
Nat. Hazards Earth Syst. Sci., 23, 751–770, 2023
https://doi.org/10.5194/nhess-23-751-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Assessing riverbank erosion in Bangladesh using time series of
Sentinel-1 radar imagery in the Google Earth Engine
Jan Freihardt1 and Othmar Frey2,3

1Center for Comparative and International Studies (CIS), ETH Zurich, 8092 Zurich, Switzerland
2Institute of Environmental Engineering, ETH Zurich, 8093 Zurich, Switzerland
3Gamma Remote Sensing, 3073 Gümligen, Switzerland

Correspondence: Jan Freihardt (jan.freihardt@ir.gess.ethz.ch)

Received: 9 May 2022 – Discussion started: 7 June 2022
Revised: 28 December 2022 – Accepted: 5 January 2023 – Published: 21 February 2023

Abstract. Riverbank erosion occurs along many of the
Earth’s river systems, affecting riverine populations by de-
stroying agricultural land and housing. In this study, we de-
tected past events of riverbank erosion along the Jamuna
River in Bangladesh using time series of Sentinel-1 satel-
lite radar imagery, ground-range-detected (GRD) data with
a 12 d revisit cycle, available in the Google Earth Engine
(GEE). Eroded land is detected by performing a land cover
classification and by detecting land cover changes from veg-
etated areas before the monsoon to sand or water after the
monsoon. Further, settlements are detected as persistent scat-
terers and classified as eroded if they are located on eroded
land. We found that with Sentinel-1 data, erosion locations
can be determined already 1 month after the end of the mon-
soon and hence potentially earlier than using optical satel-
lite images which depend on cloud-free daylight conditions.
Further, we developed an interactive GEE-based online tool
allowing the user to explore where riverbank erosion has de-
stroyed land and settlements along the Jamuna in five mon-
soon seasons (2015–2019). The source code of our imple-
mentation is publicly available, providing the opportunity to
reproduce the results, to adapt the algorithm and to transfer
our results to assess riverbank erosion in other geographical
settings.

1 Introduction

In Bangladesh, located in one of the largest river deltas of
the world (Misachi, 2017), riverbank erosion is among the
most drastic environmental processes in terms of yearly dam-

age. Around 20 out of 64 districts in Bangladesh are prone to
riverbank erosion, which consumes around 8700 ha of land
each year and thereby affects around 200 000 people by de-
stroying their house and/or their agricultural land (Alam,
2017). Large-scale erosion – whereby several hundred square
meters of land can collapse into the river within short time –
mainly happens during the rainy monsoon season typically
from June to October. Such erosion events occur primarily
in a limited number of hotspot areas along the three major
streams of Bangladesh: Jamuna, Ganges and Meghna.

In this study, we focus on the Jamuna River since, first, it is
one of the most dynamic river systems in the world, eroding
several square kilometers of land each year (Oberhagemann
et al., 2020; Hassan et al., 2017; Khan et al., 2022; Pahlowan
and Hossain, 2015). The Jamuna is among the largest braided
river systems in the world, forming various channels at a to-
tal width of around 12 km (Sarker et al., 2014). Since the
1970s, its bank line has shifted by around 20 km, continu-
ously eroding the riverbank and creating new land, mainly in
the form of islands (Dixon et al., 2018; Mount et al., 2013).
Second, from a societal point of view, this large-scale erosion
has significant impacts on the livelihoods of the populations
living along the river, leading to economic hardship and hu-
man displacement (Alam et al., 2019; Alam, 2017; Ferdous
et al., 2019). Hence, advancing the available tools to assess
erosion along the Jamuna appears of utmost importance.

Each year, the Bangladesh Water Development Board
(BWDB) commissions an assessment of last year’s erosion
based on optical satellite imagery (e.g., CEGIS, 2018). This
report is usually available only a few weeks before the be-
ginning of the monsoon season, which is in May. This is due
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to the dependence of the analysis on cloud-free optical im-
ages, which are available in November/December for certain
years but only in January for other years. There is, thus, a
need to establish an erosion assessment that is independent
of cloud conditions and potentially available earlier, which
would give communities along the rivers more time to pre-
pare for the upcoming monsoon season.

In general, two distinct approaches exist to assess river-
bank erosion quantitatively. First, the river system can be
simulated using morphological numerical models. The ca-
pacities of such models increased significantly with the
development of more powerful computers in the 2000s
(Williams et al., 2016; Langendoen and Simon, 2008; Luppi
et al., 2009). Computing power is necessary since fluvial sys-
tems are highly complex due to the large number of pro-
cesses, scales and dimensions involved. Applying a numeri-
cal model to a river system as complicated as a braided river,
however, would be extremely difficult, if not impossible. In-
deed, one study that modeled erosion along the Jamuna River
numerically did so for only 8 out of the 250 km total length
(Islam and Matin, 2022).

The second approach to assess erosion at the large spatial
scale of entire river systems is remote sensing, using either
passive or active systems. Passive optical systems are widely
used and serve a variety of purposes. One important applica-
tion is the classification of land cover (Trianni et al., 2014;
Du et al., 2016; Rishikeshan and Ramesh, 2018; Donovan
et al., 2019; Immitzer et al., 2016). A second field of ap-
plication is the monitoring of earth system processes, such
as quantifying and mapping riverbank erosion and accretion
along the Ganges (Hossain et al., 2013), the Yellow River
(Chu et al., 2006), the Mekong (Kummu et al., 2008), and
the Jamuna and Padma rivers in Bangladesh (Islam, 2009).
Lastly, they can also help to generate hazard and risk maps,
for instance, for landslide hazard (Joyce et al., 2009) or flood
risk (El-Behaedi and Ghoneim, 2018).

Passive optical systems rely on receiving reflected sun-
light from the Earth’s surface, which leads to a significant
drawback: they cannot image the Earth’s surface at night
or under cloudy conditions. While the former is problem-
atic mainly for rapidly occurring events such as floods or
storms, the latter can affect any application, especially in
cloud-prone regions. For land cover classification or moni-
toring of slowly occurring phenomena such as glacier move-
ment or land cover change, cloud coverage of individual im-
ages can usually be compensated for by information from
cloud-free images obtained at earlier or later times. Yet, this
strategy does not work if cloud coverage is continuous for
a prolonged period. This is the case in Bangladesh, where
cloud coverage is high during the monsoon season lasting
for months.

