Articles | Volume 25, issue 8
https://doi.org/10.5194/nhess-25-2823-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-2823-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term hazard of pyroclastic density currents at Vesuvius (Southern Italy) with maps of impact parameters
Pierfrancesco Dellino
CORRESPONDING AUTHOR
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro”, Bari, 70125, Italy
Fabio Dioguardi
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro”, Bari, 70125, Italy
Roberto Sulpizio
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro”, Bari, 70125, Italy
Istituto Nazionale di Geofisica e Vulcanologia, Bologna section, Bologna, Italy
IGAG-CNR, Milano, Italy
Daniela Mele
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro”, Bari, 70125, Italy
Related authors
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025, https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Short summary
We present results of non-volcanic-gas (CO2) hazard assessment at the Mefite d’Ansanto area (Italy) where a cold-gas stream, which has already been lethal to humans and animals, forms in the valleys surrounding the emission zone. We took the uncertainty related to the gas emission and meteorological conditions into account. Results include maps of CO2 concentrations at defined probability levels and the probability of overcoming specified CO2 concentrations over specified time intervals.
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020, https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
Short summary
In this work we provide a 2D finite-element modelling of the stress field conditions around the Fuego de Colima volcano (Mexico) in order to test the response of the commercial Linear Static Analysis software to increasingly different geological constraints. Results suggest that an appropriate set of geological and geophysical data improves the mesh generation procedures and the degree of accuracy of numerical outputs, aimed at more reliable physics-based representations of the natural system.
Cited articles
Baxter, P. J., Jenkins, S., Rosadi, S., Komorowski, J. C., Dunn, K., Purser, D., Voight, B., and Shelley, I.: Human survival in volcanic eruptions: thermal injuries in pyroclastic surges, their causes, prognosis and emergency management, Burns, 43, 1051–1069, 2017.
Baxter, P. T., Neri, A., and Todesco, M.: Physical modeling and human survival in pyroclastic flows, Nat. Hazards, 17, 163–176, 1998.
Bertagnini, A., Landi, P., Rosi, M., and Vigliargio, A.: The Pomici di Base plinian eruption of Somma-Vesuvius, J. Volcanol. Geoth. Res., 83, 219–239, 1998.
Bradley, B. A.: Design seismic demands from seismic response analyses: a probability-based approach, Earthq. Spectra, 27, 213–224, https://doi.org/10.1193/1.3533035, 2011.
Branney, M. J. and Kokelaar, P.: Pyroclastic Density Currents and the Sedimentation of Ignimbrites, Geological Society, London, Memoirs, 27 pp.,https://doi.org/10.1144/GSL.MEM.2003.027, 2002.
Breard, E. C. P. and Lube, G.: Inside pyroclastic density currents – uncovering the enigmatic flow structure and transport behaviour in large-scale experiments, Earth Planet. Sci. Lett., 458, 22–36, 2017.
Brocchini, D., Principe, C., Castradori, D., Laurenzi, M. A., and Gorla, L.: Quaternary evolution of the southern sector of the Campanian Plain and early Somma-Vesuvius activity: insights from the Trecase 1 well, Mineral. Petrol., 73, 67–91, https://doi.org/10.1007/s007100170011, 2001.
Brown, R. J. and Branney, M. J.: Internal flow variations and diachronous sedimentation within extensive, sustained, density stratified pyroclastic density currents down gentle slopes, as revealed by the internal architectures of ignimbrites in Tenerife, B. Volcanol., 75, 1–24, 2013.
Buettner, K.: Effects of extreme heat in man, J. Am. Med. Assoc., 144, 732–738, 1950.
Cao, Z., Egashira, S., and Carling, P. A.: Role of suspended-sediment particle size in modifying velocity profiles in open channel flows, Water Resour. Res., 39, 1029, https://doi.org/10.1029/2001WR000934, 2003.
Capra, L., Sulpizio, R., Marquez-Ramirez, V. H., Coviello, V., Doronzo, D. M., Arambula-Mendoza, R., and Cruz, S.: The anatomy of a pyroclastic density current: the 10 July 2015 event at Volcan de Colima (Mexico), B. Volcanol., 80, 34, https://doi.org/10.1007/s00445-018-1206-4, 2018.
Cas, R. A. F. and Wright, J. V.: Volcanic Successions: Modern and Ancient, Allen & Unwin, https://doi.org/10.1007/978-94-009-3167-1, 1987.
