Articles | Volume 24, issue 12
https://doi.org/10.5194/nhess-24-4523-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-4523-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sedimentary record of historical seismicity in a small, southern Oregon lake
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Cascadia Paleo Consulting, Corvallis, OR 97330, USA
Mark D. Shapley
Continental Scientific Drilling Facility, School of Earth and Environmental Sciences, University of Minnesota, 116 Church St SE, Minneapolis, MN 55455, USA
Daniel G. Gavin
Department of Geography, University of Oregon, Eugene, OR 97403, USA
Alan R. Nelson
Geologic Hazards Science Center, US Geological Survey, Golden, CO 80401, USA
Chris Goldfinger
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Related authors
Ann E. Morey and Chris Goldfinger
Nat. Hazards Earth Syst. Sci., 24, 4563–4584, https://doi.org/10.5194/nhess-24-4563-2024, https://doi.org/10.5194/nhess-24-4563-2024, 2024
Short summary
Short summary
This study uses the characteristics from a deposit attributed to the 1700 CE Cascadia earthquake to identify other subduction-earthquake deposits in sediments from two lakes located near the California–Oregon border. Seven deposits were identified in these records, and an age–depth model suggests that these correlate in time to the largest Cascadia earthquakes preserved in the offshore record, suggesting that inland lakes can be good recorders of Cascadia earthquakes.
Ann E. Morey and Chris Goldfinger
Nat. Hazards Earth Syst. Sci., 24, 4563–4584, https://doi.org/10.5194/nhess-24-4563-2024, https://doi.org/10.5194/nhess-24-4563-2024, 2024
Short summary
Short summary
This study uses the characteristics from a deposit attributed to the 1700 CE Cascadia earthquake to identify other subduction-earthquake deposits in sediments from two lakes located near the California–Oregon border. Seven deposits were identified in these records, and an age–depth model suggests that these correlate in time to the largest Cascadia earthquakes preserved in the offshore record, suggesting that inland lakes can be good recorders of Cascadia earthquakes.
Matias Romero, Shanti B. Penprase, Maximillian S. Van Wyk de Vries, Andrew D. Wickert, Andrew G. Jones, Shaun A. Marcott, Jorge A. Strelin, Mateo A. Martini, Tammy M. Rittenour, Guido Brignone, Mark D. Shapley, Emi Ito, Kelly R. MacGregor, and Marc W. Caffee
Clim. Past, 20, 1861–1883, https://doi.org/10.5194/cp-20-1861-2024, https://doi.org/10.5194/cp-20-1861-2024, 2024
Short summary
Short summary
Investigating past glaciated regions is crucial for understanding how ice sheets responded to climate forcings and how they might respond in the future. We use two independent dating techniques to document the timing and extent of the Lago Argentino glacier lobe, a former lobe of the Patagonian Ice Sheet, during the late Quaternary. Our findings highlight feedbacks in the Earth’s system responsible for modulating glacier growth in the Southern Hemisphere prior to the global Last Glacial Maximum.
Andria Dawson, John W. Williams, Marie-José Gaillard, Simon J. Goring, Behnaz Pirzamanbein, Johan Lindstrom, R. Scott Anderson, Andrea Brunelle, David Foster, Konrad Gajewski, Dan G. Gavin, Terri Lacourse, Thomas A. Minckley, Wyatt Oswald, Bryan Shuman, and Cathy Whitlock
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-6, https://doi.org/10.5194/cp-2024-6, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Holocene vegetation-atmosphere interactions provide insight into intensifying land use impacts and the Holocene Conundrum- a mismatch between data- and model- inferred temperature. Using pollen records and statistical modeling, we reconstruct Holocene land cover for North America. We determine patterns and magnitudes of land cover changes across scales. We attribute land cover changes to ecological, climatic, and human drivers. These reconstructions provide benchmarks for Earth System Models.
Maximillian Van Wyk de Vries, Emi Ito, Mark Shapley, Matias Romero, and Guido Brignone
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-29, https://doi.org/10.5194/cp-2022-29, 2022
Manuscript not accepted for further review
Short summary
Short summary
In some situations, the color of sediment records information about the climatic conditions under which it was deposited. We show that sediment color and climate are linked at Lago Argentino, the world's largest ice-contact lake, but that this relationship is too complex to be used for reconstructing past climate. We instead use this sediment color-climate relationship to show that temperature and wind speed affect sediment deposition in the summer, but not in the winter.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Cited articles
Adams, J.: Paleoseismicity of the Cascadia subduction zone: Evidence from turbidites off the Oregon‐Washington margin, Tectonics, 9, 569–583, 1990.