Active microwave sensors such as lidar and radar emit a
signal themselves and measure the radiation that is reflected
from the target. Today, the most important imaging radar
technology used in remote sensing applications is synthetic

aperture radar (SAR), which provides high-resolution two-
dimensional images independent from daylight, cloud cover-
age and weather conditions (Moreira et al., 2013).

Similar to optical systems, radar systems are employed
in a wide range of applications. Examples include the ex-
traction of shorelines (Al Fugura et al., 2011) and rivers
(Sghaier et al., 2017), mapping of open water bodies (San-
toro and Wegmuller, 2014), or land cover classification (Ca-
ble et al., 2014). On the topic of natural disasters, extensive
research has investigated the use of radar for mapping the
extent and depth of floods, for instance in the Amazon (Mar-
tinez and Le Toan, 2007), the USA (Townsend, 2001), and
Taiwan (Chung et al., 2015), as well as for monsoon flooding
in Bangladesh (Imhoff et al., 1987). Further, several studies
used SAR data for fully automated flood detection to provide
near-real-time disaster information (Martinis et al., 2009,
2015; Twele et al., 2016). Thus, time series of spaceborne
SAR images are potentially suitable to detect riverbank ero-
sion and are, with Sentinel-1, available with short temporal
sampling (6 or 12 d repeat pass) on a continental to global
scale.

In this paper, we present a feasibility study on riverbank
erosion assessment based on time series of Sentinel-1 SAR
imagery. Our study area is the Jamuna River in Bangladesh,
for which a large-scale erosion assessment based on radar –
and hence independent of cloud or weather conditions – has
not been done yet. Given the severe impacts that riverbank
erosion has each year on populations residing along the Ja-
muna, advancing the available tools to assess erosion appears
important not only from an academic, but also from a practi-
cal perspective. We employ a radar-backscatter-based detec-
tion of specific locations affected by riverbank erosion, and
we quantify their spatial extent for both eroded farmland and
eroded settlements. The quality of the classification is eval-
uated with cloud-free Sentinel-2 optical data. We also assess
(1) the time to detection after the monsoon and (2) the spatial
resolution of the erosion detection, both of which are cru-
cial parameters for potential emergency response and dam-
age assessments. Given that the algorithm developed in this
study is publicly available, it can potentially be transferred
and adapted to other geographical settings at comparatively
low effort and cost.

2 Methods and data

2.1 The Google Earth Engine

A free and thus very attractive platform for analyzing re-
mote sensing data is the Google Earth Engine (GEE). The
GEE is a cloud-based platform providing access to a wide
range of publicly available remote sensing data in connection
with Google’s massive cloud computing resources (Gorelick
et al., 2017). The platform can be accessed free of charge
by scientists, practitioners and other non-commercial users.
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Since its introduction in 2017, the GEE has been used for
many remote-sensing-based (research) projects including ap-
plications close to the topical focus (e.g., mapping floods; Liu
et al., 2018, or wetland dynamics; Muro et al., 2019) or ge-
ographic focus of this work (e.g., monitoring rice growth in
West Bengal; Mandal et al., 2018, or Bangladesh; Singha et
al., 2019).

Using the GEE is appealing since it gives simple access to
a vast amount of remote sensing data, which do not have to be
downloaded locally but are processed in the cloud. Further,
the GEE is relatively easy to use and does not require spe-
cial software on the user side. Therefore, it can be applied in
operational settings with limited resources, be it in terms of
finances or trained personnel. GEE code can be shared con-
veniently via one link. The algorithm developed in this study
can thus be easily accessed and adapted by research insti-
tutes or government authorities in Bangladesh. For all these
advantages, this study used the GEE for all analyses.

Due to its computing architecture, the GEE can process
only the amplitude but not the phase information of radar
images. The amplitude value corresponds to the reflectivity
of an area, such that targets with high backscatter appear as
bright spots in the radar image and flat smooth surfaces as
dark (Moreira et al., 2013). As such, amplitude values can,
for instance, be used to classify land cover. Due to this limi-
tation of the GEE, the method presented subsequently works
with backscatter coefficients only.

2.2 Data and pre-processing

This study used publicly available satellite imagery from the
European Space Agency’s (ESA) Sentinel mission (for more
details see ESA, 2020b), launched in 2014, which collects
C-band SAR images of the entire Earth’s surface with a 6 to
12 d revisit cycle. Optical images were obtained from ESA’s
Sentinel-2 mission launched in 2015 with a 2 to 3 d revisit
cycle at mid-latitudes (ESA, 2020c).

The Copernicus Sentinel-1 SAR data (2014–2021) used
in this study were accessed through the GEE. The level-1
ground-range-detected (GRD) scenes available in the GEE
have already been pre-processed by the GEE following the
steps from ESA’s Sentinel-1 toolbox (Veci et al., 2014;
Google Developers, 2020). Since Sentinel-1 collects SAR
data at a variety of modes, polarizations and resolutions, the
pre-processed images provided by the GEE were filtered be-
fore the analysis to create a homogenous subset of data.

– Acquisition mode. Interferometric wide swath (IW)
mode was selected since it is the primary conflict-free
mode providing the 6 to 12 d revisit cycle over land
(ESA, 2020a).

– Resolution. The IW images were filtered to keep only
high-resolution images (pixel spacing of 10× 10 m).

– Incidence angle. To reduce backscatter variation, only
images with a look angle between 30 and 45◦ were kept.

– Look direction (ascending/descending). The influence
of both look directions was tested for the detection of
settlements. For the land cover classification, the as-
cending orbit was chosen. The relative orbit number of
all ascending and descending images was 114 and 150,
respectively, ensuring identical imaging geometry for
all images of a certain look direction. Per look direc-
tion, the revisit cycle was 12 d.

