Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-751-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-751-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing riverbank erosion in Bangladesh using time series of Sentinel-1 radar imagery in the Google Earth Engine
Jan Freihardt
CORRESPONDING AUTHOR
Center for Comparative and International Studies (CIS), ETH Zurich,
8092 Zurich, Switzerland
Othmar Frey
Institute of Environmental Engineering, ETH Zurich, 8093 Zurich,
Switzerland
Gamma Remote Sensing, 3073 Gümligen, Switzerland
Related authors
No articles found.
Tazio Strozzi, Nina Jones, Federico Agliardi, Alessandro De Pedrini, Othmar Frey, Philipp Bernhard, Rafael Caduff, Christian Ambrosi, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2025-5347, https://doi.org/10.5194/egusphere-2025-5347, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The latest satellite technology with longer wavelength radar improves our ability to detect and monitor large alpine rock slope instabilities. This approach works better than current satellite systems in forested areas and on fast-moving slopes, giving experts more reliable data to understand these major hazards. Our results from three locations in Italy and Switzerland also provide important recommendations for the preparation of future satellite radar missions.
Marcel Stefko, Silvan Leinss, Othmar Frey, and Irena Hajnsek
The Cryosphere, 16, 2859–2879, https://doi.org/10.5194/tc-16-2859-2022, https://doi.org/10.5194/tc-16-2859-2022, 2022
Short summary
Short summary
The coherent backscatter opposition effect can enhance the intensity of radar backscatter from dry snow by up to a factor of 2. Despite widespread use of radar backscatter data by snow scientists, this effect has received notably little attention. For the first time, we characterize this effect for the Earth's snow cover with bistatic radar experiments from ground and from space. We are also able to retrieve scattering and absorbing lengths of snow at Ku- and X-band frequencies.
Cited articles
Al Fugura, A., Billa, L., and Pradhan, B.: Semi-automated procedures for
shoreline extraction using single RADARSAT-1 SAR image, Estuar. Coast. Shelf S., 95, 395–400, https://doi.org/10.1016/j.ecss.2011.10.009, 2011.
Alam, G. M. M.: Livelihood Cycle and Vulnerability of Rural Households to
Climate Change and Hazards in Bangladesh, Environ. Manage., 59, 777–791, https://doi.org/10.1007/s00267-017-0826-3, 2017.
Alam, G. M. M., Alam, K., Mushtaq, S., Sarker, M. N. I., and Hossain, M.:
Hazards, food insecurity and human displacement in rural riverine
Bangladesh: Implications for policy, Int. J. Disast. Risk Re., 43, 101364, https://doi.org/10.1016/j.ijdrr.2019.101364, 2019.
Cable, J., Kovacs, J., Shang, J., and Jiao, X.: Multi-Temporal Polarimetric
RADARSAT-2 for Land Cover Monitoring in Northeastern Ontario, Canada, Remote Sensing, 6, 2372–2392, https://doi.org/10.3390/rs6032372, 2014.
Canty, M. J. and Nielsen, A. A.: Spatio-temporal analysis of change with
sentinel imagery on the Google Earth Engine, in: ESA Conference on Big Data
from Space (BiDS), Toulouse, France, 28–30 November 2017, 126–129, https://doi.org/10.2760/383579, 2017.
Carrasco, L., O'Neil, A., Morton, R., and Rowland, C.: Evaluating
Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8
for Land Cover Mapping with Google Earth Engine, Remote Sensing, 11, 288,
https://doi.org/10.3390/rs11030288, 2019.
CEGIS: Update, improve and extend the erosion forecasting and warning tools
in the three main rivers, Center for Environment and Geographic Information
Services, Dhaka, Bangladesh, 2018.
Celik, N.: Change Detection of Urban Areas in Ankara through Google Earth
Engine, in: 2018 41st International Conference on Telecommunications and
Signal Processing (TSP), Athens, Greece, 4–6 July 2018, IEEE, 1–5, https://doi.org/10.1109/TSP.2018.8441377, 2018.
Chu, Z. X., Sun, X. G., Zhai, S. K., and Xu, K. H.: Changing pattern of
accretion/erosion of the modern Yellow River (Huanghe) subaerial delta,
China: Based on remote sensing images, Mar. Geol., 227, 13–30,
https://doi.org/10.1016/j.margeo.2005.11.013, 2006.