Alexander, J. and Mulder, T.: Experimental quasi-steady density currents, Mar. Geol, 186, 195–210, 2002.
Bakun, W. H.: Seismicity of California's north coast, Bull. Seismol. Soc. Am., 90, 797–812, https://doi.org/10.1785/0119990138, 2000.
Beck, C.: Late quaternary lacustrine paleo-seismic archives in north-western Alps: Examples of earthquake-origin assessment of sedimentary disturbances, Earth-Sci. Rev., 96, 327–344, https://doi.org/10.1016/j.earscirev.2009.07.005, 2009.
Bennett, R. A., Wernicke, B. P., Niemi, N. A., Friedrich, A. M., and Davis, J. L.: Contemporary strain rates in the northern Basin and Range province from GPS data, Tectonics, 22, 1008, https://doi.org/10.1029/2001TC001355, 2003.
Bertrand, S., Tjallingii, R., Kylander, M. E., Wilhelm, B., Roberts, S. J., Arnaud, F., Brown, E., and Bindler, R.: Inorganic geochemistry of lake sediments: A review of analytical techniques and guidelines for data interpretation, Earth-Sci. Rev., 249, 104639, https://doi.org/10.1016/j.earscirev.2023.104639, 2023.
Boes,E., Van Daele, M., Moernaut, J., Schmidt, S., Jensen, B. J. L., Praet, N., Kaufman, D., Haeussler, P., Loso, M. G., and De Batist, M.: Varve formation during the past three centuries in three large proglacial lakes in south-central Alaska, GSA Bull., 130, 757–774, 2018.
Bouma, A. H.: Coarse-grained and fine-grained turbidite systems as end member models: applicability and dangers, Mar. Petrol. Geol., 17, 137–143, 2000.
Boyle, J. F., Chiverrell, R. C., and Schillereff, D.: Approaches to water content correction and calibration for μ XRF core scanning: Comparing X-ray scattering with simple regression of elemental concentrations, in: Micro-XRF studies of sediment cores, edited by: Croudace, I. W. and Rothwell, R. G., Springer, 373–390, ISBN 978-9401798488, 2015.
Bradbury, J. P.: Charcoal deposition and redeposition in Elk Lake, Minnesota, USA, Holocene, 6, 339–344, 1996.
Briles, C. E., Whitlock, C., and Bartlein, P. J.: Postglacial vegetation, fire and climate history of the Siskiyou Mountains, Oregon, USA. Quatern. Res., 64, 44–56, https://doi.org/10.1016/j.yqres.2005.03.001, 2005.
Bronk Ramsey, C.: OxCal Program (Version 4.3.2) [Computer software], Oxford University Research Lab for Archaeology, https://c14.arch.ox.ac.uk/oxcal.html (last access: October 2024), 2017.
Campbell, C.: Late Holocene lake sedimentology and climate change in southern Alberta, Canada, Quatern. Res., 49, 96–101, https://doi.org/10.1006/qres.1997.1946, 1998.
Coleman, R. G., Helper, M. D., and Donato, M. M.: Geologic map of the Condrey Mountain roadless area, Siskiyou County, California, US Geological Survey Miscellaneous Field Studies Map MF-1549A, US Geological Survey, https://doi.org/10.3133/mf1540A, 1983.
Colombaroli, D., Gavin, D. G., Morey, A. E., and Thorndycraft, V. R.: High resolution lake sediment record reveals self-organized criticality in erosion processes regulated by internal feedbacks, Earth Surf. Proc. Land., 43, 2181–2192, https://doi.org/10.1002/esp.4383, 2018.
Daxer, C., Wils, K., Ramisch, A., Strasser, M., and Moernaut, J.: Contrasting sedimentary and long-lasting geochemical imprints of seismic shaking in a small, groundwater-fed lake basin (Klopeiner See, Eastern European Alps), Sedimentologika, 2, 1296, https://doi.org/10.57035/journals/sdk.2024.e21.1296, 2024.
Dengler, L.: The 1906 earthquake on California's north coast, Bull. Seismol. Soc. Am., 98, 918–930, 2008.
