
ard (i) and assets (ii): exposure or assets at risk = f (assets,
hazard). We overlay spatial information about residential
built-up areas and population with data describing hazard ar-
eas in order to define the assets exposed to single hazards.
We then aggregate the exposure at the level of LAUs. We
identify statistically significant hotspots of asset exposure to
single hazards through the application of two distinct expo-
sure aggregation methods:

– based on absolute values, the sum of the exposed asset;

– based on relative values, as ratios or share of the expo-
sure from the total assets in LAUs.

For the exposure to earthquakes, due to the continuous
spatial extent of the hazard area, we depict the relative ag-
gregation schema using the density (or share of the exposure
compared to the total area of the LAUs). The relative aggre-
gation schema intends to address risk management strategies
based on cost-efficient measures, while the absolute schema
supports risk management strategies that prioritize the most
affected areas and people.

(i) Hazard layers. The hazard layers considered in this study
represent areal extension rather than intensity. We use not a
probabilistic assessment but rather a deterministic approach,
selecting hazards with average temporal (frequency of oc-
currence) and spatial probability (susceptibility). The hazard
datasets used here and their characteristics are presented in
Table 1. The motivations for their selection along with their
usage in disaster risk assessments are detailed in the sections
dedicated to individual hazards in the Supplement (Sect. S1
– “Hazard layers and their definitions”).

(ii) Asset layers. As asset layers, we use the residential built-
up areas from the European Settlement Map (ESM) (Flor-
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Figure 1. Different steps of the methodological approach developed in this study.

Figure 2. Local administrative unit areas (km2): spatial distribution (a) and mean LAU area per country (b). The abbreviations for countries
shown in the figures follow the ISO 3166-1 alpha-2 standard (ISO, 2020).

czyk et al., 2019) and residential population from the Global
Human Settlement Layer (GHSL) (Freire et al., 2015). These
are two main groups of assets that are currently present
across all types of analysis within the DRMKC Risk Data
Hub. The residential built-up category is represented as built-
up area (km2), while the population is expressed as the num-
ber of people within a 100m× 100m grid cell.

To discriminate between the residential typology for both
built-up areas and population, the CORINE Land Cover

(EEA, 2018) code 1.111 (continuous urban fabric) and 2.112
(discontinuous urban fabric) is used as the artificial explana-
tory layer.

2.2 Single-hazard hotspot analysis

The study uses a hotspot analysis to identify clusters (con-
centrations) of regions – LAUs – with assets (or elements at
risk) exposed to single hazards. The chosen approach facili-
tates the identification of spatial patterns and trends that are
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Table 1. Description of the hazard scenarios and datasets considered and their characteristics. RP denotes return period; PGA denotes peak
ground acceleration.

Component Scenario Description Spatial
resolution

Data source

River flood RP: 1 event in 200 years Areal extent of the river-flood-prone areas 100 m EFAS (European Flood
Awareness System),
KULTURisk project

Landslide High susceptibility and very high
susceptibility classes

Physical characteristics of various terrain
factors that cause a high predisposition to
landslide occurrence (ELSUS 100 layers)

200 m ESDAC (European Soil
Data Centre)

Coastal
inundation

RP: 1 event in 200 years Areal extent of coastal inundation as the
extreme total water level (TWL) result of
the contributions from the mean sea level
(MSL), the tide, and the combined effect of
waves and storm surge

100 m HELIX project, JRC
coastal risk and GAP
PESETA II projects

Earthquake PGA = 0.18 (g) for a probability
of exceedance of 10 % in 50 years
(475-year RP)

Areal extent of PGA = 0.18 (g),
equivalent of “Moderate”, “Moderate to
heavy”, “Heavy”, and “Very heavy”
potential damage level of the USGS
intensity scale

1000 m SHARE project

Subsidence
(from drought)

Soils with clay content greater
than 35 %

Areal extent of fine and very fine soil texture
(particles < 2 mm size) and with clay
content greater than 35 %

1000 m ESDAC, IPL project

Wildfire Wildland–urban interface
(WUI) area

WUI areas within 10 km limit range from the
historical burned areas (2000–2016)

100 m EFFIS based

not readily apparent in raw data, thereby revealing underly-
ing spatial processes that are driven by non-random mech-
anisms (Getis and Ord, 1992). We argue that these spatial
patterns (hotspots), once combined across multiple hazards,
will describe the statistically significant multi-hazard expo-
sure across regions.