Chung, H.-W., Liu, C.-C., Cheng, I.-F., Lee, Y.-R., and Shieh, M.-C.: Rapid
Response to a Typhoon-Induced Flood with an SAR-Derived Map of Inundated
Areas: Case Study and Validation, Remote Sensing, 7, 11954–11973,
https://doi.org/10.3390/rs70911954, 2015.
DeFries, R. S. and Townshend, J. R. G.: NDVI-derived land cover classifications at a global scale, Int. J. Remote Sensing, 15, 3567–3586, https://doi.org/10.1080/01431169408954345, 1994.
Dixon, S. J., Sambrook Smith, G. H., Best, J. L., Nicholas, A. P., Bull, J.
M., Vardy, M. E., Sarker, M. H., and Goodbred, S.: The planform mobility of
river channel confluences: Insights from analysis of remotely sensed
imagery, Earth-Sci. Rev., 176, 1–18, https://doi.org/10.1016/j.earscirev.2017.09.009, 2018.
Donovan, M., Belmont, P., Notebaert, B., Coombs, T., Larson, P., and
Souffront, M.: Accounting for uncertainty in remotely-sensed measurements of
river planform change, Earth-Sci. Rev., 193, 220–236,
https://doi.org/10.1016/j.earscirev.2019.04.009, 2019.
Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., and Li, X.: Water Bodies'
Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water
Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band,
Remote Sensing, 8, 354, https://doi.org/10.3390/rs8040354, 2016.
El-Behaedi, R. and Ghoneim, E.: Flood risk assessment of the Abu Simbel
temple complex (Egypt) based on high-resolution spaceborne stereo imagery,
Journal of Archaeological Science: Reports, 20, 458–467,
https://doi.org/10.1016/j.jasrep.2018.05.019, 2018.
ESA: Sentinel-1 SAR. Acquisition modes, European Space Agency,
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes (last access: 29 January 2023),
2020a.
ESA: Sentinel-1. Mission summary, European Space Agency,
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/overview/mission-summary (last access: 29 January 2023),
2020b.
ESA: Sentinel-2, European Space Agency,
https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (last access: 29 January 2023), 2020c.
ESA: Sentinel-1 and Sentinel-2 data, ESA [data set], https://dataspace.copernicus.eu/, last access: 7 February 2023.
Ferdous, M. R., Wesselink, A., Brandimarte, L., Slager, K., Zwarteveen, M.,
and Di Baldassarre, G.: The Costs of Living with Floods in the Jamuna
Floodplain in Bangladesh, Water, 11, 1238,
https://doi.org/10.3390/w11061238, 2019.
Ferretti, A., Prati, C., and Rocca, F.: Permanent scatterers in SAR
interferometry, in: IEEE 1999 International Geoscience and Remote Sensing
Symposium. IGARSS'99 (Cat. No.99CH36293), Hamburg, Germany, 28 June–2 July
1999, IEEE, 1528–1530, https://doi.org/10.1109/IGARSS.1999.772008, 1999.
Ferretti, A., Prati, C., and Rocca, F.: Permanent scatterers in SAR
interferometry, IEEE T. Geosci. Remote, 39, 8–20, https://doi.org/10.1109/36.898661, 2001.
Freihardt, J.: Tutorial to explore riverbank erosion along Jamuna River, Bangladesh, with the Google Earth Engine, Zenodo [video], https://doi.org/10.5281/zenodo.7249809, 2020.
Freihardt, J. and Frey, O.: Code to develop algorithm for riverbank erosion assessment in the Google Earth Engine, Zenodo [code], https://doi.org/10.5281/zenodo.7253121, 2022a.
Freihardt, J. and Frey, O.: Code of tool to assess riverbank erosion along Jamuna River in the Google Earth Engine, Zenodo [code], https://doi.org/10.5281/zenodo.7252970, 2022b.
Google Developers: Sentinel-1 Algorithms,
https://developers.google.com/earth-engine/sentinel1 (last access: 29 January 2023), 2020.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Hassan, M. A., Ratna, S. J., Hassan, M., and Tamanna, S.: Remote Sensing and
GIS for the Spatio-Temporal Change Analysis of the East and the West River
Bank Erosion and Accretion of Jamuna River (1995-2015), Bangladesh, Journal of Geoscience and Environment Protection, 5, 79–92, https://doi.org/10.4236/gep.2017.59006, 2017.