Donato, M. M.: Preliminary geologic map of the Squaw Lakes quadrangle, Oregon and California (No. 93-703), United States Geological Survey, https://doi.org/10.3133/ofr93703, 1993.
Engstrom, W. N.: The California storm of January 1862, Quatern. Res., 46, 141–148, https://doi.org/10.1006/qres.1996.0054, 1996.
Furlong, K. P. and Herman, M.: Reconciling the deformational dichotomy of the 2016 Mw 7.8 Kaikoura New Zealand earthquake, Geophys. Res. Lett., 44, 6788–6791, 2017.
Gilli, A., Anselmetti, F. S., Glur, L., and Wirth, S. B.: Lake Sediments as Archives of Recurrence Rates and Intensities of Past Flood Events, in: Dating torrential processes on fans and cones, vol. 47, edited by: Schneuwly-Bollschweiler, M., Stoffel, M., and Rudolf-Miklau, F., Springer, 225–242, Print ISBN 978-94-007-4335-9, 2013.
Goldenson, N., Leung, L. R., Bitz, C. M., and Blanchard-Wrigglesworth, E.: Influence of Atmospheric Rivers on Mountain Snowpack in the Western United States, J. Climate, 31, 9921–9940, 2018.
Goldfinger, C.: Paleoseismic Record of Peninsula Segment Earthquakes on the San Andreas Fault near San Francisco, CA and possible NSAF linkage to Cascadia, https://ui.adsabs.harvard.edu/abs/2019AGUFMOS54A..03G/abstract (last access: 12 April 2024), 2021.
Goldfinger, C., Grijalva, K., Bürgmann, R., Morey, A. E., Johnson, J. E., Nelson, C. H., Gutiérrez-Pastor, J., Ericsson, A., Karabanov, E., Chaytor, J. D., Patton, J., and Gràcia, E.: Late Holocene rupture of the northern San Andreas fault and possible stress linkage to the Cascadia subduction zone, Bull. Seismol. Soc. Am., 98, 861–889, https://doi.org/10.1785/0120060411, 2008.
Goldfinger, C., Nelson, C. H., Morey, A. E., Johnson, J. E., Patton, J. R., Karabanov, E. B., Gutierrez-Pastor, J., Eriksson, A. T., Gràcia, E., Dunhill, G., Enkin, R. J., Dallimore, A., and Vallier, T.: Turbidite event history: Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone, US Geological Survey Professional Paper 1661-F, US Geological Survey, https://doi.org/10.3133/pp1661F, 2012.
Goldfinger, C., Morey, A. E., Black, B., Beeson, J., Nelson, C. H., and Patton, J.: Spatially limited mud turbidites on the Cascadia margin: Segmented earthquake ruptures?, Nat. Hazards Earth Syst. Sci., 13, 2109–2146, https://doi.org/10.5194/nhess-13-2109-2013, 2013.
Goldfinger, C., Galer, S., Beeson, J., Hamilton, T., Black, B., Romsos, C., Patton, J., Nelson, C. H., Hausmann, R., and Morey, A.: The importance of site selection, sediment supply, and hydrodynamics: A case study of submarine paleoseismology on the northern Cascadia margin, Washington USA, Mar. Geol., 384, 25–46, https://doi.org/10.1016/j.margeo.2016.06.008, 2017.
Hennebelle, A., Aleman, J. C., Ali, A. A., Bergeron, Y., Carcaillet, C., Grondin, P., Landry, J., and Blarquez, O.: The reconstruction of burned area and fire severity using charcoal from boreal lake sediments, Holocene, 30, 1400–1409, 2020.
Herman, M. W., Furlong, K. P., and Benz, H. M.: Substantial upper plate faulting above a shallow subduction megathrust earthquake: Mechanics and implications of the surface faulting during the 2016 Kaikoura, New Zealand, earthquake, Tectonics, 42, e2022TC007645, https://doi.org/10.1029/2022TC007645, 2023.
Horton, D. E., Johnson, N. C., Singh, D., Swain, D. L., Rajaratnam, B., and Diffenbaugh, N. S.: Contribution of changes in atmospheric circulation patterns to extreme temperature trends, Nature, 522, 465–469, https://doi.org/10.1038/nature14550, 2015.
Hotz, P. E.: Regional metamorphism in the Condrey Mountain quadrangle, north-central Klamath Mountains, California, Geological Survey Professional Paper No. 1086, US Government Printing Office, https://doi.org/10.3133/pp1086, 1979.
