Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-361-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-361-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterizing the rate of spread of large wildfires in emerging fire environments of northwestern Europe using Visible Infrared Imaging Radiometer Suite active fire data
Adrián Cardíl
CORRESPONDING AUTHOR
Research and Development Department, Tecnosylva, Parque Tecnológico de León, 24004 León, Spain
Joint Research Unit CTFC–AGROTECNIO–CERCA, 25280 Solsona, Spain
Department of Crop and Forest Sciences, University of Lleida, 25198 Lleida, Spain
Victor M. Tapia
Research and Development Department, Tecnosylva, Parque Tecnológico de León, 24004 León, Spain
Department of Crop and Forest Sciences, University of Lleida, 25198 Lleida, Spain
Santiago Monedero
Research and Development Department, Tecnosylva, Parque Tecnológico de León, 24004 León, Spain
Tomás Quiñones
Research and Development Department, Tecnosylva, Parque Tecnológico de León, 24004 León, Spain
Kerryn Little
School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
Cathelijne R. Stoof
Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
Joaquín Ramirez
Research and Development Department, Tecnosylva, Parque Tecnológico de León, 24004 León, Spain
Sergio de-Miguel
Joint Research Unit CTFC–AGROTECNIO–CERCA, 25280 Solsona, Spain
Department of Crop and Forest Sciences, University of Lleida, 25198 Lleida, Spain
Related authors
No articles found.
Kerryn Little, Dante Castellanos-Acuna, Nicholas Kettridge, Mike Flannigan, and Piyush Jain
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-161, https://doi.org/10.5194/nhess-2024-161, 2024
Preprint under review for NHESS
Short summary
Short summary
We demonstrate the importance of Persistent Positive Anomalies in 500 hPa Geopotential Heights (PPAs) for fire weather and wildfires in a temperate, emerging fire prone region using comprehensive wildfire occurrence records. PPAs become increasingly important for larger wildfires and are most important for heathland/moorland and grassland wildfires. Our findings demonstrate the potential of synoptic indicators for extending forecasting tools to aid wildfire preparedness and management.
Cathelijne R. Stoof, Jasper H. J. Candel, Laszlo A. G. M. van der Wal, and Gert Peek
SOIL, 5, 159–175, https://doi.org/10.5194/soil-5-159-2019, https://doi.org/10.5194/soil-5-159-2019, 2019
Short summary
Short summary
Teaching and outreach of soils is often done with real-life snapshots of soils and sediments in lacquer or glue peels. While it may seem hard, anyone can make such a peel. Illustrated with handmade drawings and an instructional video, we explain how to capture soils in peels using readily available materials. A new twist to old methods makes this safer, simpler, and more successful, and thus a true DIY (do-it-yourself) activity, highlighting the value and beauty of the ground below our feet.
Gemma J. Venhuizen, Rolf Hut, Casper Albers, Cathelijne R. Stoof, and Ionica Smeets
Hydrol. Earth Syst. Sci., 23, 393–403, https://doi.org/10.5194/hess-23-393-2019, https://doi.org/10.5194/hess-23-393-2019, 2019
Short summary
Short summary
Do experts attach the same meaning as laypeople to terms often used in hydrology such as "river", "flooding" and "downstream"? In this study a survey was completed by 34 experts and 119 laypeople to answer this question. We found that there are some profound differences between experts and laypeople: words like "river" and "river basin" turn out to have a different interpretation between the two groups. However, when using pictures there is much more agreement between the groups.
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Assefa D. Zegeye, Eddy J. Langendoen, Cathelijne R. Stoof, Seifu A. Tilahun, Dessalegn C. Dagnew, Fasikaw A. Zimale, Christian D. Guzman, Birru Yitaferu, and Tammo S. Steenhuis
SOIL, 2, 443–458, https://doi.org/10.5194/soil-2-443-2016, https://doi.org/10.5194/soil-2-443-2016, 2016
Short summary
Short summary
Gully erosion rehabilitation programs in the humid Ethiopian highlands have not been effective, because the gully formation process and its controlling factors are not well understood. In this manuscript, the severity of gully erosion (onsite and offsite effect), the most controlling factors (e.g., ground water elevation) for gully formation, and their arresting mechanisms are discussed in detail. Most data were collected from the detailed measurements of 13 representative gullies.