Hossain, M. A., Gan, T. Y., and Baki, A. B. M.: Assessing morphological
changes of the Ganges River using satellite images, Quatern. Int., 304, 142–155, https://doi.org/10.1016/j.quaint.2013.03.028, 2013.
Huang, C., Zhang, C., He, Y., Liu, Q., Li, H., Su, F., Liu, G., and
Bridhikitti, A.: Land Cover Mapping in Cloud-Prone Tropical Areas Using
Sentinel-2 Data: Integrating Spectral Features with Ndvi Temporal Dynamics,
Remote Sensing, 12, 1163, https://doi.org/10.3390/rs12071163, 2020.
Huang, Q., Di Long, Du, M., Zeng, C., Qiao, G., Li, X., Hou, A., and Hong,
Y.: Discharge estimation in high-mountain regions with improved methods
using multisource remote sensing: A case study of the Upper Brahmaputra
River, Remote Sens. Environ., 219, 115–134, https://doi.org/10.1016/j.rse.2018.10.008, 2018.
Imhoff, M. L., Vermillion, C., Story, M. H., Choudhury, A. M., Gafoor, A.,
and Polcyn, F.: Monsoon flood boundary delineation and damage assessment
using space borne imaging radar and Landsat data, Photogramm. Eng. Rem. S., 53, 405–413, 1987.
Immitzer, M., Vuolo, F., and Atzberger, C.: First Experience with Sentinel-2
Data for Crop and Tree Species Classifications in Central Europe, Remote
Sensing, 8, 166, https://doi.org/10.3390/rs8030166, 2016.
Islam, M. S. and Matin, M. A.: Prediction of fluvial erosion rate in Jamuna
River, Bangladesh, International Journal of River Basin Management, online first, 1–13, https://doi.org/10.1080/15715124.2022.2068561, 2022.
Islam, M. T.: Quantification of eroded and deposited riverbanks and
monitoring river's channel using RS and GIS, in: 2009 17th International
Conference on Geoinformatics, Fairfax, VA, 12–14 August 2009, IEEE, 1–5, https://doi.org/10.1109/GEOINFORMATICS.2009.5293151, 2009.
Joyce, K. E., Dellow, G. D., and Glassey, P. J.: Using remote sensing and
spatial analysis to understand landslide distribution and dynamics in New
Zealand, in: 2009 IEEE International Geoscience and Remote Sensing
Symposium, Cape Town, South Africa, 12–17 July 2009, IEEE, III-224-III-227, https://doi.org/10.1109/IGARSS.2009.5417850, 2009.
Kampes, B. M. and Adam, N.: Deformation parameter inversion using permanent
scatterers in interferogram time series, European Conference on Synthetic
Aperture Radar, Ulm, Germany, 25–27 May 2004, EUSAR 2004, 341–345,
ISBN 9783800728282, 2004.
Khan, N. S., Roy, S. K., Mazumder, M. T. R., Talukdar, S., and Mallick, J.:
Assessing the long-term planform dynamics of Ganges–Jamuna confluence with
the aid of remote sensing and GIS, Nat, Hazards, 114, 883–906,
https://doi.org/10.1007/s11069-022-05416-6, 2022.
Kummu, M., Lu, X. X., Rasphone, A., Sarkkula, J., and Koponen, J.: Riverbank
changes along the Mekong River: Remote sensing detection in the Vientiane–Nong Khai area, Quatern. Int., 186, 100–112,
https://doi.org/10.1016/j.quaint.2007.10.015, 2008.
Langendoen, E. J. and Simon, A.: Modeling the Evolution of Incised Streams.
II: Streambank Erosion, J. Hydraul. Eng., 134, 905–915,
https://doi.org/10.1061/(ASCE)0733-9429(2008)134:7(905), 2008.
Lee, J.-S.: Refined filtering of image noise using local statistics,
Computer Graphics and Image Processing, 15, 380–389,
https://doi.org/10.1016/S0146-664X(81)80018-4, 1981.
Lee, J.-S., Wen, J.-H., Ainsworth, T. L., Chen, K.-S., and Chen, A. J.:
Improved Sigma Filter for Speckle Filtering of SAR Imagery, IEEE T.