Howarth, J. D., Fitzsimons, S. J., Norris, R. J., and Jacobsen, G. E.: Lake sediments record cycles of sediment flux driven by large earthquakes on the Alpine fault, New Zealand, Geology, 40, 1091–1094, https://doi.org/10.1130/G33486.1, 2012.
Howarth, J. D., Fitzsimons, S. J., Norris, R. J., and Jacobsen, G. E.: Lake sediments record high intensity shaking that provides insight into the location and rupture length of large earthquakes on the Alpine Fault, New Zealand, Earth Planet. Sc. Lett., 403, 340–351, 2014.
Inouchi, Y., Kinugasa, Y., Kumon, F., Nakano, S., Yasumatsu, S., and Shiki, T.: Turbidites as records of intense palaeoearthquakes in Lake Biwa, Japan, Sediment. Geol., 104, 117–125, https://doi.org/10.1016/0037-0738(95)00124-7, 1996.
Johnson, D. M.: Atlas of Oregon Lakes, https://oregonlakesatlas.org/map (last access: 6 Dcember 2024), 1996.
Karlin, R. and Seitz, G.: A basin wide record of earthquakes at Lake Tahoe: Validation of the earthquake induced turbidite model with sediment core analysis: Collaborative research with UNR and SDSU, Final Technical Report for 07HQGR0014 and 07HQGR0008, United States Geological Survey, 18 pp., https://earthquake.usgs.gov/cfusion/external_grants/reports/07HQGR0014.pdf (last access: 12 April 2024), 2007.
Karlin, R. E. and Abella, S. E.: Paleoearthquakes in the Puget Sound region recorded in sediments from Lake Washington, USA, Science, 258, 1617–1620, https://doi.org/10.1126/science.258.5088.1617, 1992.
Karlin, R. E. and Abella, S. E. B.: A history of Pacific Northwest earthquakes recorded in Holocene sediments from Lake Washington, J. Geophys. Res.-Solid, 101, 6137–6150, https://doi.org/10.1029/95JB01626, 1996.
Karlin, R. E., Holmes, M., Abella, S. E. B., and Sylwester, R.: Holocene landslides and a 3500-year record of Pacific Northwest earthquakes from sediments in Lake Washington, Geol. Soc. Am. Bull., 116, 94–108, 2004.
Kelts, K., Briegel, U., Ghilardi, K., and Hsu, K.: The limnogeology-ETH coring system, Swiss J. Hydrol., 48, 104–115, 1986.
Kirby, E., McKenzie, K. A., McKenzie, K. A., Furlong, K., and Hefner, W.: Geomorphic Fingerprints of Active Faults in the Southern Cascadia Forearc and heir Geodynamic Significance, GSA Connects 2021, Portland, Oregon, Paper No. 30-3, Abstr. Programs 53, Geol. Soc. America, https://doi.org/10.1130/abs/2021AM-370126, 2021.
Kneller, B. C. and McCaffrey, W. D.: The interpretation of vertical sequences in turbidite beds: The influence of longitudinal flow structure, J. Sediment. Res., 73, 706–713, https://doi.org/10.1306/031103730706, 2003.
LaLande, J.: An environmental history of the Little Applegate River watershed, USDA, Forest Service, Medford, OR, http://soda.sou.edu/awdata/020912c1.pdf (last access: 12 February 2014), 1995.
Lamoureux, S.: Temporal patterns of suspended sediment yield following moderate to extreme hydrological events recorded in varved lacustrine sediments, Earth Surf. Proc. Land., 27, 1107–1124, https://doi.org/10.1002/esp.399, 2002.
Larson, D. W.: Preliminary Investigation of Mercury in Squaw Lakes, Applegate River Basin, Oregon, US Army Corps of Engineers, Portland District, 1975.
Leithold, E. L., Wegmann, K. W., Bohnenstiehl, D. R., Smith, S. G., Noren, A., and O'Grady, R.: Slope failures within and upstream of Lake Quinault, Washington, as uneven responses to Holocene earthquakes along the Cascadia subduction zone, Quatern. Res., 89, 178–200, https://doi.org/10.1017/qua.2017.96, 2018.
Leithold, E. L., Wegmann, K. W., Bohnenstiehl, D. R., Joyner, C. N., and Pollen, A. F.: Repeated megaturbidite deposition in Lake Crescent, Washington, USA, triggered by Holocene ruptures of the Lake Creek-Boundary Creek fault system, GSA Bull., 131, 2039–2055, 2019.