– Polarization. For the IW mode, VV and VH polariza-
tions are available. Since VH is available only from
2017 on, all analyses were performed on VV images.

Figure 1 gives an overview of the steps taken to develop
the erosion detection algorithm. Methodological details are
explained in the following sections. The full code used to
develop the classifiers for land cover and settlements is ref-
erenced in the section “Code availability”.

2.3 Land cover classification

To get a visual impression of the backscattering characteris-
tics of different land cover types, the average backscatter co-
efficient of five classes (settlement, trees, fields, sand and wa-
ter) was plotted for the period from January 2018 to February
2020. For each of the four land cover classes, water, sand,
trees and agricultural fields, 10 patches of size 100× 100 m
were chosen based on visual inspection of the optical satellite
images provided by the GEE. For each class, the 10 patches
were distributed along the length of the Jamuna River. The
locations of the patches are shown in Fig. A1.

The speckle inherent in SAR images can be reduced by
temporal averaging (maintaining spatial resolution but re-
quiring several images) or by spatial filtering (requiring only
one image but reducing spatial resolution). There exists,
thus, a tradeoff between keeping full spatial resolution and
using only a few images. To assess riverbank erosion in
Bangladesh, it would be ideal to use only a few images (to
obtain the assessment as early as possible after the end of
the monsoon season) while maintaining spatial resolution (to
have a precise estimate of the erosion extent). Therefore, a
compromise has to be found between sampling duration and
spatial resolution. We tested the influence of these two pa-
rameters for a range of configurations:

– Eight sampling durations – 2 weeks; 1 month; and 2, 3,
4, 5, 6, and 7 months. Each of these eight periods started
on 1 November 2018. All images within the respective
period were averaged temporally before the subsequent
analysis.

– Seven spatial filters – no filter; 3× 3 refined Lee filter;
and 3×3, 5×5, 7×7, 25×25 and 50×50 boxcar filter
(Lee, 1981; Lee et al., 2009). The filters were applied to
the absolute backscatter values.

For a certain imaging configuration (sampling duration and
filter type), the mean backscatter and the standard devia-
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Figure 1. Overview of the analytical strategy to develop an algorithm detecting eroded farmland and settlement.

tion of the pixels within each patch were calculated. Sub-
sequently, these 10 patch-specific mean and standard devia-
tion values were averaged to yield 1 mean backscatter and
1 standard deviation value per land cover class and imaging
configuration.

To classify pixels into one of the four classes, thresholds
were defined between water and sand, sand and fields, and
fields and trees. The thresholds were calculated as

0.5×
[
(meani + n× σi)+

(
meanj − n× σj

)]
,

where i and j indicate the class with the lower and higher
mean backscatter, respectively. n was chosen as the largest
natural number such that (meani+n×σi) and (meanj −n×
σj ) would not overlap. n could thus be different for each pair
of classes. For trees, an additional upper threshold was set
at −2 dB to distinguish them from settlements. Pixels were
classified according to their backscatter value with respect
to these thresholds. For instance, a pixel with a backscatter
value larger than the threshold water–sand but smaller than
the threshold sand–fields was classified as “sand”. The qual-
ity of the classification was assessed visually using optical
Sentinel-2 images.

2.4 Settlement detection

Since houses in rural Bangladesh are typically surrounded
by trees, they are not fully visible on satellite images. More-
over, they cover only small areas compared to water, sand or
farmland. Therefore, they cannot be well detected with the
classification approach presented in Sect. 2.3, which involves
spatial averaging.

To detect houses, we exploit the fact that unlike vegeta-
tion, houses do not move or change substantially over time.
Due to this low temporal decorrelation, houses are treated as
persistent scatterers (PS) (Ferretti et al., 1999). Processing
PS candidates in radar images usually implies analyzing the
interferometric phase, which cannot be done in GEE where
only amplitude information is available. However, Ferretti et
al. (2001) show that phase dispersion can be estimated from
the amplitude dispersion index σA/mA, where mA and σA
are the mean and the standard deviation of the amplitude val-
ues, respectively. PS can then be selected by computing the
dispersion index of each pixel from a stack of several SAR
images of the same scene and keeping only those pixels ex-
hibiting a low dispersion index. The typical range of thresh-
old values for the dispersion index goes from 0.25 (Ferretti
et al., 2001) to 0.4 (van Leijen, 2014).

Houses are not the only structures than can have a low
dispersion index. Bare surfaces, for instance, might also be
relatively stable over time. Therefore, we combine the dis-
persion criterion with an amplitude threshold: pixels are se-
lected as PS candidates and hence houses if they show a low
dispersion index and a high absolute backscatter over a series
of radar acquisitions. Two implementations of the amplitude
threshold were compared: first, following Kampes and Adam
(2004), a pixel is selected as the PS candidate if its normal-
ized cross section σ0 is above a threshold N2 in at least N1
images. These authors propose thresholds of −2 dB for N2
and 0.65K for N1, where K is the number of radar acqui-
sitions. Second, the amplitude threshold was applied to the
mean of all SAR images in the stack, instead of the individ-
ual images.
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The sensitivity of the settlement detection was tested for
the following parameters.

– Thresholds. For the dispersion index, threshold values
of 0.25 and 0.4 were tested. For the amplitude thresh-
old, −4, −2 and 0 dB were analyzed. These analyses
were done for a sampling duration of 6 months starting
1 November 2019.

– Look direction. Since the roofs of buildings typically
have a specific orientation, they are likely to have a
stronger backscatter for one of the two look directions
– ascending or descending. Therefore, these two types
were compared.

2.5 Erosion detection

In examining the impact of riverbank erosion on human
livelihoods along the Jamuna River, we are interested in two
effects, which are treated separately: erosion of land (farm-
land or trees) and erosion of houses. Land was identified as
eroded in one specific monsoon season if it was classified as
“field” or “trees” before the monsoon season and as “sand”
or “water” afterwards. Erosion to sand and erosion to water
were not differentiated further since in both cases the land
cannot be used for agriculture anymore, which is the main
effect we are interested in this application.