Cerminara, M., Esposti Ongaro, T., and Berselli, L. C.: ASHEE-1.0: a compressible, equilibrium–Eulerian model for volcanic ash plumes, Geosci. Model Dev., 9, 697–730, https://doi.org/10.5194/gmd-9-697-2016, 2016.
Cioni, R., Marianelli, P., and Sbrana, A.: Dynamics of the AD 79 eruption: stratigraphic, sedimentological and geochemical data on the succession from the Somma-Vesuvius southern and eastern sectors, Acta Volcanol., 2, 109–123, 1992.
Cioni, R., Santacroce, R., and Sbrana, A.: Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius caldera, B. Volcanol., 60, 207–222, 1999.
Cioni, R., Sulpizio, R., and Garruccio, N.: Variability of the eruption dynamics during a subplinian event: the Greenish Pumice eruption of Somma-Vesuvius (Italy), J. Volcanol. Geoth. Res., 124, 89–114, 2003.
Cioni, R., Gurioli, L., Lanza, R., and Zanella, E.: Temperatures of the A. D. 79 pyroclastic density current deposits (Vesuvius, Italy), J. Geophys. Res., 109, B02207, https://doi.org/10.1029/2002JB002251, 2004.
Cioni, R., Bertagnini, A., Santacroce, R., and Andronico, D.: Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme, J. Volcanol. Geoth. Res., 178, 331–346, https://doi.org/10.1016/j.jvolgeores.2008.04.024, 2008.
Civil Protection Department: Direttiva del 14 febbraio 2014: disposizioni per l'aggiornamento della pianificazione di emergenza per il rischio vulcanico del Vesuvio, Gazzetta Ufficiale, Civil Protection Department, Presidency of the Council of Ministers, Italian Government, 108, https://www.protezionecivile.gov.it/en/normativa/direttiva-del-14-febbraio-2014/ (last access: 19 March 2025), 2014.
Cole, P. D. and Scarpati, C.: The 1944 eruption of Vesuvius, Italy: Combining contemporary accounts and field studies for a new volcanological reconstruction, Geol. Mag., 147, 391–415, 2010.
Crook, C. and Rouberyrie, L.: QGIS Countour plugin, GitHub, https://github.com/ccrook/QGIS-Contour-Plugin.git (last access: August 2024), 2024.
Dellino, F., Dioguardi F., Doronzo D. M., and Mele D.: The entrainment rate of non Boussinesq hazardous geophysical gas-particle flows: an experimental model with application to pyroclstic density currents, Geophys. Res. Lett., 46, 12851-12861, 2019.
Dellino, P., Mele, D., Sulpizio, R., La Volpe, L., and Braia, G.: A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle characteristics, J. Geophys. Res., 113, B07206, https://doi.org/10.1029/2007JB005365, 2008.
Dellino, P., Büttner, R., Dioguardi, F., Doronzo, D. M., La Volpe, L., Mele, D., Sonder, I., Sulpizio, R., and Zimanowski, B.: Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard, Earth Planet. Sci. Lett., 295, 314–320, 2010.
Dellino, P., Dioguardi, F., Doronzo, D. M., and Mele, D.: A discriminatory diagram of massive versus stratified deposits based on the sedimentation and bedload transportation rates. Experimental investigation and application to pyroclastic density currents, Sedimentology, 67, 2013–2039, https://doi.org/10.1111/sed.12693, 2020.
Dellino, P., Dioguardi, F., Isaia, R., Sulpizio, R., and Mele, D.: The impact of pyroclastic density currents duration on humans: the case of the AD 79 eruption of Vesuvius. Sci. Rep., 11, 4959, https://doi.org/10.1038/s41598-021-84456-7, 2021.
Dioguardi, F. and Dellino, P.: PYFLOW: a computer code for the calculation of the impact parameters of dilute pyroclastic density currents (DPDC) based on field data, Comput. Geosci., 66, 200–210, https://doi.org/10.1016/j.cageo.2014.01.013, 2014.
Dioguardi, F. and Mele, D.: PYFLOW_2.0: a computer program for calculating flow properties and impact parameters of past dilute pyroclastic density currents based on field data, Bull. Volcanol. 80, 28, https://doi.org/10.1007/s00445-017-1191-z, 2018.
Dioguardi, F. and Mele, D.: PYFLOW_2.0: a computer program for calculating flow properties and impact parameters of past dilute pyroclastic density currents based on field data,Bull Volcanol 80, 28, https://doi.org/10.1007/s00445-017-1191-z, 2018.