Leonard, L. J., Currie, C. A., Mazzotti, S., and Hyndman, R. D.: Rupture area and displacement of past Cascadia great earthquakes from coastal coseismic subsidence, GSA Bull., 122, 2079–2096, 2010.
Long, C. J., Whitlock, C., Bartlein, P. J., and Millspaugh, S. H.: A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study, Can. J. Forest Res., 28, 774–787, https://doi.org/10.1139/x98-051, 1998.
Löwemark, L., Chen, H. F., Yang, T. N., Kylander, M., Yu, E. F., Hsu, Y. W., Lee, T. Q., Song, S. R., and Jarvis, S.: Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes, J. Asian Earth Sci., 40, 1250–1256, https://doi.org/10.1016/j.jseaes.2010.06.002, 2011.
Lu, Y., Moernaut, J., Bookman, R., Waldmann, N., Wetzler, N., Agnon, A., Marco, S., Alsop, G. I., Strasser, M., and Hubert‐Ferrari, A.: A new approach to constrain the seismic origin for prehistoric turbidites as applied to the Dead Sea Basin, Geophys. Res. Lett., 48, e2020GL090947, https://doi.org/10.1029/2020GL090947, 2021.
McCrory, P. A., Hyndman, R. D., and Blair, J. L.: Relationship between the Cascadia fore-arc mantle wedge, nonvolcanic tremor, and the downdip limit of seismogenic rupture, Geochem. Geophy. Geosy., 15, 1071–1095, https://doi.org/10.1002/2013GC005144, 2014.
McKenzie, K. A. and Furlong, K. P.: Isolating non-subduction-driven tectonic processes in Cascadia, Geosci. Lett., 8, 10, https://doi.org/10.1186/s40562-021-00181-z, 2021.
McKenzie, K. A., Furlong, K. P., and Kirby, E.: Mid-Miocene to present upper-plate deformation of the southern Cascadia forearc: Effects of the superposition of subduction and transform tectonics, Front. Earth Sci., 10, 832515, https://doi.org/10.3389/feart.2022.832515, 2022.
Moernaut, J., Daele, M. V., Heirman, K., Fontijn, K., Strasser, M., Pino, M., Urrutia, R., and De Batist, M.: Lacustrine turbidites as a tool for quantitative earthquake reconstruction: New evidence for a variable rupture mode in south central Chile, J. Geophys. Res.-Solid, 119, 1607–1633, 2014.
Moernaut, J., van Daele, M., Strasser, M., Clare, M. A., Heirman, K., Viel, M., Cardenas, J., Kilian, R., de Guevara, B. L., Pino, M., Urrutia, R., and De Batist, M.: Lacustrine turbidites produced by surficial slope sediment remobilization: A mechanism for continuous and sensitive turbidite paleoseismic records, Mar. Geol., 384, 159–176, https://doi.org/10.1016/j.margeo.2015.10.009, 2017.
Monecke, K., Anselmetti, F. S., Becker, A., Sturm, M., and Giardini, D.: The record of historic earthquakes in lake sediments of Central Switzerland, Tectonophysics, 394, 21–40, https://doi.org/10.1016/j.tecto.2004.07.053, 2004.
Monecke, K., McCarthy, F. G., Hubeny, J. B., Ebel, J. E., Brabander, D. J., Kielb, S., Howey, E., Janigian, G., and Pentesco, J.: The 1755 Cape Ann earthquake recorded in lake sediments of eastern New England: An interdisciplinary paleoseismic approach, Seismol. Res. Lett., 89, 1212–1222, 2018.
Morey, A. E.: XRD for provenance, Zenodo [data set], https://doi.org/10.5281/zenodo.13891796, 2024a.
Morey, A. E.: Computed Tomography and XRF data for core SQB5 (Lower Acorn Woman Lake), Zenodo [data set], https://doi.org/10.5281/zenodo.13855178, 2024b.
Morey, A. E.: Bathymetric data for upper and lower Acorn Woman Lakes, Zenodo [data set], https://doi.org/10.5281/zenodo.13821157, 2024c.
Morey, A. E.: Oxcal model code for “A 2700-year record of Cascadia megathrust and crustal/slab earthquakes from Acorn Woman Lakes, Oregon”, Zenodo [code], https://doi.org/10.5281/zenodo.13821040, 2024d.