Rolf Hut, Anne M. Land-Zandstra, Ionica Smeets, and Cathelijne R. Stoof
Hydrol. Earth Syst. Sci., 20, 2507–2518, https://doi.org/10.5194/hess-20-2507-2016, https://doi.org/10.5194/hess-20-2507-2016, 2016
Short summary
Short summary
To help geo-scientists prepare for TV appearances, we review the scientific literature on effective science communication related to TV. We identify six main themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We provide a detailed case study as illustration for each theme.
Haimanote K. Bayabil, Tigist Y. Tebebu, Cathelijne R. Stoof, and Tammo S. Steenhuis
Hydrol. Earth Syst. Sci., 20, 875–885, https://doi.org/10.5194/hess-20-875-2016, https://doi.org/10.5194/hess-20-875-2016, 2016
A. Cardil, D. M. Molina, J. Ramirez, and C. Vega-García
Nat. Hazards Earth Syst. Sci., 13, 1393–1399, https://doi.org/10.5194/nhess-13-1393-2013, https://doi.org/10.5194/nhess-13-1393-2013, 2013
Related subject area
Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Statistical calibration of probabilistic medium-range Fire Weather Index forecasts in Europe
Glide-snow avalanches: a mechanical, threshold-based release area model
Improving fire severity prediction in south-eastern Australia using vegetation-specific information
Review article: A scoping review of human factors in avalanche decision-making
How hard do avalanche practitioners tap during snow stability tests?
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Modelling Current and Future Forest Fire Susceptibility in north-east Germany
AutoATES v2.0: Automated Avalanche Terrain Exposure Scale mapping
Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile
Modeling of indoor 222Rn in data-scarce regions: an interactive dashboard approach for Bogotá, Colombia
A quantitative module of avalanche hazard—comparing forecaster assessments of storm and persistent slab avalanche problems with information derived from distributed snowpack simulations
The effect of propagation saw test geometries on critical cut length
A regional early warning for slushflow hazard
A new approach for drought index adjustment to clay-shrinkage-induced subsidence over France: advantages of the interactive leaf area index
Automated Avalanche Terrain Exposure Scale (ATES) mapping – local validation and optimization in western Canada
An Efficient Method to Simulate Wildfire Propagation Using Irregular Grids
Improving the fire weather index system for peatlands using peat-specific hydrological input data
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations
Early warning system for ice collapses and river blockages in the Sedongpu Valley, southeastern Tibetan Plateau
Fire risk modeling: an integrated and data-driven approach applied to Sicily
Avalanche size estimation and avalanche outline determination by experts: reliability and implications for practice
Fluid conduits and shallow-reservoir structure defined by geoelectrical tomography at the Nirano Salse (Italy)
Estimating the effects of meteorology and land cover on fire growth in Peru using a novel difference equation model
Review article: Snow and ice avalanches in high mountain Asia – scientific, local and indigenous knowledge
Reduced-order digital twin and latent data assimilation for global wildfire prediction
A user perspective on the avalanche danger scale – insights from North America
Evaluation of low-cost Raspberry Pi sensors for structure-from-motion reconstructions of glacier calving fronts
Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagation
A data-driven model for Fennoscandian wildfire danger
Equivalent hazard magnitude scale
Statistical modelling of air quality impacts from individual forest fires in New South Wales, Australia
Drivers of extreme burnt area in Portugal: fire weather and vegetation
Coupling wildfire spread simulations and connectivity analysis for hazard assessment: a case study in Serra da Cabreira, Portugal
Glacial lake outburst flood hazard under current and future conditions: worst-case scenarios in a transboundary Himalayan basin
What weather variables are important for wet and slab avalanches under a changing climate in a low-altitude mountain range in Czechia?
Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia
Automated snow avalanche release area delineation in data-sparse, remote, and forested regions
The 2017 Split wildfire in Croatia: evolution and the role of meteorological conditions
Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective
Global assessment and mapping of ecological vulnerability to wildfires
The impact of terrain model source and resolution on snow avalanche modeling
Travel and terrain advice statements in public avalanche bulletins: a quantitative analysis of who uses this information, what makes it useful, and how it can be improved for users
Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland
On the correlation between a sub-level qualifier refining the danger level with observations and models relating to the contributing factors of avalanche danger
Automated avalanche hazard indication mapping on a statewide scale
Forecasting the regional fire radiative power for regularly ignited vegetation fires
Environmental factors affecting wildfire-burned areas in southeastern France, 1970–2019
Detrainment and braking of snow avalanches interacting with forests
Stephanie Bohlmann and Marko Laine
Nat. Hazards Earth Syst. Sci., 24, 4225–4235, https://doi.org/10.5194/nhess-24-4225-2024, https://doi.org/10.5194/nhess-24-4225-2024, 2024
Short summary
Short summary
Probabilistic ensemble forecasts of the Canadian Forest Fire Weather Index (FWI) can be used to estimate the possible wildfire risk but require post-processing to provide accurate and reliable predictions. This article presents a calibration method using non-homogeneous Gaussian regression to statistically post-process FWI forecasts up to 15 d. Calibration improves the forecast especially at short lead times and in regions with high fire risk.
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024, https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Short summary
Glide-snow avalanches release at the ground–snow interface, and their release process is poorly understood. To investigate the influence of spatial variability (snowpack and basal friction) on avalanche release, we developed a 3D, mechanical, threshold-based model that reproduces an observed release area distribution. A sensitivity analysis showed that the distribution was mostly influenced by the basal friction uniformity, while the variations in snowpack properties had little influence.
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024, https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Short summary
A framework combining a fire severity classification with a regression model to predict an indicator of fire severity derived from Landsat imagery (difference normalized burning ratio, dNBR) is proposed. The results show that the proposed predictive technique is capable of providing robust fire severity prediction information, which can be used for forecasting seasonal fire severity and, subsequently, impacts on biodiversity and ecosystems under projected future climate conditions.
Audun Hetland, Rebecca Anne Hetland, Tarjei Tveito Skille, and Andrea Mannberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-1628, https://doi.org/10.5194/egusphere-2024-1628, 2024
Short summary
Short summary
Research on human factor in avalanche decision making has become increasingly popular the past two decades. The studies span across a wide range of disciplines and is published in a variety of journals. To provide an overview of the literature this study provide a systematic scooping review of human factor in avalanche decision making. 70 papers fulfilled the search criteria. We extracted data and sorted the papers according to their main theme.
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024, https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
Short summary
This study investigates inconsistencies in impact force as part of extended column tests (ECTs). We measured force-time curves from 286 practitioners in Scandinavia, Central Europe, and North America. The results show a large variability in peak forces and loading rates across wrist, elbow, and shoulder taps, challenging the ECT's reliability.
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024, https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
Short summary
Snowpack simulations are increasingly employed by avalanche warning services to inform about critical avalanche layers buried in the snowpack. However, validity concerns limit their operational value. We present methods that enable meaningful comparisons between snowpack simulations and regional assessments of avalanche forecasters to quantify the performance of the Canadian weather and snowpack model chain to represent thin critical avalanche layers on a large scale and in real time.
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024, https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary
Short summary
A glacial lake outburst flood (GLOF) is a natural hazard in which water from a glacier-fed lake is swiftly discharged, causing serious harm to life, infrastructure, and communities. We used numerical models to predict the potential consequences of a GLOF originating from the Thorthomi glacial lake in Bhutan. We found that if a GLOF occurs, the lake could release massive flood water within 4 h, posing a considerable risk. Study findings help to mitigate the impacts of future GLOFs.