For classifying the land, a sampling duration of 6 months
(November to April) was used for all years from 2014/15 to
2018/19. For 2019/20, only the images from November 2019
were used to simulate the case where the erosion detection
has to be performed already in December after the end of the
monsoon. A 7× 7 boxcar filter was applied to create smooth
and continuous erosion bands. The threshold discriminating
sand/water from fields/trees was−13.2 and−12.7 dB for the
case where 6 months and 1 month of data were used, respec-
tively (Tables B1 and B2). To detect eroded settlements, a
similar strategy was followed: a pixel was selected as set-
tlement eroded during a specific monsoon season if it was
classified as “settlement” before the monsoon and as “sand”
or “water” afterwards. The final algorithm to detect eroded
farmland and settlement is schematized in Fig. 2.

2.6 Accuracy assessment

Since our study area is large (spanning more than 200 km
from north to south), it was not feasible to collect sufficient
ground-truth data to validate our land cover classification al-
gorithm. To still be able to judge its accuracy, we compared
the SAR-based classification to an independently conducted
classification based on optical Sentinel-2 imagery, performed
in the GEE.

Classification of Sentinel-2 images was based on the nor-
malized difference vegetation index (NDVI). The NDVI
takes on values between−1 and 1. In terms of the land cover
classes relevant for our study, water bodies typically exhibit

Figure 2. Flowchart of the final implementation to detect eroded
farmland and settlement. THR: threshold.

NDVI values below 0, bare ground between 0 and 0.1, and
cultivated land above 0.1 (DeFries and Townshend, 1994;
Huang et al., 2020).

Since the detection of eroded farmland relies only on the
threshold between sand and vegetation (see Sect. 2.5), we
differentiated only two land cover classes in the Sentinel-
2 classification: sand/water (corresponding to all pixels ex-
hibiting an NDVI value< 0.1) and vegetation/trees (cor-
responding to all pixels exhibiting an NDVI value> 0.1).
While this is a large simplification, it serves the purposes of
this study where we try to detect land that changes from vege-
tated before the monsoon to sand or water after the monsoon.

The pixel-level accuracy of the SAR-based classifica-
tion was assessed for one site by counting all pixels which
were (a) identically classified as vegetation by both meth-
ods, (b) false positives (classified as vegetation by the SAR-
based method and as sand/water by the Sentinel-2-based
method), and (c) false negatives (classified as sand/water by
the SAR-based method and as vegetation by the Sentinel-2-
based method).

The quality of Sentinel-2 images depends on cloud cover.
In Bangladesh, cloud cover varies seasonally, with the high-
est values occurring during the monsoon (June to September)
and the lowest values in the dry season (November to March)
(Fig. A2). Therefore, the accuracy assessment was performed
for the 2 months with the lowest cloud cover (November
and March), using the 1-month median NDVI value. For
both November and March, the accuracy assessment was re-
peated for 3 consecutive years (2018/19 to 2020/21). The
code for the Sentinel-2-based assessment is contained in the
GEE code referenced in Sect. 2.2.
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3 Results

3.1 Determination of thresholds for land cover
classification

The average monthly backscatter of seven patches is shown
as a time series in Fig. 3. The settlement and tree patch are
the most stable since they are neither affected by (rapid) veg-
etation growth nor affected by monsoon flooding. The river
patch has mostly the lowest coefficient, which increases dur-
ing the monsoon, potentially due to wind and rain disturbing
the flat water surface. While fields generally have a backscat-
ter coefficient close to that of trees, they can be seasonally
flooded during the monsoon (field 2) or completely eroded
(field 3). From the behavior of field 2, the dry season can be
defined as the period between November and June of the fol-
lowing year (indicated by the vertical lines). The sand patch
lies in between water and fields.

The average backscatter of the 10 sand patches is shown in
Fig. 4a as a function of different sampling durations and filter
configurations. For a given filter, there is no significant vari-
ation of the backscatter value with increasing sampling dura-
tion. For a given sampling duration, the average backscatter
increases slightly with increasing filter size. However, this in-
crease becomes statistically significant at the 95 % level only
for the largest filters (25× 25 and 50× 50 pixels). For such
large filters (50×50 pixels corresponds to 500×500 m), this
is probably caused by other land cover classes with a higher
backscatter value (e.g., fields) being included into the filter
window.

Figure 4b presents the standard deviation of all pixels
within one patch, averaged over the 10 sand patches. For a
given filter, the standard deviation decreases with increas-
ing sampling duration. For a given sampling duration, it de-
creases with increasing filter size. These observations corre-
spond to the two mechanisms for speckle reduction outlined
in Sect. 2.3, namely temporal averaging and spatial filtering.
The other three land cover classes, water, fields and trees,
show similar tendencies for filter size and sampling duration,
both for average backscatter values and standard deviations
(Fig. A3).

These findings allow defining thresholds to separate the
four classes in the land cover classification. As discussed in
Sect. 2.3, each combination of sampling duration and filter
size has a certain advantage and a certain disadvantage. To
illustrate this tradeoff, two extreme combinations are com-
pared in Fig. A4. In practice, a compromise between these
two extremes seems more likely, meaning that some spatial
resolution has to be given up when a slightly longer sampling
duration is used. One example for such a compromise is pre-
sented in Fig. 5, for which images from 1 month have been
filtered with a 3× 3 boxcar filter.

The determination of the thresholds is illustrated in Table 1
for the case of 1-month sampling duration and a 3×3 boxcar
filter. As can be seen in Fig. 5, the bars of fields and trees

overlap if 2 standard deviations are used. However, they do
not overlap if only 1 standard deviation is used. Hence, in-
tervals with 1 standard deviation are used to determine the
threshold between fields and trees. For water–sand and sand–
fields, the intervals do not overlap even if 3 standard devi-
ations are considered. Therefore, 3 standard deviations are
used to calculate the respective thresholds. The thresholds
for the two configurations from Fig. A4 are contained in Ta-
bles B3 and B4. The average backscatter values shown in
Tables 1, B3 and B4 compare reasonably well to reference
values from the literature (Table B5).