Morey, A. E. and Goldfinger, C.: A 2700-year record of Cascadia megathrust and crustal/slab earthquakes from Acorn Woman Lakes, Oregon, Nat. Hazards Earth Syst. Sci., 24, 4563–4584, https://doi.org/10.5194/nhess-24-4563-2024, 2024a.
Morey, A. E. and Goldfinger, C.: A 2700-yr record of Cascadia megathrust and crustal/slab earthquakes from Upper and Lower Acorn Woman Lakes, Oregon, Research Square, https://doi.org/10.21203/rs.3.rs-2277419/v3, 2024b.
Morey, A. E., Goldfinger, C., Briles, C. E., Gavin, D. G., Colombaroli, D., and Kusler, J. E.: Are great Cascadia earthquakes recorded in the sedimentary records from small forearc lakes?, Nat. Hazards Earth Syst. Sci., 13, 2441–2463, https://doi.org/10.5194/nhess-13-2441-2013, 2013.
Mulder, T., Syvitski, J. P. M., Migeon, S., Faugeres, J. C., and Savoye, B.: Marine hyperpycnal flows; initiation, behavior and related deposits; a review: Turbidites; models and problems, Mar. Petrol. Geol., 20, 861–882, https://doi.org/10.1016/j.marpetgeo.2003.01.003, 2003.
Oldow, J. S., Aiken, C. L. V., Hare, J. L., Ferguson, J. F., and Hardyman, R. F.: Active displacement transfer and differential block motion within the central Walker Lane, western Great Basin, Geology, 29, 19–22, 2001.
Patton, J. R., Goldfinger, C., Morey, A. E., Ikehara, K., Romsos, C., Stoner, J., Djadjadihardja, Y., Ardhyastuti, S., Gaffar, E. Z., and Vizcaino, A.: A 6600 year earthquake history in the region of the 2004 Sumatra-Andaman subduction zone earthquake, Geosphere, 11, 2067–2129, https://doi.org/10.1130/GES01066.1, 2015.
Praet, N., Van Daele, M., Moernaut, J., Mestdagh, T., Vandorpe, T., Jensen, B. J., Witter, R. C., Haeussler, P. J., and De Batist, M.: Unravelling a 2300 year long sedimentary record of megathrust and intraslab earthquakes in proglacial Skilak Lake, south-central Alaska, Sedimentology, 69, 2151–2180, 2022.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., and Grootes, P. M.: IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2013.
Reimer, P. J., Austin, W. E., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP), Radiocarbon, 62, 725–757, 2020.
Rollinson, H. R.: Using geochemical data: Evaluation, presentation, interpretation, Longman Scientific & Technical, Singapore, https://doi.org/10.4324/9781315845548, 1993.
Safeeq, M., Grant, G. E., Lewis, S. L., and Staab, B.: Predicting landscape sensitivity to present and future floods in the Pacific Northwest, USA, Hydrol. Process., 29, 5337–5353, 2015.
Schillereff, D. N., Chiverrell, R. C., Macdonald, N., and Hooke, J. M.: Flood stratigraphies in lake sediments: A review, Earth-Sci. Rev., 135, 17–37, https://doi.org/10.1016/j.earscirev.2014.03.011, 2014.
Simonneau, A., Chapron, E., Vannière, B., Wirth, S. B., Gilli, A., Di Giovanni, C., Anselmetti, F. S., Desmet, M., and Magny, M.: Mass-movement and flood-induced deposits in Lake Ledro, southern Alps, Italy: Implications for Holocene palaeohydrology and natural hazards, Clim. Past, 9, 825–840, https://doi.org/10.5194/cp-9-825-2013, 2013.
Sleeter, B. M. and Calzia, J. P.: Klamath Mountains ecoregion, in: Status and trends of land change in the western United States—1973 to 2000, No. 1794-A-13, edited by: Sleeter, B. M., Wilson, T. S., and Acevedo, W., US Geological Survey, 141–149, https://doi.org/10.3133/pp1794A, 2012.
Song, S. G., Beroza, G. C., and Segall, P.: A unified source model for the 1906 San Francisco earthquake, Bull. Seismol. Soc. Am., 98, 823–831, 2008.