Various methods for combining single-hazard datasets
have been explored in the literature, including classifications
and index developments. For more information on this topic,
the reader can refer to Kappes et al. (2012c).

For this study, the G∗i (d) statistic is used for local spa-
tial autocorrelation analysis using the Python-based Ex-
ploratory Spatial Data Analysis (PySAL-esda) package (Rey
and Anselin, 2007). The method describes the spatial au-
tocorrelation as the Z score (standard deviations), p value
(probability), and confidence level (significance) for each
feature (each LAU region). Very high (positive) or very low
(negative) Z scores, associated with very small p values (e.g.
values of p < 0.1), describe spatial clusters as hotspots and
cold spots, respectively, with a high significance level. We
consider that for a p value< 0.10, the observed spatial clus-
ter is highly unlikely to be the result of a random statistical
process, thereby suggesting statistically significant cluster-
ing. In the field of disaster risk reduction and management,
identifying both cold spots and hotspots is crucial for allocat-
ing resources efficiently. Here, hotspots refer to areas or re-

gions with higher susceptibility to multi-hazard risks, while
the cold spots can be considered less prone to multi-hazard
risks.

Conceptualization of spatial relationship

A known characteristic is that the statistics we are interested
in (high Z scores, low p values) are placed in the tails of the
distribution and therefore are susceptible to noise and spatial
outliers. Moreover, the skewness of a distribution can bias the
statistics (Cousineau and Chartier, 2010). These aspects are
important to consider because the resulting distribution areas
of the single-hazard clusters need to be homogeneous in or-
der to be correctly combined in a multi-hazard spatial cluster
through meta-analysis (Hak et al., 2016). Therefore, to en-
sure reliable results, we address noise and outliers through a
spatial weight matrix. This matrix defines neighbouring re-
gions defined with the k-nearest neighbours (KNN) (Fix and
Hodges, 1951; Cover and Hart, 1967) algorithm. The KNN
algorithm is based on the proximity (k) information in order
to represent the spatial relationship between regions (LAUs).
We opted for the KNN weight method over contiguity-based
weights as it avoids the “island” problem, where isolated
polygons lack shared boundaries with other polygons, and
ensures that every region has at least one neighbouring entity.
For more information on the factors affecting the clustering
performances and the merits of weighted matrices, the reader
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can refer to Zhao and Jingchao (2016). We also consider the
optimization of spatial autocorrelation and clustering across
exposure to single hazards by selecting the optimal neigh-
bourhood size (k) in the k-nearest neighbours (KNN) algo-
rithm (see Sect. S2).

2.3 Meta-analysis: identifying regions with potential
exposure to multi-hazards

We adopt a meta-analysis approach to identify regions with
multi-hazard potential. This involves combining probabilities
(Z scores and p values) from independent hotspots. From
the hotspot analysis of different hazards exposure, the same
region can show statistically significant positive clustering
(hotspot), statistically significant negative clustering (cold
spot), or statistically non-significant clustering. By the com-
bined outcome of these individual tests that can differ and
contradict each other, we measure the multi-hazard poten-
tial at the regional level. The meta-analysis serves as a vi-
able solution for addressing the challenge of seemingly con-
flicting evidence in research (Hak et al., 2016; Borenstein
et al., 2009). Notably, it serves as a potent tool for conduct-
ing robust significance tests (Hak et al., 2016). Consequently,
meta-analysis also proves instrumental in resolving the is-
sue of “insignificant results”. In the context of our study,
meta-analysis serves as a mechanism for synthesizing find-
ings from various clustering analyses. Furthermore, by eluci-
dating the statistical significance of the common estimation,
it furnishes an objective “statistical proof” of the potential for
multi-hazard clustering in our particular case.