Dioguardi, F., Mele, D., and Dellino, P.: A New One-Equation Model of Fluid Drag for Irregularly Shaped Particles Valid Over a Wide Range of Reynolds Number, J. Geophys. Res.-Sol. Ea., 123, 144–156, https://doi.org/10.1002/2017JB014926, 2018.
Druitt, T. H.: Emplacement of the 18 May 1980 lateral blast deposit ENE of Mount St. Helens, Washington, B. Volcanol., 54, 554–572, 1992.
Druitt, T. H., Calder, E. S., Cole, P. D., Hoblitt, R. P., Loughlin, S. C., Norton, G. E., Ritchie, L. J., Sparks, R. S. J., and Voight, B.: Small-volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufrière Hills Volcano, Montserrat: an important volcanic hazard, in: The Eruption of Soufrière Hills Volcano, Montserrat, from 1995–1999, edited by: Druitt, T. H. and Kokelaar, B. P., Geol. Soc., London, Mem., 21, 263–279, https://doi.org/10.1144/GSL.MEM.2002.021.01.12, 2002.
Esposti Ongaro, T., Neri, A., Menconi, G., de'Michieli Vitturi, M., Marianelli, P., Cavazzoni, C., Erbacci, G., and Baxter, P. J.: Transient 3Dnumerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius, J. Volcanol. Geoth. Res., 178, 378–396, 2008.
Fang, C., Ping, Y., and Chen, Y.: Loading protocols for experimental seismic qualification of members in conventional and emerging steel frames, Earthquake Engng. Struct. Dyn., 49, 155–174, https://doi.org/10.1002/eqe.3231, 2020.
Fink, J. H., Malin, M. C., D'Alli, R. E., and Greeley, R.: Rheological properties of mudflows associated with the spring 1980 eruptions of Mount St. Helens Volcano Washington, Geophys. Res. Lett., 8, 43–46, 1981.
Fisher, R. V.: Models for pyroclastic surges and pyroclastic fows, J. Volcanol. Geoth. Res., 6, 305–318, 1979.
Fisher, R. V.: Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St. Helens, Washington, Geol. Soc. Am. Bull., 102, 1038–1054, 1990.
Furbish, D. J.: Fluid Physics in Geology, Oxford Univ. Press, New York, 476 pp., https://doi.org/10.1093/oso/9780195077018.001.0001, 1997.
Gernon, T. M., Upton, B. G. J., and Hincks, T. K.: Eruptive history of an alkali basaltic diatreme from Elie Ness, Fife, Scotland, Bull. Volcanol., 75, 704, https://doi.org/10.1007/s00445-013-0704-7, 2013, 2013.
Giordano, G., Zanella, E., Trolese, M., Baffioni, C., Vona, A., Caricchi, C., De Benedetti, A. A., Corrado, S., Romano, C., Sulpizio, R., and Geshi, N.: Thermal interactions of the AD79 Vesuvius pyroclastic density currents and their deposits at Villa dei Papiri (Herculaneum archaeological site, Italy), Earth Plan. Sci. Lett., 490, 180–192, https://doi.org/10.1016/j.epsl.2018.03.023, 2018.
Gurioli, L., Zanella, E., Pareschi, M. T., and Lanza, R.: Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): Flow direction and deposition, J. Geophys. Res., 112, B05213, https://doi.org/10.1029/2006JB004444, 2007.
Gurioli, L., Sulpizio, R., Cioni, R., Sbrana, A., Santacroce, R., Luperini, W., and Andronico D.: Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record, B. Volcanol., 72, 1021–1038, 2010.
Horwell, C. J. and Baxter P.: The respiratory health hazards of volcanic ash: A review for volcanic risk mitigation, B. Volcanol., 69, 1–24, 2006.
ISTAT: Basi territoriali e variabili censuarie: censimento 2011, 15-Campania, ISTAT, http://www.istat.it/it/files/2013/11/R15_11_WGS84.zip (last access: August 2024), 2011.
Jenkins, S., Komorowski, J. -C., Baxter, P. J., Spence, R., Picquout, A., and Surono, F. L.: The Merapi 2010 eruption: an interdisciplinary assessment methodology for studying pyroclastic density currents, J. Volcanol. Geoth. Res., 261, 316–329, 2013.