Geosci. Remote, 47, 202–213, https://doi.org/10.1109/TGRS.2008.2002881, 2009.
Liu, C.-C., Shieh, M.-C., Ke, M.-S., and Wang, K.-H.: Flood Prevention and
Emergency Response System Powered by Google Earth Engine, Remote Sensing,
10, 1283, https://doi.org/10.3390/rs10081283, 2018.
Luppi, L., Rinaldi, M., Teruggi, L. B., Darby, S. E., and Nardi, L.:
Monitoring and numerical modelling of riverbank erosion processes: a case
study along the Cecina River (central Italy), Earth Surf. Proc. Land., 34, 530–546, https://doi.org/10.1002/esp.1754, 2009.
Mandal, D., Kumar, V., Bhattacharya, A., Rao, Y. S., Siqueira, P., and Bera,
S.: Sen4Rice: A Processing Chain for Differentiating Early and Late
Transplanted Rice Using Time-Series Sentinel-1 SAR Data With Google Earth
Engine, IEEE Geosci Remote S., 15, 1947–1951, https://doi.org/10.1109/LGRS.2018.2865816, 2018.
Martinez, J.-M. and Le Toan, T.: Mapping of flood dynamics and spatial
distribution of vegetation in the Amazon floodplain using multitemporal SAR
data, Remote Sens. Environ., 108, 209–223, https://doi.org/10.1016/j.rse.2006.11.012, 2007.
Martinis, S., Twele, A., and Voigt, S.: Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data, Nat. Hazards Earth Syst. Sci., 9, 303–314, https://doi.org/10.5194/nhess-9-303-2009, 2009.
Martinis, S., Kersten, J., and Twele, A.: A fully automated TerraSAR-X based
flood service, ISPRS J. Photogramm., 104, 203–212, https://doi.org/10.1016/j.isprsjprs.2014.07.014, 2015.
Miettinen, J., Shi, C., and Liew, S. C.: Towards automated 10–30 m resolution land cover mapping in insular South-East Asia, Geocarto Int., 34, 443–457, https://doi.org/10.1080/10106049.2017.1408700, 2019.
Misachi, J.: Where Is The Largest Delta In The World?, WorldAtlas,
https://www.worldatlas.com/articles/which-is-the-largest-delta-in-the-world.html (last access: 24 October 2022), 2017.
Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., and
Papathanassiou, K. P.: A tutorial on synthetic aperture radar, IEEE Geosci.
Remote Sens. Mag., 1, 6–43, https://doi.org/10.1109/MGRS.2013.2248301, 2013.
Mount, N. J., Tate, N. J., Sarker, M. H., and Thorne, C. R.: Evolutionary,
multi-scale analysis of river bank line retreat using continuous wavelet
transforms: Jamuna River, Bangladesh, Geomorphology, 183, 82–95,
https://doi.org/10.1016/j.geomorph.2012.07.017, 2013.
Muro, J., Strauch, A., Fitoka, E., Tompoulidou, M., and Thonfeld, F.:
Mapping Wetland Dynamics With SAR-Based Change Detection in the Cloud, IEEE
Geosci. Remote S., 16, 1536–1539, https://doi.org/10.1109/LGRS.2019.2903596, 2019.
Oberhagemann, K., Haque, A. M. A., and Thompson, A.: A Century of Riverbank
Protection and River Training in Bangladesh, Water, 12, 3018,
https://doi.org/10.3390/w12113018, 2020.
Pahlowan, E. U. and Hossain, A. T. M. S.: Jamuna River Erosional Hazards, Accretion & Annual Water Discharge – A Remote Sensing & Gis Approach, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-7/W3, 831–835, https://doi.org/10.5194/isprsarchives-XL-7-W3-831-2015, 2015.
Poortinga, A., Tenneson, K., Shapiro, A., Nquyen, Q., San Aung, K.,
Chishtie, F., and Saah, D.: Mapping Plantations in Myanmar by Fusing
Landsat-8, Sentinel-2 and Sentinel-1 Data along with Systematic Error
Quantification, Remote Sensing, 11, 831, https://doi.org/10.3390/rs11070831,
2019.