Many p-value or Z-score combining methods are used
in meta-analysis to aggregate summary statistics. The most
used methods are the following:

i. Fisher’s method (Fisher, 1932), based on p values to test
the significance of the aggregations;

ii. Lancaster’s method (Lancaster, 1961), which is a gener-
alization of Fisher’s test by assigning different weights;

iii. Stouffer’s method (Stouffer et al., 1949), based on the
Z-transform test;

iv. Lipták’s method (Lipták, 1958), which is Stouffer’s
method with weights, known as the weighted Z test;

v. the binomial test (Wilkinson, 1951), which counts the
number of p values that are below a threshold α;

vi. the truncated p-value method (Zaykin et al., 2002),
which adds up p values that fall below a threshold α.

For a good overview and comparison of these methods,
please refer to Whitlock (2005), Zaykin (2011), and Chen
(2011). Meta-analyses are in widespread use due to their ap-
plicability, primarily in psychology, biology, and medicine
(McFarland et al., 2015). Within the field of disaster risk

management, meta-analysis has mainly been used to as-
sess the macroeconomy of disasters (Peter and van Bergeijk,
2015).

We chose to use the Stouffer’s method (Z-transform test),
without weighting, applied to the two-tailed distribution of
the single clusters as in Eq. (1):

Zs =

∑k
i=1Zi
√
k

. (1)

The sum of Z scores (Zi) divided by the square root of the
number of tests, k, provides a test of the cumulative evidence
on the common null hypothesis (Whitlock, 2005).

Generally, the Z-transform test converts the one-tailed
p values from each of k independent tests into standard nor-
mal deviates Zi . A common approach in meta-analysis is to
sum the Z scores across studies, weighting them appropri-
ately using the sample sizes. For details of the two-tailed
method, please see Whitlock (2005) and Yoon et al. (2021),
and for the advantages and disadvantages of using the un-
weighted version of this method, please see Becker (1994).
The Z-transform test was performed in Python using the
“scipy.stats” package (SciPy, 2024).

3 Results

We identify the regions (LAUs) in Europe exposed to multi-
hazards by combining the Z scores and p values across
the hotspots of single-hazard exposure (i.e. population and
built-up) computed on absolute and relative aggregations.
In Fig. 3, we map these regions, and we further consider,
for a statistical overview, the regions with more than one
hazard exposure (Hz> 1) and confidence level set at 90 %
(p value< 0.10 and positive Z score> 0). In the Supple-
ment (Fig. S25), we also present a map displaying all iden-
tified hazard types at the LAU level as determined by our
analysis of relative population exposure. Notably, analyses
of other asset types are expected to reveal different spatial
distributions of hazard types.

The identification of these regions yielded disparate out-
comes contingent upon the specific exposure types scruti-
nized within our analysis, namely, population density or res-
idential built-up areas. Moreover, the choice of aggregation
method, whether relative or absolute, introduces variations
in both the quantity and the spatial arrangement of regions
identified as susceptible to multi-hazard events. The differ-
ence in multi-hazard exposure when considering absolute
versus relative aggregation is influenced by the sensitivity of
the clustering algorithm to distance (computed by the k pa-
rameter) and similarity measures. Absolute aggregation ac-
centuates variance and is sensitive to outliers, while relative
aggregation smooths dominance of extreme values, poten-
tially overlooking high-exposure areas within densely popu-
lated regions. Additionally, a higher number of regions at the
European level were identified as susceptible to multi-hazard
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Figure 3. Regions (LAUs) exposed to multi-hazards identified by the meta-data analysis performed on (a) absolute residential built-up
exposure, (b) relative (%) residential built-up exposure, (c) absolute population exposure, and (d) relative (%) population exposure.

risks when considering population-based criteria as opposed
to residential built-up exposure (see Fig. 4). Furthermore,
there is a significant difference between the number of re-
gions being exposed to multi-hazards identified with absolute
aggregation (12 % for population and 10.6 % for residential
built-up) compared with the relative aggregation (21 % for
population and 13.6 % for residential built-up). In order to
simplify the interpretation of the results and clearly present
the potential of the methodology used, we further focus only
on the regions exposed to multi-hazards identified by the rel-
ative (%) population.