Jones, T. J., Beckett, F., Bernard, B., Breard, E. C. P., Dioguardi, F., Dufek, J., Engwell, S., and Eychenne, J.: Physical properties of pyroclastic density currents: relevance, challenges and future directions, Front. Earth Sci., 11:1218645, https://doi.org/10.3389/feart.2023.1218645, 2023.
Kneller, B. C. and Branney, M. J.: Sustained high density turbidity currents and the deposition of thick massive sands, Sedimentology, 42, 607–616, 1995.
Lajoie, J., Boudon, G., and Bourdies, J. L.: Depositional mechanics of the 1902 pyroclastic nuée ardente deposits of Mt. Pelée, Martinique, J. Volcanol. Geoth. Res., 38, 131–142, 1998.
Lowe, D. R.: Sedimentary gravity flows: II. Depositional models with special reference to the deposits of high density turbidity currents, J. Sed. Petrol., 52, 279–297, 1982.
Lowe, D. R.: Suspended-load fallout rate an independent variable in the analysis of current structures, Sedimentology, 35, 765–776, 1988.
Lube, G., Cronin, S. J., Platz, T., Freundt, A., Procter, J. N., Henderson, C., and Sheridan, M. F.: Flow and deposition of pyroclastic granular flows: a type example from the 1975 Ngauruhoe eruption, New Zealand, J. Volcanol. Geoth. Res. 161, 165–186, 2007.
Luongo, G., Perrotta, A., Scarpati, C., De Carolis, E., Patricelli, G., and Ciarallo, A.: Impact of the AD 79 eruption on Pompeii, II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human casualties, J. Volcanol. Geoth. Res., 126, 169–200, 2003.
Major, J. J. and Iverson, R. M.: Debris-flow deposition effects of pore-fluid pressure and friction concentrated at flow margins, Geol. Soc. Am. Bull., 111, 1424–1434, 1999.
Major, J. J. and Pierson, T. C.: Debris flow rheology: experimental analysis of fine-grained slurries, Water Resour. Res., 28, 841–857, 1992.
Mele, D., Sulpizio, R., Dellino, P., and La Volpe, L.: Stratigraphy and eruptive dynamics of a pulsating Plinian eruption of Somma-Vesuvius: the Pomici di Mercato (8900 years B.P.), B. Volcanol., 73, 257–278, 2011.
Mele, D., Dioguardi, F., Dellino, P., Isaia, R., Sulpizio, R., and Braia, G.: Hazard of pyroclastic density currents at the Campi Flegrei Caldera (Southern Italy) as deduced from the combined use of facies architecture, physical modeling and statistics of the impact parameters, J. Volcanol. Geoth. Res., 299, 35–53, 2015.
Mele, D., Dellino, P., and Dioguardi F.: Pyroclastic density currents hazard simulation data at Mt. Vesuvius, Italy, Zenodo [data set], https://doi.org/10.5281/zenodo.13682628, 2024.
Middleton, G. V. and Southard, J. B.: Mechanics of Sediment Movement, Soc. Econ. Paleont. Miner., Tulsa, 401 pp., https://doi.org/10.2110/scn.84.03, 1984.
Miller, M. C., McCave, I. N., and Komar, P. D.: Threshold of sediment motion under unidirectional currents, Sedimentology, 24, 507–527, 1977.
Nakada, S.: Hazards from Pyroclastic Flows and Surges, in: Encyclopedia of Volcanoes, edited by: Sigurdsson, H., Houghton, R., McNutt, S. R., Rymer, H., and Stix, J.: Academic Press, Cambridge, ISBN 13: 9780126431407, 2000.
Neri, A., Esposti Ongaro, T., Menconi, G., Vitturi, M., De'Michieli, M., Cavazzoni, C., Erbacci, G., and Baxter, P. J.: 4D simulation of explosive eruption dynamics at Vesuvius, Geophys. Res. Lett., 34, L04309, https://doi.org/10.1029/2006GL028597, 2007.
Palladino, D. M. and Valentine, G. A.: Coarse-tail vertical and lateral grading in pyroclastic flow deposits of the Latera Volcanic Complex (Vulsini, Central Italy): origin and implications for flow dynamics, J. Volcanol. Geoth. Res., 69, 343–364, 1995.
Pensa, A., Giordano, G., Corrado, S., and Petrone, P. P.: A new hazard scenario at Vesuvius: deadly thermal impact of detached ash cloud surges in 79 CE at Herculaneum. Sci. Rep., 13, 5622, https://doi.org/10.1038/s41598-023-32623-3, 2023.