Assuming the backscatter values in each class to be dis-
tributed normally around the mean, this approach allows an
estimation of the accuracy of the resulting classification. In a
normal distribution, 68 %, 95 % and 99.7 % of all values lie
within mean±1, 2 and 3 standard deviations, respectively.
As the thresholds water–sand and sand–fields are based on
the interval with 3 standard deviations, we thus expect less
than 0.15 % of all water pixels to be incorrectly classified as
sand pixels. The same percentage applies for sand pixels be-
ing incorrectly classified as water/field pixels and for field
pixels being misclassified as sand pixels. For fields–trees,
only 1 standard deviation has been used, and hence 16 % of
all field and tree pixels are expected to be falsely classified
as tree and field pixels, respectively.

Trees and fields can thus not be well distinguished in this
setup. This shortcoming is, however, negligible in the con-
text of studying riverbank erosion. Here, the focus is on land
covered by fields or trees being eroded and appearing as sand
or water afterwards. Therefore, the most important threshold
is the one between sand and fields, which yields higher accu-
racy.

The classification resulting from these three imaging con-
figurations is depicted in Fig. 6 with an optical Sentinel-2
image as the baseline. If only 2 weeks are sampled with
a 25× 25 boxcar filter, the spatial resolution is largely lost
(panel b). If, by contrast, no filter is applied and 6 months
are sampled, the classification remains very fine grained
(panel c). However, the distinction between sand and water
is not very accurate. The compromise – 1-month sampling
duration and a 3×3 boxcar filter (panel d) – manages to pre-
serve a large degree of spatial resolution while distinguishing
well between the four classes. It thus seems the most appro-
priate of these three imaging configurations.

3.2 Detection of settlement as persistent scatterers

Figure A5a illustrates the need to apply an amplitude thresh-
old in addition to the dispersion index. If only the dispersion
index is used to classify settlements, many vegetation pix-
els that happen to be stable over the sampled time window
are misclassified as settlements. The influence of the disper-
sion index threshold and the amplitude threshold is shown in
Fig. 7. For the dispersion index, a threshold of 0.25 (panel b)
selects only very stable pixels as PS candidates. Accordingly,
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Figure 3. Mean monthly backscatter of different land cover types (one patch per type; the location of the patches is shown in Fig. A1)
between January 2018 and February 2020, obtained from the C band of Sentinel-1. Per month, between one and six images are averaged.

Figure 4. Average backscatter (a) and average standard deviation (b) of the pixels within 10 patches of sand for different sampling durations
and filter sizes. Bars indicate the 95 % confidence interval. Lee – Lee filter. Box – boxcar filter.

Figure 5. Average backscatter for four land cover classes for a sam-
pling duration of 1 month and a 3×3 boxcar filter. Bars indicate the
mean±2 standard deviations. Horizontal lines indicate the thresh-
olds between the respective classes.

fewer pixels are selected than for a threshold of 0.4 (panel a).
For the amplitude threshold, the effect is the opposite: ap-
plying a threshold of −4 dB (red) selects more pixels as PS
candidates than for−2 dB (blue) or 0 dB (orange). While the
threshold of−4 dB thus seems to select more settlement pix-
els (e.g., upper-left corner of panel a), also the risk of mis-
classifying tree pixels as settlements rises.

For our application, however, we are rather interested in
detecting the rough location of settlements than in precisely
distinguishing settlement and 3 pixels. In fact, trees are of-
ten planted around houses, making them good indicators of
settlements. As too few settlement pixels are detected in
panel (b), we suggest a threshold combination of 0.4 and
−4 dB for the dispersion index and the amplitude, respec-
tively. Still, it is important to note that, even with this com-
bination (red pixels in panel a), several pixels that appear as
houses in the optical image are not detected. We should thus
keep in mind that what the algorithm classifies as settlement
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Table 1. Determination of thresholds for a sampling duration of 1 month and a 3× 3 boxcar filter. Values in bold are those that have been
used to calculate the threshold indicated in the last column. All values are in decibels (dB). µ – mean. σ – standard deviation.

µ σ µ+ σ µ− σ µ+ 2× σ µ− 2× σ µ+ 3× σ µ− 3× σ Threshold

Water −24.4 0.9 −23.6 −22.7 −21.8
Sand −17.4 1.2 −16.2 −18.6 −15.0 −19.9 −13.8 −21.1 −21.5
Fields −9.5 0.8 −8.8 −10.3 −8.0 −11.0 −7.2 −11.8 −12.8
Trees −6.1 1.7 −7.8 −9.4 −11.1 −8.3

is most likely indeed a settlement but that it cannot detect all
settlements, especially if they are covered by trees.

The influence of the look direction is illustrated in
Fig. A5b. The overlap between the ascending and descending
orbit is small. This corresponds to the fact that each building
has a specific orientation of its roof. Therefore, some roofs
have a stronger backscatter in the descending orbit, while
others reflect more in the ascending orbit. Similar effects can
be expected if persistent scatterers are located on walls or
in corners of buildings. For maximum settlement detection,
it is thus recommended to use SAR images of both look di-
rections. To conclude, the recommended set of parameters to
detect settlements is to use an amplitude and dispersion in-
dex threshold of −4 dB and 0.4, respectively, using images
of both ascending and descending orbit.

3.3 Detection of eroded farmland and settlements

Figure 8 illustrates the result of the erosion detection (both
farmland and settlements) for one specific site for the mon-
soon seasons 2018 and 2019. To evaluate the quality of the
erosion detection, the detected erosion patches are mapped
on optical images from before and after the monsoon. The
results of the overall validation of the land cover classifica-
tion are contained in Sect. 3.4.

The focus of the project is on erosion occurring on the
outer riverbanks of the Jamuna. Therefore, erosion happen-
ing on the sandbanks and islands in the river is omitted in the
following discussion, which focuses exclusively on the long
strip of eroded land on the outer riverbank. For both years,
all that has been detected as eroded land has entirely been
land before the monsoon (left column) and completely water
after the monsoon (right column). For these examples, there
is thus no type-I error, i.e., classifying land as eroded when it
is not.