Regions (LAUs) with significant multi-hazard potential

Based on population exposure, we find 26 058 LAUs prone to
multi-hazards in Europe with high significance level (Fig. 5).
Most of these regions (20 912) are described statistically as
hotspots with the highest confidence, 99 %, while all of the
considered hazards are present in only six regions in Eu-
rope (five in Italy and one in Croatia) (Fig. 5c). These are
mountainous and coastal regions. Regions prone to multiple
hazards represent 21.4 % of the local administrative units of
Europe and around 87 million people (18.8 % of the Euro-
pean population) (Fig. 5c and d). In Fig. 5d, we show that
almost half of the population is exposed to more than three
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Figure 4. Local administrative units (as percentages of the total in
Europe) identified as being prone to multi-hazards based on differ-
ent indicators (population and residential built-up) and aggregation
types (relative and absolute).

hazards. Most of these regions are found in France (6956),
Italy (4627), Slovenia (3802), Bulgaria (1876), Spain (1779),
and Germany and Romania (around 1000 each). Approxi-
mately a quarter of the population exposed to multi-hazards
resides in Italy, with 21.4 million individuals affected. When
combined with the Netherlands (10.1 million), France (9.5
million), and Spain and Germany (7.1 million each), these
countries account for more than 55 % of the population ex-
posed to multi-hazards, as shown in Fig. 5b and d.

We present a statistical overview of these regions identi-
fied as being exposed to multi-hazards, looking at their spa-
tial distribution and their population exposed considering the
following (see Sect. 3.1):

i. various levels of economic development (high-income,
high-middle-income, low-middle-income, and low-
income regions – LAUs);

ii. urbanization levels, rural or urban (according to 2018
Urban Audit (URAU) definitions across European
LAUs);

iii. metropolitan areas1 exposed to multi-hazards;

iv. city centres (city cores – C) compared to functional ur-
ban area (FUA) levels in a metropolitan area.

(i) Economic development. In Fig. 6, we present the re-
sults per income group and degree of urbanization at the
European level (Fig. 6a and c) and by countries (Fig. 6b
and d). From Fig. 6a, it can be seen that about 36 % (9496) of

1The metropolitan areas according to 2018 URAU definitions
and represented here are composed of core city, functional urban
area, greater city, and trans-national functional urban area (codes:
C, F, K, T).

the LAUs with population exposed to multi-hazards are low-
income regions and, together with the regions of low middle
income, they add up to 67 % of the LAUs of this category.
High-income regions represent 10 % of the LAUs, and re-
gions of high middle income represent 23 %. The groups of
high-income and high-middle-income administrative regions
total around 50 % (43.4 million) of the population exposed to
multi-hazards (Fig. 6c).

Figure 6b displays the top countries with LAUs exposed
to multi-hazards, categorized by income group and degree
of urbanization. Based on income groups, most of the high-
income administrative regions exposed to multi-hazards are
in Switzerland (30.9 %); Italy (19.1 %) France; (16.7 %) and
Austria, Germany, and the Netherlands (each > 5 %), while
the low-income administrative regions are mostly found in
southern and eastern Europe in Slovenia (31.6 %), Bulgaria
(19.8 %), Romania (10.4 %), Hungary (8.9 %), and Italy and
Portugal (each > 5 %).

In Fig. 6d, most of the low-income population exposed
to multi-hazards is concentrated in Romania (23 %), Italy,
Hungary, Poland, and Bulgaria (each > 10 %), while the
high-income population exposed to multi-hazards is found
in the Netherlands (33 %), Germany, Italy, and Austria (each
> 10 %).

(ii) Urbanization levels. Moreover, from Fig. 6a, we ob-
serve that the number of urban LAUs (based on 2018 URAU
definitions and on correspondence to LAUs) is much smaller
than the number of rural ones (26.3 % or 6585 and 73.7 % or
19 200, respectively). Nevertheless, the urban population ex-
posed to multi-hazards totals 54 % (46.8 million) compared
with the rural administrative areas at 46 % (40.1 million)
(Fig. 6c).