Postma, G., Cartigny, M., and Kleverlaan, K.: Structureless, coarse-tail graded Bouma Ta formed by internal hydraulic jump of the turbidity current, Sed. Geol., 219, 1–6, 2009.
QGIS: QGIS Geographic Information System, Open Source Geospatial Foundation Project, QGIS, http://qgis.org (last access: August 2024), 2024.
Rosi, M., Principe, C., and Vecci, R.: The 1631 eruption of Vesuvius reconstructed from the review of chronicles and study of deposits, J. Volcanol. Geoth. Res., 58, 151–182, 1993.
Rouse, H.: An analysis of sediment transportation in the light of fluid turbulence, in Soil Conservation Services Report No. SCS-TP-25, USDA, Washington, D.C., ISBN 978-1-391-63813-3, 1939.
Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., Don-ahue, D. J., and Joron, J.-L.: Age and whole rock-glass composition of proximal pyroclastics from the major explosive eruptions of Somma–Vesuvius: a review as a tool for distal tephrostratigraphy, J. Volcanol. Geoth. Res., 177, 1–18, 2008.
Selva, J., Sandri, L., Taroni, M., Sulpizio, R., Tierz, P., and Costa, A.: A simple two-state model interprets temporal modulations in eruptive activity and enhances multivolcano hazard quantification, Sci. Adv., 8, eabq4415, https://doi.org/10.1126/sciadv.abq4415, 2022.
Sevink, J., van Bergen, M. J., van der Plicht, J., Feiken, H., Anastasia, C., and Huizinga, A.: Robust date from the Bronze Age Avellino eruption (Somma–Vesuvius): 3945 ± 10 cal BP (1995 ± 10 cal BC), Quaternary Sci. Rev., 30, 1035–1046, 2011.
Sigurdsson, H., Carey, S., Cornell, W., and Pescatore, T.: The eruption of Vesuvius in 79 AD, Nat. Geogr. Res., 1, 332–387, 1985.
Spence, R. J. S., Baxter, P. J., and Zuccaro G.: Building vulnerability and human casualty estimation for a pyroclastic flow: A model and its application to Vesuvius, J. Volcanol. Geoth. Res., 133, 321–343, 2004.
Sulpizio, R., Mele, D., Dellino, P., and LaVolpe, L.: A complex, Subplinian type eruption from low-viscosity, tephri-phonolitic magma: the Pollena eruption of Somma-Vesuvius (Italy), B. Volcanol., 67, 743–767, https://doi.org/10.1007/s00445-005-0414-x, 2005.
Sulpizio, R., Mele, D., Dellino, P., and La Volpe, L.: Deposits and physical properties of pyroclastic density currents during complex Subplinian eruptions: The AD 472 (Pollena) eruption of Somma-Vesuvius, Italy, Sedimentology, 54, 607–635,https://doi.org/10.1111/j.1365-3091.2006.00852.x, 2007.
Sulpizio, R., Bonasia, R., Dellino, P., Mele, D., Di Vito, M. A., and La Volpe, L.: The Pomici di Avellino eruption of Somma-Vesuvius (3.9 ka BP). Part II: Sedimentology and physical volcanology of pyroclastic density current deposits, B. Volcanol., 72, 559–577, 2010a.
Sulpizio, R., Cioni, R., Di Vito, M. A., Mele, D., Bonasia, R., and Dellino, P.: The Pomici di Avellino eruption of Somma–Vesuvius (3.9 ka BP) part I: stratigraphy, compositional variability and eruptive dynamics, B. Volcanol., 72, 539–558, 2010b.
Sulpizio, R., Dellino, P., Doronzo, D. M., and Sarocchi, D.: Pyroclastic density currents: state of the art and perspectives, J. Volcanol. Geoth. Res., 283, 36–65, 2014.
Sulpizio, R., Castioni, D., Rodriguez-Sedano, L. A., Sarocchi, D., and Lucchi, F.: The influence of slope-angle ratio on the dynamics of granular flows: insights from laboratory experiments, B. Volcanol., 78, 1–11, 2016.
Sweeney, M. R. and Valentine, G. A.: Impact zone dynamics of dilute mono- and polydisperse jets and their implications for the initial conditions of pyroclastic density currents, Phys. Fluids, 29, 093304, https://doi.org/10.1063/1.5004197, 2017.