St-Onge, G., Mulder, T., Piper, D. J. W., Hillaire-Marcel, C., and Stoner, J. S.: Earthquake and flood-induced turbidites in the Saguenay Fjord (Québec): A Holocene paleoseismicity record, Quaternary Sci. Rev., 23, 283–294, https://doi.org/10.1016/j.quascirev.2003.03.001, 2004.
Strasser, M., Monecke, K., Schnellmann, M., and Anselmetti, F. S.: Lake sediments as natural seismographs: A compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation, Sedimentology, 60, 319–341, https://doi.org/10.1111/sed.12003, 2013.
Streig, A. R., Weldon, R. J., Biasi, G., Dawson, T. E., Gavin, D. G., and Guilderson, T. P.: New Insights into Paleoseismic Age Models on the Northern San Andreas Fault: Charcoal Inbuilt Ages and Updated Earthquake Correlations, Bull. Seismol. Soc. Am., 110, 1077–1089, 2020.
Swain, D. L., Langenbrunner, B., Neelin, J. D., and Hall, A.: Increasing precipitation volatility in twenty-first-century California, Nat. Clim. Change, 8, 427–433, 2018.
Thatcher, W., Foulger, G. R., Julian, B. R., Svarc, J., Quilty, E., and Bawden, G. W.: Present-day deformation acro–1718, 1999.
Thomson, J., Croudace, I. W., and Rothwell, R. G.: A geochemical application of the ITRAX scanner to a sediment core containing eastern Mediterranean sapropel units, Geol. Soc. Lond. Spec. Publ., 267, 65–77, https://doi.org/10.1144/GSL.SP.2006.267.01.05, 2006.
Toda, S. and Stein, R. S.: The 2011 M=9.0 Tohoku oki earthquake more than doubled the probability of large shocks beneath Tokyo, Geophys. Res. Lett., 40, 2562–2566, 2018.
Toonen, W. H., Winkels, T. G., Cohen, K. M., Prins, M. A., and Middelkoop, H.: Lower Rhine historical flood magnitudes of the last 450 years reproduced from grain-size measurements of flood deposits using End Member Modelling, Catena, 130, 69–81, 2015.
Toppozada, T. R., Real, C. R., Bezore, S. P., and Parke, D. L.: Preparation of isoseismal maps and summaries of reported effects for pre-1900 California earthquakes, Open-File Report No. 81-262, US Geological Survey, https://doi.org/10.3133/ofr81262, 1981.
Van Daele, M., Meyer, I., Moernaut, J., De Decker, S., Verschuren, D., and De Batist, M.: A revised classification and terminology for stacked and amalgamated turbidites in environments dominated by (hemi) pelagic sedimentation, Sediment. Geol., 357, 72–82, https://doi.org/10.1016/j.sedgeo.2017.06.007, 2017.
Van Daele, M., Araya-Cornejo, C., Pille, T., Vanneste, K., Moernaut, J., Schmidt, S., Kempf, P., Meyer, I., and Cisternas, M.: Distinguishing intraplate from megathrust earthquakes using lacustrine turbidites, Geology, 47, 127–130, 2019.
Vandekerkhove, E., van Daele, M., Praet, N., Cnudde, V., Haeussler, P. J., and De Batist, M.: Flood-triggered versus earthquake-triggered turbidites: A sedimentological study in clastic lake sediments (Eklutna Lake, Alaska), Sedimentology, 67, 364–389, https://doi.org/10.1111/sed.12646, 2020.
van der Weijden, C. H.: Pitfalls of normalization of marine geochemical data using a common divisor, Mar. Geol., 184, 167–187, https://doi.org/10.1016/S0025-3227(01)00297-3, 2002.
von Dassow, W. A. and Kirby, E.: Geomorphic Evidence for Differential Rock Uplift across the Southern Cascadia Forearc, GSA Annual Meeting 2017, Seattle, Washington, Paper No. 247-12, Abstr. Programs 49, Geol. Soc. America, https://doi.org/10.1130/abs/2017AM-307033, 2017.
Waldien, T. S., Meigs, A. J., and Madin, I. P.: Active dextral strike-slip faulting records termination of the Walker Lane belt at the southern Cascade arc in the Klamath graben, Oregon, USA, Geosphere, 15, 882–900, 2019.
Wall, S. A., Roering, J. J., and Rengers, F. K.: Runoff-ini–1661, 2020.