Based on the urbanization degree, 15 countries in Europe
have a higher share of population exposed to multi-hazards
in rural areas compared to urban areas: Sweden and Norway
(100 %); Croatia, Cyprus, Portugal, and Slovakia (between
70 %–90 %); and Hungary, Spain, Belgium, Slovenia, Roma-
nia, and Switzerland (between 50 %–70 %). In the remaining
countries like the Netherlands and Austria (< 20 %); Poland,
Germany, and Greece (20 %–40 %); and Ireland, the United
Kingdom, France, Denmark, the Czech Republic, and Bul-
garia (40 %–50 %), the share of population exposed to multi-
hazards in rural areas is lower compared to urban areas.

This suggests that individuals living in regions with higher
GDP and greater population density (characterized by high-
income and high-middle-income levels and urban areas,
which comprise approximately 12 % of European adminis-
trative regions) are more exposed to multi-hazards compared
to those residing in regions with lower GDP and lower popu-
lation density (typically low-income and low-middle-income
areas and rural regions) (54 % of LAUs). By considering
the degree of urbanization only, people are more exposed to
multi-hazards if they live in either high-income urban areas
(compared with low-income urban areas) or low-income ru-
ral areas (compared with high-income rural areas) (Fig. 6c).
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Figure 5. Regions (LAUs) with population exposed to multi-hazards by significance level (a); sum of population exposed to multi-hazards
assessed at the NUTS3 level (only hotspot regions with > 90 % confidence interval) (b); number of administrative areas exposed to multi-
hazards by confidence interval and number of hazards (c); population exposed to multi-hazards by confidence interval and number of haz-
ards (d).

As can be seen in Fig. 7, exploring the differences between
various income classes, we find that as countries and their
regions get richer, they are more exposed to multi-hazard
risk. After reaching a higher level of income (in the middle-
income category), the population exposed to multi-hazards
decreases towards the high-income category. This can sug-
gest that low-income countries have a major part of the pop-
ulation exposed in the rural areas compared to the high-
income countries, where most of the population exposed is
in densely populated urban areas and only a quarter of the
population exposed (25 %) lives in the rural area. The peak
in the countries with regions in the middle-income category
could suggest a balance between the high number of urban

areas (the largest across various income classes) and the ru-
ral areas with high densities of population.

(iii) Metropolitan areas. Using the Urban Audit 2018 def-
inition and based on correspondence to LAUs, we estab-
lish that 46 % of the urban/metropolitan areas in Europe
(442 of a total of 952) have populations exposed to multi-
hazards. These urban areas, totalling 46.8 million people,
are mostly in the high-income and high-middle-income cat-
egories (62.4 %). The high-income urban areas are mostly
found in the Netherlands (28), UK (23), Germany (20),
France (9), and Italy (9), while the low-income areas (110
at the European level) are found in Romania (17), Bulgaria
(16), Poland (15), Hungary (13), the Czech Republic (11),
and others (in Fig. S23 and Table S6).

https://doi.org/10.5194/nhess-25-287-2025 Nat. Hazards Earth Syst. Sci., 25, 287–304, 2025



296 T.-E. Antofie et al.: Spatial identification of regions exposed to multi-hazards at pan-European level

Figure 6. Number of administrative areas (LAUs) with population exposed to multi-hazards by income level and urbanization level (a –
Europe-wide, b – the 15 highest-ranked countries) (upper part); population exposed to multi-hazards by income level and urbanization level
(c – Europe-wide, d – the 15 highest-ranked countries) (lower part).

