Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-361-2023
https://doi.org/10.5194/nhess-23-361-2023
Research article
 | 
01 Feb 2023
Research article |  | 01 Feb 2023

Characterizing the rate of spread of large wildfires in emerging fire environments of northwestern Europe using Visible Infrared Imaging Radiometer Suite active fire data

Adrián Cardíl, Victor M. Tapia, Santiago Monedero, Tomás Quiñones, Kerryn Little, Cathelijne R. Stoof, Joaquín Ramirez, and Sergio de-Miguel

Related authors

Soil lacquer peel do-it-yourself: simply capturing beauty
Cathelijne R. Stoof, Jasper H. J. Candel, Laszlo A. G. M. van der Wal, and Gert Peek
SOIL, 5, 159–175, https://doi.org/10.5194/soil-5-159-2019,https://doi.org/10.5194/soil-5-159-2019, 2019
Short summary
Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audience
Gemma J. Venhuizen, Rolf Hut, Casper Albers, Cathelijne R. Stoof, and Ionica Smeets
Hydrol. Earth Syst. Sci., 23, 393–403, https://doi.org/10.5194/hess-23-393-2019,https://doi.org/10.5194/hess-23-393-2019, 2019
Short summary
HESS Opinions: Science in today's media landscape – challenges and lessons from hydrologists and journalists
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018,https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Morphological dynamics of gully systems in the subhumid Ethiopian Highlands: the Debre Mawi watershed
Assefa D. Zegeye, Eddy J. Langendoen, Cathelijne R. Stoof, Seifu A. Tilahun, Dessalegn C. Dagnew, Fasikaw A. Zimale, Christian D. Guzman, Birru Yitaferu, and Tammo S. Steenhuis
SOIL, 2, 443–458, https://doi.org/10.5194/soil-2-443-2016,https://doi.org/10.5194/soil-2-443-2016, 2016
Short summary
Geoscience on television: a review of science communication literature in the context of geosciences
Rolf Hut, Anne M. Land-Zandstra, Ionica Smeets, and Cathelijne R. Stoof
Hydrol. Earth Syst. Sci., 20, 2507–2518, https://doi.org/10.5194/hess-20-2507-2016,https://doi.org/10.5194/hess-20-2507-2016, 2016
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024,https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary
Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023,https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Automated Avalanche Terrain Exposure Scale (ATES) mapping – Local validation and optimization in Western Canada
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-112,https://doi.org/10.5194/nhess-2023-112, 2023
Revised manuscript accepted for NHESS
Short summary
Early warning system for ice collapses and river blockages in the Sedongpu Valley, southeastern Tibetan Plateau
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023,https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Fire risk modeling: an integrated and data-driven approach applied to Sicily
Alba Marquez Torres, Giovanni Signorello, Sudeshna Kumar, Greta Adamo, Ferdinando Villa, and Stefano Balbi
Nat. Hazards Earth Syst. Sci., 23, 2937–2959, https://doi.org/10.5194/nhess-23-2937-2023,https://doi.org/10.5194/nhess-23-2937-2023, 2023
Short summary

Cited articles

Al-Rawi, K. R., Casanova, J. L., and Romo, A.: IFEMS: a new approach for monitoring wildfire evolution with NOAA-AVHRR imagery, Int. J. Remote Sens., 22, 2033–2042, 2001. 
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019. 
Andrews, P. L.: How to generate and interpret fire characteristics charts for surface and crown fire behavior, US Department of Agriculture, Forest Service, Rocky Mountain Research Station, ISBN-13 9781480144781, 2011. 
Angelis, A., Bajocco, S., and Ricotta, C.: Phenological variability drives the distribution of wildfires in Sardinia, Landscape Ecol., 27, 1535–1545, https://doi.org/10.1007/s10980-012-9808-2, 2012. 
Barros, A. and Pereira, J.: Wildfire Selectivity for Land Cover Type: Does Size Matter?, PLoS ONE, 9, e84760, https://doi.org/10.1371/journal.pone.0084760, 2014. 
Download
Short summary
This study aims to unravel large-fire behavior in northwest Europe, a temperate region with a projected increase in wildfire risk. We propose a new method to identify wildfire rate of spread from satellites because it is important to know periods of elevated fire risk for suppression methods and land management. Results indicate that there is a peak in the area burned and rate of spread in the months of March and April, and there are significant differences for forest-type land covers.
Altmetrics
Final-revised paper
Preprint