Katharina Heike Horn, Stenka Vulova, Hanyu Li, and Birgit Kleinschmit
EGUsphere, https://doi.org/10.5194/egusphere-2024-1380, https://doi.org/10.5194/egusphere-2024-1380, 2024
Short summary
Short summary
In this study we applied Random Forest machine learning algorithm to model current and future forest fire susceptibility (FFS) in north-east Germany using anthropogenic, climatic, topographic, soil, and vegetation variables. Model accuracy ranged between 69 % to 71 % showing a moderately high model reliability for predicting FFS. The model results underline the importance of anthropogenic and vegetation parameters for FFS. This study will support regional forest fire prevention and management.
Håvard B. Toft, John Sykes, Andrew Schauer, Jordy Hendrikx, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 24, 1779–1793, https://doi.org/10.5194/nhess-24-1779-2024, https://doi.org/10.5194/nhess-24-1779-2024, 2024
Short summary
Short summary
Manual Avalanche Terrain Exposure Scale (ATES) mapping is time-consuming and inefficient for large-scale applications. The updated algorithm for automated ATES mapping overcomes previous limitations by including forest density data, improving the avalanche runout estimations in low-angle runout zones, accounting for overhead exposure and open-source software. Results show that the latest version has significantly improved its performance.
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 24, 1521–1537, https://doi.org/10.5194/nhess-24-1521-2024, https://doi.org/10.5194/nhess-24-1521-2024, 2024
Short summary
Short summary
Wildfires pose a significant risk to property located in the wildland–urban interface (WUI). To assess and mitigate this risk, we need to understand which characteristics of buildings and building arrangements make them more prone to damage. We used a combination of data collection and analysis methods to study the vulnerability of dwellings in the WUI for case studies in Chile and concluded that the spatial arrangement of houses has a substantial impact on their vulnerability to wildfires.
Martín Domínguez Durán, María Angélica Sandoval Garzón, and Carme Huguet
Nat. Hazards Earth Syst. Sci., 24, 1319–1339, https://doi.org/10.5194/nhess-24-1319-2024, https://doi.org/10.5194/nhess-24-1319-2024, 2024
Short summary
Short summary
In this study we created a cost-effective alternative to bridge the baseline information gap on indoor radon (a highly carcinogenic gas) in regions where measurements are scarce. We model indoor radon concentrations to understand its spatial distribution and the potential influential factors. We evaluated the performance of this alternative using a small number of measurements taken in Bogotá, Colombia. Our results show that this alternative could help in the making of future studies and policy.
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
EGUsphere, https://doi.org/10.5194/egusphere-2024-871, https://doi.org/10.5194/egusphere-2024-871, 2024
Short summary
Short summary
We present a spatial framework for extracting information about avalanche problems from detailed snowpack simulations and compare the numerical results against operational assessments from avalanche forecasters. Despite good aggreement in seasonal summary statistics, a comparison of daily assessments revealed considerable differences while it remained unclear which data source represented reality best. We discuss how snowpack simulations can add value to the forecasting process.
Bastian Bergfeld, Karl W. Birkeland, Valentin Adam, Philipp L. Rosendahl, and Alec van Herwijnen
EGUsphere, https://doi.org/10.5194/egusphere-2024-690, https://doi.org/10.5194/egusphere-2024-690, 2024
Short summary
Short summary
To release a slab avalanche, a crack in a weak snow layer beneath a cohesive slab has to propagate. Information on that is essential for assessing avalanche risk. In the field, information can be gathered with the Propagation Saw Test (PST). However, there are different standards on how to cut the PST. In this study, we experimentally investigate the effect of these different column geometries and provide models to correct for imprecise field test geometry effects on the critical cut length.
Monica Sund, Heidi A. Grønsten, and Siv Å. Seljesæter
Nat. Hazards Earth Syst. Sci., 24, 1185–1201, https://doi.org/10.5194/nhess-24-1185-2024, https://doi.org/10.5194/nhess-24-1185-2024, 2024
Short summary
Short summary
Slushflows are rapid mass movements of water-saturated snow released in gently sloping terrain (< 30°), often unexpectedly. Early warning is crucial to prevent casualties and damage to infrastructure. A regional early warning for slushflow hazard was established in Norway in 2013–2014 and has been operational since. We present a methodology using the ratio between water supply and snow depth by snow type to assess slushflow hazard. This approach is useful for other areas with slushflow hazard.
Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie
Nat. Hazards Earth Syst. Sci., 24, 999–1016, https://doi.org/10.5194/nhess-24-999-2024, https://doi.org/10.5194/nhess-24-999-2024, 2024
Short summary
Short summary
This work presents a drought index specifically adapted to subsidence, a seasonal phenomenon of soil shrinkage that occurs frequently in France and damages buildings. The index is computed from land surface model simulations and evaluated by a rank correlation test with insurance data. With its optimal configuration, the index is able to identify years of both zero and significant loss.
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci., 24, 947–971, https://doi.org/10.5194/nhess-24-947-2024, https://doi.org/10.5194/nhess-24-947-2024, 2024
Short summary
Short summary
The research validates and optimizes an automated approach for creating classified snow avalanche terrain maps using open-source geospatial modeling tools. Validation is based on avalanche-expert-based maps for two study areas. Our results show that automated maps have an overall accuracy equivalent to the average accuracy of three human maps. Automated mapping requires a fraction of the time and cost of traditional methods and opens the door for large-scale mapping of mountainous terrain.
Conor Hackett, Rafael de Andrade Moral, Gourav Mishra, Tim McCarthy, and Charles Markham
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-27, https://doi.org/10.5194/nhess-2024-27, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
This paper reviews existing wildfire propagation models and a comparison of different grid types including random grids to simulate wildfires. This paper finds that irregular grids simulate wildfires more efficiently than continuous models while still retaining a reasonable level of similarity. It also shows that irregular grids tend to retain greater similarity to continuous models than regular grids at the cost of slightly longer computational times.
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024, https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Short summary
With global warming increasing the frequency and intensity of wildfires in the boreal region, accurate risk assessments are becoming more crucial than ever before. The Canadian Fire Weather Index (FWI) is a renowned system, yet its effectiveness in peatlands, where hydrology plays a key role, is limited. By incorporating groundwater data from numerical models and satellite observations, our modified FWI improves the accuracy of fire danger predictions, especially over summer.
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024, https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary
Short summary
Following the destructive Lahaina Fire in Hawaii, our team has modeled the wind and fire spread processes to understand the drivers of this devastating event. The simulation results show that extreme winds with high variability, a fire ignition close to the community, and construction characteristics led to continued fire spread in multiple directions. Our results suggest that available modeling capabilities can provide vital information to guide decision-making during wildfire events.
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023, https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Short summary
We present statistical models to estimate the probability for natural dry-snow avalanche release and avalanche size based on the simulated layering of the snowpack. The benefit of these models is demonstrated in comparison with benchmark models based on the amount of new snow. From the validation with data sets of quality-controlled avalanche observations and danger levels, we conclude that these models may be valuable tools to support forecasting natural dry-snow avalanche activity.
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023, https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Short summary
We present the structure and performance of the early warning system (EWS) for glacier collapse and river blockages in the southeastern Tibetan Plateau. The EWS warned of three collapse–river blockage chain events and seven small-scale events. The volume and location of the collapses and the percentage of ice content influenced the velocities of debris flows. Such a study is helpful for understanding the mechanism of glacier hazards and for establishing similar EWSs in other high-risk regions.
Alba Marquez Torres, Giovanni Signorello, Sudeshna Kumar, Greta Adamo, Ferdinando Villa, and Stefano Balbi
Nat. Hazards Earth Syst. Sci., 23, 2937–2959, https://doi.org/10.5194/nhess-23-2937-2023, https://doi.org/10.5194/nhess-23-2937-2023, 2023
Short summary
Short summary
Only by mapping fire risks can we manage forest and prevent fires under current and future climate conditions. We present a fire risk map based on k.LAB, artificial-intelligence-powered and open-source software integrating multidisciplinary knowledge in near real time. Through an easy-to-use web application, we model the hazard with 84 % accuracy for Sicily, a representative Mediterranean region. Fire risk analysis reveals 45 % of vulnerable areas face a high probability of danger in 2050.