Wells, R. E., Blakely, R. J., Wech, A. G., McCrory, P. A., and Michael, A.: Cascadia subduction tremor muted by crustal faults, Geology, 45, 515–518, https://doi.org/10.1130/G38835.1, 2017.
Weltje, G. J., Bloemsma, M. R., Tjallingii, R., Heslop, D., Röhl, U., and Croudace, I. W.: Prediction of geochemical composition from XRF core scanner data: a new multivariate approach including automatic selection of calibration samples and quantification of uncertainties, in: Micro-XRF studies of sediment cores, edited by: Croudace, I. W. and Rothwell, R. G., Springer, 507–534, https://doi.org/10.1007/978-94-017-9849-5_21, 2015.
Wilhelm, B., Arnaud, F., Sabatier, P., Crouzet, C., Brisset, E., Chaumillon, E., Disnar, J. R., Guiter, F., Malet, E., Reyss, J. L., Tachikawa, K., Bard, E., and Delannoy, J. J.: 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms, Quatern. Res., 78, 1–12, 2012.
Wilhelm, B., Arnaud, F., Sabatier, P., Magand, O., Chapron, E., Courp, T., Tachikawa, K., Fanget, B., Malet, E., Pignol, C., Bard, E., and Delannoy, J. J.: Palaeoflood activity and climate change over the last 1400 years recorded by lake sediments in the north-west European Alps, J. Quaternary Sci., 28, 189–199, 2013.
Wilhelm, B., Nomade, J., Crouzet, C., Litty, C., Sabatier, P., Belle, S., Rolland, Y., Revel, M., Courboulex, F., Arnaud, F., and Anselmetti, F. S.: Quantified sensitivity of small lake sediments to record historic earthquakes: Implications for paleoseismology, J. Geophys. Res.-Earth, 121, 2–16, 2016.
Wilhelm, B., Canovas, J. A. B., Aznar, J. P. C., Kämpf, L., Swierczynski, T., Stoffel, M., Støren, E., and Toonen, W.: Recent advances in paleoflood hydrology: From new archives to data compilation and analysis, Water Secur., 3, 1–8, 2018.
Wils, K., Deprez, M., Kissel, C., Vervoort, M., Van Daele, M., Daryono, M. R., Cnudde, V., Natawidjaja, D. H., and De Batist, M.: Earthquake doublet revealed by multiple pulses in lacustrine seismo-turbidites, Geology, 49, 1301–1306, 2021.
Wirth, S. B., Girardclos, S., Rellstab, C., and Anselmetti, F. S.: The sedimentary response to a pioneer geo-engineering project: Tracking the Kander River deviation in the sediments of Lake Thun (Switzerland), Sedimentology, 58, 1737–1761, 2011.
Wirth, S. B.: The Holocene flood history of the Central Alps reconstructed from lacustrine sediments: Frequency, intensity and controlling climate factors, Doctoral dissertation, ETH Zurich, https://doi.org/10.3929/ethz-a-009775044, 2013.
Wong, I. G.: Low potential for large intraslab earthquakes in the central Cascadia subduction zone, Bull. Seismol. Soc. Am., 95, 1880–1902, https://doi.org/10.1785/0120040132, 2005.
Wong, I. G. and Bott, J. D.: A look back at Oregon's earthquake history, 1841–1994, Oregon, Geology, 57, 125–139, 1995.
Wright Jr., H. E.: A square-rod piston sampler for lake sediments, J. Sediment. Res., 37, 975, https://doi.org/10.1306/74D71807-2B21-11D7-8648000102C1865D, 1967.
Yeats, R. S.: Living with earthquakes in the Pacific Northwest, im: 2nd Edn., Oregon State University Press, ISBN 0870710249, 2004.
Zolitschka, B.: A 14,000 year sediment yield record from western Germany based on annually laminated lake sediments, Geomorphology, 22, 1–17, https://doi.org/10.1016/S0169-555X(97)00051-2, 1998.
Short summary
Disturbance events from historical sediments from a small lake in Oregon were evaluated to determine if Cascadia megathrust earthquakes are uniquely identifiable. Geochemical provenance data identify two likely Cascadia earthquakes, one from 1700 CE and the other from 1873 CE. A crustal earthquake deposit and flood deposits were also uniquely identified, suggesting that small Cascadia lakes are good recorders of megathrust earthquakes and other disturbances.
Disturbance events from historical sediments from a small lake in Oregon were evaluated to...
Altmetrics
Final-revised paper
Preprint