Talling, P. J., Amy, L. A., Wynn, R. B., Peakall, J., and Robinson, M.: Beds comprising debrite sandwiched within co-genetic turbidite: origin and widespread occurrence in distal depositional environments, Sedimentology, 51, 163–194, 2004.
Tarquini, S., Isola, I., Favalli, M., Battistini, A., and Dotta, G.: TINITALY, a digital elevation model of Italy with a 10 meters cell size (Version 1.1), Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/tinitaly/1.1, 2023.
Valentine, G. A.: Stratified flow in pyroclastic surges, B. Volcanol., 49, 616–630, 1987.
Valentine, G. A.: Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects, J. Volcanol. Geoth. Res., 49, 616–630, https://doi.org/10.1016/S0377-0273(98)00094-8, 1998.
Valentine, G. A.: Initiation of dilute and concentrated pyroclastic currents from collapsing mixtures and origin of their proximal deposits, Bull. Volcanol., 82, 20, https://doi.org/10.1007/s00445-020-1366-x, 2020.
Valentine, G. A. and Sweeney, M. R.: Compressible Flow Phenomena at Inception of Lateral Density Currents Fed by Collapsing Gas-Particle Mixtures, J. Geophys. Res.-Sol. Ea., 123, 1286–1302, 2018.
Valentine, G. A., Fierstein, J., and White, J. D. L.: Pyroclastic deposits of Ubehebe Crater, Death Valley, California, USA: Ballistics, pyroclastic surges, and dry granular flows, Geosphere, 18, 1926–1957, https://doi.org/10.1130/GES02526.1, 2022.
Wilson, C. J. N.: The role of fluidization in the emplacement of pyroclastic clows: An experimental approach, J. Volcanol. Geoth. Res., 8, 231–249, https://doi.org/10.1016/0377-0273(80)90106-7, 1980.
Woods, A. W.: The dynamics of explosive volcanic eruptions, Rev. Geophys., 33, 495–530, 1995.
Woods, A. W., Sparks, R. S. J., Ritchie, L. J., Batey, J., Gladstone, C., and Bursik, M. I.: The explosive decompression of a pressurized volcanic dome: the 26 December 1997 collapse and explosion of Soufrière Hills Volcano, Montserrat, Geol. Soc. London Mem., 21, 457–465, 2002.
Zanchetta, G., Sulpizio, R., Pareschi, M. T., Leoni, F. M., and Santacroce, R.: Characteristics of May 5–6 1998 volcaniclastic debris flows in the Sarno area (Campania, Southern Italy): relationships to structural damage and hazard zonation, J. Volcanol. Geoth. Res., 133, 377–393, 2004.
Zanella, E., Gurioli, L., Lanza, R., Sulpizio, R., and Bontempi, M.: Deposition temperature of the AD 472 Pollena pyroclastic density current deposits, Somma-Vesuvius, Italy, Bull. Volcanol., 70, 1237–1248, https://doi.org/10.1007/s00445-008-0199-9, 2008.
Zanella, E., Sulpizio, R., Gurioli, L., and Lanza, R.: Temperatures of the pyroclastic density currents deposits emplaced in the last 22 kyr at Somma–Vesuvius (Italy), in: The Use of Palaeomagnetism and Rock Magnetism to Understand Volcanic Processes, edited by: Ort, M. H., Porreca, M., and Geissman, J. W., Geol. Soc. Lond., 396, 13–33, https://doi.org/10.1144/SP396.4, 2015.
Zuccaro, G. and Leone, M.: Building Technologies for the Mitigation of Volcanic Risk: Vesuvius and Campi Flegrei, Nat. Hadards Rev., 13, 221–232, 2012.
Zuccaro, G., Cacace, F., Spence, R. J. S., and Baxter, P. J.: Impact of explosive eruption scenarios at Vesuvius, J. Volcanol. Geoth. Res., 178, 416–453, 2008.
Short summary
Pyroclastic deposits are the only records left by pyroclastic flows at Vesuvius, and deposits from past eruptions are the only way to get information about the expected range of impact parameters. It is necessary to investigate the deposits first and then define a general model of the current that links deposit characteristics to flow dynamics, finally reconstructing the impact parameters that better represent flow intensity in terms of damaging potential. This is the way the paper is organized.
Pyroclastic deposits are the only records left by pyroclastic flows at Vesuvius, and deposits...
Altmetrics
Final-revised paper
Preprint