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023, https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
Short summary
Oftentimes when objective measurements are not possible, human estimates are used instead. In our study, we investigate the reproducibility of human judgement for size estimates, the mappings of avalanches from oblique photographs and remotely sensed imagery. The variability that we found in those estimates is worth considering as it may influence results and should be kept in mind for several applications.
Gerardo Romano, Marco Antonellini, Domenico Patella, Agata Siniscalchi, Andrea Tallarico, Simona Tripaldi, and Antonello Piombo
Nat. Hazards Earth Syst. Sci., 23, 2719–2735, https://doi.org/10.5194/nhess-23-2719-2023, https://doi.org/10.5194/nhess-23-2719-2023, 2023
Short summary
Short summary
The Nirano Salse (northern Apennines, Italy) is characterized by several active mud vents and hosts thousands of visitors every year. New resistivity models describe the area down to 250 m, improving our geostructural knowledge of the area and giving useful indications for a better understanding of mud volcano dynamics and for the better planning of safer tourist access to the area.
Harry Podschwit, William Jolly, Ernesto Alvarado, Andrea Markos, Satyam Verma, Sebastian Barreto-Rivera, Catherine Tobón-Cruz, and Blanca Ponce-Vigo
Nat. Hazards Earth Syst. Sci., 23, 2607–2624, https://doi.org/10.5194/nhess-23-2607-2023, https://doi.org/10.5194/nhess-23-2607-2023, 2023
Short summary
Short summary
We developed a model of fire spread that assumes that fire spreads in all directions at a constant speed and is extinguished at a constant rate. The model was fitted to 1003 fires in Peru between 2001 and 2020 using satellite burned area data from the GlobFire project. We fitted statistical models that predicted the spread and extinguish rates based on weather and land cover variables and found that these variables were good predictors of the spread and extinguish rates.
Anushilan Acharya, Jakob F. Steiner, Khwaja Momin Walizada, Salar Ali, Zakir Hussain Zakir, Arnaud Caiserman, and Teiji Watanabe
Nat. Hazards Earth Syst. Sci., 23, 2569–2592, https://doi.org/10.5194/nhess-23-2569-2023, https://doi.org/10.5194/nhess-23-2569-2023, 2023
Short summary
Short summary
All accessible snow and ice avalanches together with previous scientific research, local knowledge, and existing or previously active adaptation and mitigation solutions were investigated in the high mountain Asia (HMA) region to have a detailed overview of the state of knowledge and identify gaps. A comprehensive avalanche database from 1972–2022 is generated, including 681 individual events. The database provides a basis for the forecasting of avalanche hazards in different parts of HMA.
Caili Zhong, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci
Nat. Hazards Earth Syst. Sci., 23, 1755–1768, https://doi.org/10.5194/nhess-23-1755-2023, https://doi.org/10.5194/nhess-23-1755-2023, 2023
Short summary
Short summary
This paper introduces a digital twin fire model using machine learning techniques to improve the efficiency of global wildfire predictions. The proposed model also manages to efficiently adjust the prediction results thanks to data assimilation techniques. The proposed digital twin runs 500 times faster than the current state-of-the-art physics-based model.
Abby Morgan, Pascal Haegeli, Henry Finn, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 23, 1719–1742, https://doi.org/10.5194/nhess-23-1719-2023, https://doi.org/10.5194/nhess-23-1719-2023, 2023
Short summary
Short summary
The avalanche danger scale is a critical component for communicating the severity of avalanche hazard conditions to the public. We examine how backcountry recreationists in North America understand and use the danger scale for planning trips into the backcountry. Our results provide an important user perspective on the strengths and weaknesses of the existing scale and highlight opportunities for future improvements.
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023, https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary
Short summary
Hazards from glaciers are becoming more likely as the climate warms, which poses a threat to communities living beneath them. We have developed a new camera system which can capture regular, high-quality 3D models to monitor small changes in glaciers which could be indicative of a future hazard. This system is far cheaper than more typical camera sensors yet produces very similar quality data. We suggest that deploying these cameras near glaciers could assist in warning communities of hazards.