Figure 7. Population exposed per income level. The markers represent countries’ population exposed to multi-hazards split by income level.
The blue line links the 75th quantile of the income classes.
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Figure 8. Population exposed to multi-hazards at the level of metropolitan areas. (a) European countries’ population exposed within
metropolitan categories: city centres (C) and functional urban areas (F). The lower and upper whiskers represent the lowest 5 % and the
highest 95 %, respectively, of the calculated population exposed to multi-hazards for each metropolitan category. (b) The linear relation be-
tween the population exposed and total population assessed as the difference between FUAs and the city centres. A flatter fitted line indicates
a weaker or less pronounced relationship between the population exposed and the total population. In this case, changes in the total population
have a relatively small impact on the population exposed. This suggests that the income category of the region may not strongly influence the
risk factors within the population. A less flat fitted line, on the other hand, indicates a stronger relationship between the population exposed
and the total population, with changes in the total population having a more significant impact on the population exposed.

(iv) City centres vs. functional urban areas. In Fig. 8a
and b, we further explore the distribution of population ex-
posed to multi-hazards within the urban areas comparing the
following categories: cities (or city cores/centres – C) and
larger urbanized zones (commuting zones/functional urban
areas – F in Fig. 8a, FUAs throughout the paper). We show
that from this local perspective, the population exposed to
multi-hazards is controlled either by urban population den-
sity or by expansion of urban land. Indeed, 58 % (257 out
of 442) of commuting zones (FUAs) are more exposed to
multi-hazards compared to city centres. However, 57 % of
the population exposed in the metropolitan areas in Europe
lives in city centres. This would suggest that a higher pop-
ulation density in the city centres leads to a greater expo-
sure of the metropolitan area. This positive relationship is
depicted in Fig. 8b but is particularly weak in the case of
high-income metropolitan areas, as shown by the almost flat
fitting (red) line, and is stronger for the high-middle-income
and low-income areas. This shows an increased risk for
richer metropolitan areas due to the expansion of urban ar-
eas (into the functional urban areas) and, additionally, going
towards less rich metropolitan areas due to population den-
sity increase. This is confirmed, with some exceptions (the
Netherlands, Austria, Iceland), by the high-income Nordic
and western-country metropolitan areas, where a higher pro-
portion of population exposed to multi-hazards is found in
the functional urban areas compared with the city centres:
Denmark and Luxembourg (100 %); Finland, Belgium, and
Switzerland (between 60 %–80 %); and Ireland, Italy, Ger-
many, and the UK (between 50 %–60 %). Conversely, in

France, Spain, and Portugal, most of the population ex-
posed (between 50 %–60 %) is concentrated in city centres
of middle-income metropolitan areas which are also the most
populated. For the eastern European lower-income countries,
the population exposed to multi-hazards is greater in the city
centres compared with the functional urban areas: Latvia,
Romania, and Poland (> 70 %) and Bulgaria, Slovenia, Slo-
vakia, Hungary, and the Czech Republic (between 60 %–
70 %) (Fig. S24). However, we recognize that the intended
comparison could be better explained through complex urban
processes such as changing patterns of residential-choice be-
haviour due to socioeconomic growth that we do not address
in this work.

4 Validation

The present validation is based on Spearman correlation
analysis of the population exposed to multi-hazards with
two empirical datasets as independent variables: the recorded
DRMKC RDH data on fatalities from past events and the
count of events with fatalities (for the period 1980–2019),
for coastal floods, earthquakes, river floods, landslides, sub-
sidence, and wildfires. The input data, both the popula-
tion exposed to multi-hazards and the empirical data, are
brought to a common geographical scale (NUTS3) and met-
rics (Z scores and p values of clusters). We use the method-
ological approach described in Sect. 2 to generate single-
hazard hotspots (clusters). The single-hazard hotspots of em-
pirical data (fatalities and event count) and population ex-
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Figure 9. Identified hotspot/cold-spot regions (NUTS3) with (a) population exposed to multi-hazards, (b) fatalities from multi-hazards, and
(c) number of events with fatalities, used in Spearman correlation analysis for the purpose of validation.

Figure 10. Spearman correlation between the multi-hazard clusters’ size (Z scores) of population exposed with the empirical fatalities from
past events (a) and the event count (b).

posed to multi-hazards are combined through meta-analysis
in order to obtain multi-hazard hotspots of fatalities, event
counts, and hotspots of population exposed at the NUTS3
level (Fig. 9). Finally, hotspot/cold-spot regions of the two
independent variables (fatalities and event count) are com-
pared to the population exposed to multi-hazards.