There is, however, a type-II error, i.e., eroded land that is
not classified as such. This error tends to be small and thus
negligible for the overall purpose of detecting sites where
erosion occurred to a significant extent. Lastly, the algorithm
can distinguish well between eroded farmland and eroded
sand, as can be seen in the lower-left corner of the 2019 im-
age before the monsoon. Regarding the patches detected as
eroded settlements (bright red), by far not all of the eroded
settlement is detected. Again, this type-II error is negligible
given the purpose of detecting those sites that have seen ero-

sion of settlement in general. For this, it is not necessary to
detect every single house that has been eroded.

The erosion detection works for the monsoon seasons from
2015 to 2019, since Sentinel-1 images are only available
from October 2014 onwards. Figure 9a shows the sequential
nature of erosion, which does not occur at random locations,
but typically in sites which have already experienced erosion
during the previous monsoon season(s). We can also see the
highly dynamic nature of land accretion and erosion. For in-
stance, an island had formed at the place where land had been
before the 2015 monsoon. Part of this island has been eroded
again in the 2019 monsoon season (orange patch overlay-
ing the dark brown 2015 erosion band). Further, settlements
have been eroded in all five monsoon seasons (blue dots). Fi-
gure 9b shows where land was eroded in the 2019 monsoon
along a larger section of the Jamuna River. Erosion occurred
within but to a large extent also outside of the hotspot areas
predicted by CEGIS (2018).

3.4 Accuracy assessment

A confusion matrix of vegetation versus sand/water was cal-
culated for 6 different months (Table B6). The accuracy met-
rics were averaged over 3 consecutive years for both Novem-
ber and March (Table 2). The classification showed a satis-
factory accuracy over 87 %. The observed errors might be in-
troduced by the cloud mask which is applied to the Sentinel-2
images and potentially leads to misclassified pixels.

As mentioned in Sect. 2.6, a validation based on ground-
truth data was not possible due to the large size of our study
area. Readers and users are, however, invited to access the
source code in the GEE and compare the SAR-based land
cover classification to optical imagery for specific sites of
interest.

3.5 Final implementation

Finally, the results from Sect. 3.1 to 3.3 were implemented
in a GEE-based analysis tool that allows the user to explore
where erosion of farmland and settlement has occurred dur-
ing the five monsoon seasons from 2015 to 2019. The tool
contains the following information:

– five layers for land eroded in the five monsoon seasons,
2015 to 2019;
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Figure 6. (a) Sentinel-2 image of a stretch of the eastern riverbank of Jamuna River, taken in November 2019. Image dimensions: ca.
4.5× 6 km. (b, c, d) Classification result for a sampling duration of 2 weeks and a 25× 25 boxcar filter, 6 months and no filter, and 1 month
and a 3×3 boxcar filter, respectively. Blue – water; sand – sand; light green – fields; dark green – trees. Source of optical background image:
Sentinel-2. The location of the patch is shown in Fig. A1 (patch 1). Coordinates in this and all other maps are in Gulshan 303 Bangladesh
TM (EPSG 3106).

– five layers for settlements eroded in the five monsoon
seasons, 2015 to 2019;

– one layer for the settlement detected in the beginning of
2020;

– three optical images from January 2018, 2019 and 2020
as a visual baseline;

– the 14 “erosion hotspots” identified by CEGIS in their
2019 erosion prediction (cf. Sect. 1).

The GEE-based tool to assess riverbank erosion using
Sentinel-1 data and a short video tutorial to introduce users
who are unfamiliar with the GEE to the application of this
tool are referenced in the section “Code availability”.
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Figure 7. Influence of classification thresholds on settlement detection. Shown are dispersion index thresholds of 0.4 (a) and 0.25 (b) – the
lower the threshold, the more stable a pixel has to be for it to be classified as a PS candidate. Colors correspond to different values of the
amplitude threshold: −4 dB (red), −2 dB (blue) and 0 dB (orange) – the lower the threshold, the higher the chance of classifying tree pixels
as settlement pixels. Source of optical background image: Google, © 2020 Maxar Technologies, CNES/Airbus.

Table 2. Accuracy assessment of the SAR-based classification for 2 months. Indicated are the accuracy values averaged for November/March
over 3 consecutive years.

Month Class User’s accuracy Producer’s accuracy Overall accuracy
(%) (%) (%)

November
Sand/water 94.7 83.1

87.5
Vegetation 80.1 93.8

March
Sand/water 87.5 93.6

90.6
Vegetation 93.7 88.1

4 Discussion

Various studies have investigated riverbank erosion along
the Jamuna applying remote sensing approaches (Hassan et
al., 2017; Khan et al., 2022; Pahlowan and Hossain, 2015;
Islam, 2009). All of them, however, used optical images,
which are available only at cloud-free daylight conditions.
Our study is the first to assess riverbank erosion along the Ja-
muna using radar satellite images, which are independent of
daylight or weather conditions. Hence, they are more readily
available after the end of the monsoon season and thus better
suited to inform practitioners who are supporting local com-
munities to prepare for the upcoming monsoon and erosion
season. In terms of accuracy, our algorithm performed sat-
isfactorily when compared to an approach based on optical
images (see Sect. 3.4).

Still, different limitations might affect the results of this
study. First, as outlined in Sect. 2.1, the GEE contains only

the amplitude but not the phase values of radar images. The
phase value contains information on the distance between
the sensor and the ground, accurate to a small fraction of
the radar wavelength. One powerful technique employing the
phase value is SAR interferometry, which compares for one
scene the phase of two or more radar images acquired from
different positions or at different times (Moreira et al., 2013).
Accessing the phase information could thus open up alterna-
tive strategies to detect eroded land, for instance from tem-
poral decorrelation. SAR interferometry, however, requires
special software, which might not be available in resource-
constrained settings. The GEE, by contrast, is easy and free
to use, making the developed algorithm accessible to author-
ities and researchers in Bangladesh.