Rishikeshan, C. A. and Ramesh, H.: An automated mathematical morphology
driven algorithm for water body extraction from remotely sensed images,
ISPRS J. Photogramm., 146, 11–21, https://doi.org/10.1016/j.isprsjprs.2018.08.014, 2018.
Santoro, M. and Wegmuller, U.: Multi-temporal Synthetic Aperture Radar
Metrics Applied to Map Open Water Bodies, IEEE J. Sel. Top. Appl., 7, 3225–3238, https://doi.org/10.1109/JSTARS.2013.2289301, 2014.
Sarker, M. H., Thorne, C. R., Aktar, M. N., and Ferdous, M. R.:
Morpho-dynamics of the Brahmaputra–Jamuna River, Bangladesh, Geomorphology,
215, 45–59, https://doi.org/10.1016/j.geomorph.2013.07.025, 2014.
Sghaier, M. O., Foucher, S., and Lepage, R.: River Extraction From
High-Resolution SAR Images Combining a Structural Feature Set and Mathematical Morphology, IEEE J. Sel. Top. Appl., 10, 1025–1038, https://doi.org/10.1109/JSTARS.2016.2609804, 2017.
Shimizu, K., Ota, T., and Mizoue, N.: Detecting Forest Changes Using Dense
Landsat 8 and Sentinel-1 Time Series Data in Tropical Seasonal Forests,
Remote Sensing, 11, 1899, https://doi.org/10.3390/rs11161899, 2019.
Singha, M., Dong, J., Zhang, G., and Xiao, X.: High resolution paddy rice
maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data,
Scientific Data, 6, 26, https://doi.org/10.1038/s41597-019-0036-3, 2019.
Townsend, P. A.: Mapping seasonal flooding in forested wetlands using
multi-temporal Radarsat SAR, Photogramm. Eng. Rem. S., 67, 857–864, 2001.
Trianni, G., Angiuli, E., Lisini, G., and Gamba, P.: Human settlements from
Landsat data using Google Earth Engine, in: 2014 IEEE Geoscience and Remote
Sensing Symposium, Quebec City, QC, 13–18 July 2014, IEEE, 1473–1476, https://doi.org/10.1109/IGARSS.2014.6946715, 2014.
Twele, A., Cao, W., Plank, S., and Martinis, S.: Sentinel-1-based flood
mapping: a fully automated processing chain, Int. J. Remote Sens., 37, 2990–3004, https://doi.org/10.1080/01431161.2016.1192304, 2016.
Ulaby, F. T. and Dobson, M. C.: Handbook of radar scattering statistics for
terrain, The Artech House remote sensing library, Artech House, Norwood,
Mass., 357 pp., ISBN: 9781630817022, 1989.
van Leijen, F. J.: Persistent scatterer interferometry based on geodetic
estimation theory, TU Delft, 194 pp., https://doi.org/10.4233/uuid:5dba48d7-ee26-4449-b674-caa8df93e71e, 2014.
Veci, L., Lu, J., Prats-Iraola, P., Scheiber, R., Collard, F., Fomferra, N.,
and Engdahl, M.: The sentinel-1 toolbox, in: Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, Canada, 13–18 July 2014, IEEE, 1–3, ISBN: 978-1-4799-5775-0, 2014.
Williams, R. D., Measures, R., Hicks, D. M., and Brasington, J.: Assessment
of a numerical model to reproduce event-scale erosion and deposition
distributions in a braided river, Water Resour. Res., 52, 6621–6642,
https://doi.org/10.1002/2015WR018491, 2016.
Zhang, X., Wu, B., Ponce-Campos, G., Zhang, M., Chang, S., and Tian, F.:
Mapping up-to-Date Paddy Rice Extent at 10 M Resolution in China through the
Integration of Optical and Synthetic Aperture Radar Images, Remote Sensing,
10, 1200, https://doi.org/10.3390/rs10081200, 2018.
Short summary
In Bangladesh, riverbank erosion occurs every year during the monsoon and affects thousands of households. Information on locations and extent of past erosion can help anticipate where erosion might occur in the upcoming monsoon season and to take preventive measures. In our study, we show how time series of radar satellite imagery can be used to retrieve information on past erosion events shortly after the monsoon season using a novel interactive online tool based on the Google Earth Engine.
In Bangladesh, riverbank erosion occurs every year during the monsoon and affects thousands of...
Altmetrics
Final-revised paper
Preprint