Using a correlation coefficient analysis, we aimed to cap-
ture the strength of the relationship between the two paired
datasets numerically. We employed a non-parametric test, the
Spearman rank correlation test, due to its absence of distri-
butional assumptions and its ability to capture monotonic re-
lationships through rank-based computation. This approach
was selected as a neutral method for assessing the general
central tendency, specifically the median, among pairs of
variables at the NUTS3 level. The Spearman shows the de-
gree to which two variables tend to change in the same direc-

tion. Therefore, variables with high correlation increase and
decrease simultaneously, while variables with low absolute
correlation rarely increase and decrease together.

The results presented in Fig. 10 refer to the Spearman
correlation coefficients between population exposed and the
number of fatalities (a) and count of events (b) from the em-
pirical data. We find a rather inconclusive relationship be-
tween the multi-hazard risk data and the empirical data if
we consider all regions for all significance levels. The scat-
terplots suggest a positive correlation between the variables,
but their increasing monotonic relationship is weak (r = 0.37
with fatalities and r = 0.25 with the event count).

However, if we consider only the regions with higher
significance (p < 0.01, p < 0.05, p < 0.10), we notice a
stronger correlation (Table 2 and Fig. 11). This means
that going towards more significant clustering (hotspots/cold
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Table 2. Spearman correlation coefficient between the empirical data (fatalities and count of past events) and the population exposed to
multi-hazards for regions (NUTS3) with different significance levels.

Variables p value< 0.01 p value< 0.05 p value< 0.10 All regions

Fatalities absolute 0.59 0.51 0.46 0.37
Count of events 0.30 0.40 0.35 0.25

Figure 11. Regions (NUTS3) exposed to multi-hazards identified with high significance, p < 0.01 (a, c) and p < 0.10 (b, d), as hotspots/cold
spots and their correlation coefficient (Spearman r) with independent variables: (a, b) empirical data – fatalities – and (c, d) empirical data –
count of events.

spots), the independent variables used for the validation tend
to better follow the changes in value of the population ex-
posed to multi-hazards.

Therefore, the more significant the multi-hazard cluster-
ing, the stronger the relationship with the independent vari-
ables. The monotonic relationship is strong (r = 0.59) with
fatalities as the independent variable for the regions with the
highest significance (p < 0.01), while the for the event count,
the strongest correlation (r = 0.40) is reached for the regions
with the significance p < 0.05. This makes the recorded data
on fatalities a better explanatory variable for the clustered
population exposed to multi-hazards.

5 Discussions

The identification of exposure or risk on the DRMKC RDH
platform is generally performed by relating an asset to a spe-
cific hazard. There is also the possibility of relating an as-
set to multiple hazards and having a multi-hazard assessment
(of exposure or risk) on the single asset. This latter situation
is the central aspect of the analysis presented in this study
that considers the relation of a single asset (e.g. population
or the residential built-up) to multiple hazards: landslides,
coastal flooding, river flooding, earthquakes, wildfires, and
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subsidence. Starting from this initial setting of the analysis,
specific characteristics and limitations need to be presented.

First, we show that the proposed methodology allows for
the detection of the regions exposed to multi-hazards, dif-
ferently, as a function of the typology of the assets. This is
important as it directly reveals specific asset–threat relation-
ships, valuable for the identification of the disaster risk man-
agement pathways in multi-hazard assessment (Ward et al.,
2022).

Furthermore, our approach identifies LAUs prone to multi-
hazards with a high level of significance. The meta-analysis
approach adopted combines single-hazard hotspots with the
objective to solve the problem of insignificant results and
provides an objective statistical proof of the multi-hazard po-
tential of a region. We support these results through a val-
idation process that considers empirical data as explanatory
variables. We highlight that the more significant multi-hazard
clustering results in a stronger correlation relationship with
the independent variables.