Second, our study used only radar data. Combining opti-
cal and SAR data generally yields an improved performance
compared to using any of the two alone. Examples using
both data types include land cover classification (Carrasco
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Figure 8. Validation of erosion detection. Shown are eroded land (orange) and eroded settlements (red) for 2018 (a, b) and 2019 (c, d).
Baseline: optical Sentinel-2 images from before (a, c) and after (b, d) the monsoon. The location of the patch is shown in Fig. A1 (patch 3).

et al., 2019; Miettinen et al., 2019; Poortinga et al., 2019;
Zhang et al., 2018), change detection (Canty and Nielsen,
2017; Celik, 2018; Shimizu et al., 2019) and the derivation
of river discharge for the upper Brahmaputra River (Huang
et al., 2018). The GEE facilitates the combination of optical
and SAR data. Such a combination would thus be another
strategy to further improve the results of this study.

Third, we have developed the algorithm to detect riverbank
erosion for one specific case study. As it is usually the case
for case study research, it is not evident how well our find-
ings can be transferred to other contexts beyond Bangladesh.
Given, however, that the basic mechanism of riverbank ero-
sion (vegetated/settlement land turning into sand/water) is

identical irrespective of where erosion occurs, we believe that
it is possible to apply our erosion detection approach to other
contexts at relatively low effort (e.g., by adapting classifica-
tion thresholds to local vegetation/soil types). We invite in-
terested readers – both from research and from practice – to
access our algorithm and to apply it to other geographical
settings.

5 Conclusions

We have implemented and applied a GEE-based method
to quantitatively assess riverbank erosion along the Jamuna
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Figure 9. (a) Detected erosion for the monsoon seasons 2015 (dark red) to 2019 (light red). Blue: eroded settlements. (b) Locations of land
eroded during the 2019 monsoon (orange). The red rectangles are the locations for which CEGIS (2018) predicted severe erosion. Source of
optical background images: Sentinel-2.

River in Bangladesh based on Sentinel-1 GRD intensity data.
Timely detection of riverbank erosion is an essential element
of disaster risk management yet especially challenging in
resource-limited settings.

We investigated whether the locations of past erosion
events can be extracted from Sentinel-1 SAR imagery. We
developed an algorithm to classify land cover, identify set-
tlements, and detect eroded farmland and settlements along
the Jamuna River. The SAR-based classification approach
can provide information on where land and settlements have
been eroded during the last monsoon already 1 month after
the end of the monsoon season and hence potentially earlier
or at least more reliably than using optical satellite images,
which depend on cloud-free conditions. This erosion detec-
tion can be achieved at sufficiently high spatial resolution.
We could thus demonstrate the suitability of radar imagery
to assess past erosion events.

The analysis was performed using the GEE, which gives
access to Google’s cloud computing infrastructure as well as
to massive amounts of satellite imagery, including time se-
ries of Sentinel-1 GRD backscatter data and Sentinel-2 op-
tical data on a global scale. A limitation of using the GEE
is that it contains only the amplitude values and not the
phase values of the radar images. Land cover change classi-
fication approaches using interferometric coherence can thus
not be implemented in the GEE. However, the GEE facili-
tates sharing and re-using algorithms, making the results of
this study accessible and useable for government agencies or

non-governmental organizations (NGOs) in Bangladesh. To
share our results, we developed an interactive online tool al-
lowing the user to explore where farmland and settlement
have eroded along the Jamuna River in the monsoon sea-
sons 2015 to 2019. This online tool as well as the underly-
ing source code can be accessed and adapted free of charge,
making it an attractive tool to use in resource-constrained set-
tings.

Spatiotemporally consistent sequences of progressive
riverbank erosion give valuable insights on where erosion
will likely occur in the following monsoon season. Such in-
formation can be used to alert potentially affected residents
accordingly. Likewise, the results of our study can be used
to inform researchers or NGOs working on the adaptation of
the population living along the Jamuna to the riverbank ero-
sion. As such, the tool developed in this study might be of in-
terest to both policymakers and practitioners working in the
fields of disaster risk management and communication. Since
riverbank erosion is a phenomenon occurring along many of
the world’s major rivers (e.g., Mekong River, Yellow River,
Mississippi River or Danube River), the relevance of our tool
extends beyond the specific case study of Bangladesh. Like-
wise, it might be applicable to coastal erosion – another en-
vironmental hazard that is bound to increase in the age of
climate change.
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Appendix A: Additional figures

Figure A1. (a) Locations of the patches shown in Fig. 3 (symbols are larger than the patches). (b) Locations of the patches analyzed for the
development of the land cover classification (symbols are larger than the patches). (c) Locations of the patches used to validate the land cover
classification (patch 1), the settlement detection (patch 2) and the erosion detection (patch 3). Exact coordinates for all patches are contained
in the GEE source code. Source of optical background image: Sentinel-2.
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Figure A2. Mean cloudy pixel percentage of all Sentinel-2 images taken over the assessment site during the respective month. For each
month, 5 consecutive years were analyzed. The plotted values represent the average of these 5 years.

Figure A3. Average backscatter (a, c, e) and average standard deviation (b, d, f) of the pixels within 10 patches of water (a, b), fields (c, d)
and trees (e, f) for different sampling durations and filter sizes. Bars indicate the 95 % confidence interval. Lee – Lee filter. Box – boxcar
filter.
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Figure A4. Average backscatter for four land cover classes (a) for a sampling duration of 0.5 months and a 25×25 boxcar filter and (b) for a
sampling duration of 7 months and no filter. Bars indicate the mean±2 standard deviations. If images are available only from 2 weeks, strong
spatial filtering (25× 25 pixels) reduces the standard deviation enough to separate all four classes even at the level of 2 standard deviations
around the mean (a). If, by contrast, images are available from 7 months, water, sand and fields can be separated even if no spatial filter is
applied (b). In this setting, fields and trees can be distinguished only at the level of 1 standard deviation around the mean (not shown in the
graph).

Figure A5. (a) Classification of settlements using the dispersion index only (blue) or the combination of dispersion index and amplitude
threshold (orange). Thresholds: 0.25 (dispersion index); −2 dB (amplitude). (b) Settlement detection for ascending (orange) and descending
(blue) orbit. Thresholds: 0.4 (dispersion index); −4 dB (amplitude). Sampling duration for both panels: 6 months. The location of the patch
is shown in Fig. A1 (patch 2). Source of optical background image: Google, © 2020 Maxar Technologies, CNES/Airbus.