We also demonstrate that the proposed methodology al-
lows for detecting changing patterns of the population being
exposed to multi-hazards by considering socioeconomic fac-
tors. Our findings are in line with previous studies, highlight-
ing an increasing gradient of multi-hazard risks from low-
income countries towards higher-income countries and then
a decrease as countries’ incomes increase (Koks et al., 2019).
We also identified highly urbanized regions (urban areas) as
a space of risk for multi-hazard occurrence (Hansjürgens and
Antes, 2008) compared with the rural administrative units.
Furthermore, we show the potential of this methodological
approach in detecting the risk of multi-hazards associated
with complex socioeconomic urban processes. We find that
high population density is a good explanatory variable for
the increase in risk of the metropolitan areas. However, this
situation is particularly different in the case of high-income
metropolitan areas, where the populations more exposed to
multi-hazards live in the (less densely populated) functional
urban areas.

Whilst we believe that the disaster risk management for
multi-hazard assessment is brought forward by the abil-
ity of the proposed approach to identify LAUs exposed to
multi-hazards with high significance, we acknowledge sev-
eral shortcomings. Among these, a notable limitation of our
approach is that vulnerability (an aspect of the research de-
sign considered) is not taken into account in the assessment
of asset exposure (population and residential built-up areas)
to multi-hazards. The multi-hazard potential of each region is
simply expressed by means of exposure (or assets exposed).
Nevertheless, the overall analytical approach detects signifi-
cant patterns of multi-hazard potential across regions, reveal-
ing spatially explicit clusters and thereby setting the basis
for more precise and focused analysis. The areal-dimension
approach excludes a detailed level of study that could more
accurately examine the spatial coincidence of multiple haz-
ards at localized levels. Moreover, subdividing the exposure

data at the level of areal dimensions that are heterogeneous
in size (as described in Sect. 2.1.1) may introduce biases
into the cluster analysis, particularly when neighbouring re-
lations are defined by distance. This can lead to underesti-
mations or overestimations of the clusters. However, we mit-
igated this issue by identifying the optimal k value, which
is dynamically determined for each hazard–asset relation-
ship, in order to minimize the influence of noise and out-
liers on the clustering analysis. Future research opportuni-
ties include revising the meta-analysis approach (based on
Stouffer’s method) employed in this study, specifically ex-
ploring the use of weighted or unweighted versions of the
Z-transform test for the Stouffer method when aggregating
single-hazard hotspots into multi-hazard hotspots. There is
evidence in the statistical literature (Whitlock, 2005) sug-
gesting that the weighted Z approach may be preferable, par-
ticularly when there is variation in the sample size across
studies or clusters, as is the case in our study, where the num-
ber of regions varies depending on the exposure type. How-
ever, the choice between the weighted and unweighted ver-
sions of this test remains an open question in meta-analysis,
as highlighted by Becker (1994).

6 Conclusions

To our knowledge, this study is the first that uses spatial pat-
terns (clusters/hotspots) and meta-analysis to identify the re-
gions at a European level that are exposed to multi-hazards.
The methodology presented in this study offers valuable in-
sights into the European multi-hazard landscape, thereby in-
forming the identification of DRM pathways in multi-hazard
risk assessments. The findings point out the socioeconomic
dimension as a determining factor in the spatial variability
and in the risk potential of the local administrative units in
terms of multi-hazards. Our results indicate that high popu-
lation density is a significant explanatory variable for iden-
tifying regions exposed to multi-hazards, whereas the eco-
nomic aspect is the primary driver that influences risk status
at the local level, within rural and urban areas and in com-
plex socioeconomic urban structures. By identifying LAUs
exposed to multi-hazards, we also reduce the uncertainty sur-
rounding two of the major challenges in multi-hazard studies:
identifying regions susceptible to multi-hazards and quanti-
fying multi-hazard exposure. This study contributes a valu-
able methodological framework, which is accessible through
the Risk Data Hub platform, and has the potential to sup-
port national authorities in addressing the multi-hazard ap-
proach during the preparation of national risk assessments.
Future research should aim to address identified limitations
by incorporating vulnerability assessments into multi-hazard
analyses and considering multi-hazard interrelations.
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