Appendix B: Additional tables

Table B1. Determination of thresholds for a sampling duration of 6 months and a 7× 7 boxcar filter. Values in bold are those that have been
used to calculate the threshold indicated in the last column. All values are in decibels (dB). µ – mean. σ – standard deviation.

µ σ µ+ σ µ− σ µ+ 2× σ µ− 2× σ µ+ 3× σ µ− 3× σ Threshold

Water −23.0 0.1 −22.8 −22.7 −22.5
Sand −16.9 0.4 −16.5 −17.3 −16.0 −17.7 −15.6 −18.2 −20.4
Fields −10.3 0.2 −10.1 −10.5 −9.9 −10.6 −9.7 −10.8 −13.2
Trees −6.0 0.9 −6.9 −7.8 −8.7 −9.2
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Table B2. Determination of thresholds for a sampling duration of 1 month and a 7× 7 boxcar filter. Values in bold are those that have been
used to calculate the threshold indicated in the last column. All values are in decibels (dB). µ – mean. σ – standard deviation.

µ σ µ+ σ µ− σ µ+ 2× σ µ− 2× σ µ+ 3× σ µ− 3× σ Threshold

Water −24.2 0.3 −23.9 −23.5 −23.2
Sand −17.1 0.7 −16.3 −17.8 −15.6 −18.5 −14.9 −19.2 21.2
Fields −9.4 0.4 −9.0 −9.8 −8.7 −10.2 −8.3 −10.6 −12.7
Trees −5.9 1.0 −6.9 −8.0 −9.0 −8.3

Table B3. Determination of thresholds for a sampling duration of 2 weeks and a 25×25 boxcar filter. Values in bold are those that have been
used to calculate the threshold indicated in the last column. All values are in decibels (dB). µ – mean. σ – standard deviation.

µ σ µ+ σ µ− σ µ+ 2× σ µ− 2× σ µ+ 3× σ µ− 3× σ Threshold

Water −23.9 0.1 −23.7 −23.6 −23.4
Sand −16.5 0.3 −16.2 −16.8 −15.9 −17.1 −15.5 −17.4 −20.4
Fields −8.8 0.3 −8.5 −9.2 −8.2 −9.5 −7.9 −9.8 −12.7
Trees −6.0 0.3 −6.4 −6.7 −7.0 −7.4

Table B4. Determination of thresholds for a sampling duration of 7 months, unfiltered. Values in bold are those that have been used to
calculate the threshold indicated in the last column. All values are in decibels (dB). µ – mean. σ – standard deviation.

µ σ µ+ σ µ− σ µ+ 2× σ µ− 2× σ µ+ 3× σ µ− 3× σ Threshold

Water −22.8 0.7 −22.1 −21.4 −20.7
Sand −17.4 1.0 −16.4 −18.5 −15.4 −19.5 −14.4 −20.5 −20.6
Fields −10.5 0.5 −10.0 −11.1 −9.5 −11.6 −8.9 −12.1 −13.2
Trees −6.6 2.0 −8.6 −10.6 −12.7 −9.3

Table B5. Average backscatter values from Ulaby and Dobson (1989) for the C band at VV polarization for look angles of 30 and 45◦.

30◦ 45◦

Soil and rock −10.3 −13.3
Grasses −10.7 −14.5
Shrubs −9.7 −11.0
Short vegetation −10.0 −13.2
Trees −10.8 (for 20◦) −2.3
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Table B6. Confusion matrix of resultant land cover classification as obtained from SAR versus Sentinel-2 (S2) for 6 different months.

Month Class Sand/water Vegetation User’s Producer’s Overall
(SAR) (SAR) accuracy accuracy accuracy
(km2) (km2) (%) (%) (%)

November 2018
Sand/water (S2) 10.79 1.39 93.8 88.6

91.3
Vegetation (S2) 0.71 11.13 88.9 94.0

November 2019
Sand/water (S2) 11.78 2.06 96.4 85.1

89.6
Vegetation (S2) 0.44 9.78 82.6 95.7

November 2020
Sand/water (S2) 11.49 3.69 93.9 75.7

81.6
Vegetation (S2) 0.74 8.11 68.7 91.6

March 2019
Sand/water (S2) 9.97 0.48 85.8 95.4

91.1
Vegetation (S2) 1.65 11.94 96.1 87.9

March 2020
Sand/water (S2) 11.02 0.82 87.7 93.1

90.2
Vegetation (S2) 1.54 10.67 92.9 87.4

March 2021
Sand/water (S2) 10.92 0.92 89.1 92.2

90.6
Vegetation (S2) 1.34 10.85 92.2 89.0

Code availability. The GEE code underlying the
analyses of this paper is publicly available at
https://doi.org/10.5281/zenodo.7253121 (Freihardt and
Frey, 2022a) (or, with a Google account, directly
in the GEE at https://code.earthengine.google.com/
a2a7614af421261a4b639a1abbb609c6, last access: 29 January
2023).

The interactive online tool implementing the findings of this
paper can be accessed at https://doi.org/10.5281/zenodo.7252970
(Freihardt and Frey, 2022b) (or, with a Google account,
directly in the GEE at https://code.earthengine.google.com/
b1ba16d48320a3501e89135679d97492?hideCode=true, last ac-
cess: 29 January 2023).

Data availability. Copernicus Sentinel-1 and Sentinel-2 data
(2014–2021) are publicly available from ESA at https://dataspace.
copernicus.eu/ (last access: 7 February 2023; login required; ESA,
2023). The GRD Sentinel-1 data used in this study were accessed
through the GEE.

Video supplement. To introduce users who are unfamiliar with the
GEE to the application of this tool, we have recorded a short
tutorial available at https://doi.org/10.5281/zenodo.7249809 (Frei-
hardt, 2020) (or directly at https://www.youtube.com/watch?v=
_b9AAPDw7Wk, last access: 29 January 2023).
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