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023, https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
Short summary
For a slab avalanche to release, the snowpack must facilitate crack propagation over large distances. Field measurements on crack propagation at this scale are very scarce. We performed a series of experiments, up to 10 m long, over a period of 10 weeks. Beside the temporal evolution of the mechanical properties of the snowpack, we found that crack speeds were highest for tests resulting in full propagation. Based on these findings, an index for self-sustained crack propagation is proposed.
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023, https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Short summary
In this study, we developed a machine learning model to identify dominant controls of wildfire in Fennoscandia and produce monthly fire danger probability maps. The dominant control was shallow-soil water anomaly, followed by air temperature and deep soil water. The model proved skilful with a similar performance as the existing Canadian Forest Fire Weather Index (FWI). We highlight the benefit of using data-driven models jointly with other fire models to improve fire monitoring and prediction.
Yi Victor Wang and Antonia Sebastian
Nat. Hazards Earth Syst. Sci., 22, 4103–4118, https://doi.org/10.5194/nhess-22-4103-2022, https://doi.org/10.5194/nhess-22-4103-2022, 2022
Short summary
Short summary
In this article, we propose an equivalent hazard magnitude scale and a method to evaluate and compare the strengths of natural hazard events across different hazard types, including earthquakes, tsunamis, floods, droughts, forest fires, tornadoes, cold waves, heat waves, and tropical cyclones. With our method, we determine that both the February 2021 North American cold wave event and Hurricane Harvey in 2017 were equivalent to a magnitude 7.5 earthquake in hazard strength.
Michael A. Storey and Owen F. Price
Nat. Hazards Earth Syst. Sci., 22, 4039–4062, https://doi.org/10.5194/nhess-22-4039-2022, https://doi.org/10.5194/nhess-22-4039-2022, 2022
Short summary
Short summary
Models are needed to understand and predict pollutant output from forest fires so fire agencies can reduce smoke-related risks to human health. We modelled air quality (PM2.5) based on fire area and weather variables. We found fire area and boundary layer height were influential on predictions, with distance, temperature, wind speed and relative humidity also important. The models predicted reasonably accurately in comparison to other existing methods but would benefit from further development.
Tomás Calheiros, Akli Benali, Mário Pereira, João Silva, and João Nunes
Nat. Hazards Earth Syst. Sci., 22, 4019–4037, https://doi.org/10.5194/nhess-22-4019-2022, https://doi.org/10.5194/nhess-22-4019-2022, 2022
Short summary
Short summary
Fire weather indices are used to assess the effect of weather on wildfires. Fire weather risk was computed and combined with large wildfires in Portugal. Results revealed the influence of vegetation cover: municipalities with a prevalence of shrublands, located in eastern parts, burnt under less extreme conditions than those with higher forested areas, situated in coastal regions. These findings are a novelty for fire science in Portugal and should be considered for fire management.
Ana C. L. Sá, Bruno Aparicio, Akli Benali, Chiara Bruni, Michele Salis, Fábio Silva, Martinho Marta-Almeida, Susana Pereira, Alfredo Rocha, and José Pereira
Nat. Hazards Earth Syst. Sci., 22, 3917–3938, https://doi.org/10.5194/nhess-22-3917-2022, https://doi.org/10.5194/nhess-22-3917-2022, 2022
Short summary
Short summary
Assessing landscape wildfire connectivity supported by wildfire spread simulations can improve fire hazard assessment and fuel management plans. Weather severity determines the degree of fuel patch connectivity and thus the potential to spread large and intense wildfires. Mapping highly connected patches in the landscape highlights patch candidates for prior fuel treatments, which ultimately will contribute to creating fire-resilient Mediterranean landscapes.
Simon K. Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci., 22, 3765–3785, https://doi.org/10.5194/nhess-22-3765-2022, https://doi.org/10.5194/nhess-22-3765-2022, 2022
Short summary
Short summary
This study demonstrates how the threat of a very large outburst from a future lake can be feasibly assessed alongside that from current lakes to inform disaster risk management within a transboundary basin between Tibet and Nepal. Results show that engineering measures and early warning systems would need to be coupled with effective land use zoning and programmes to strengthen local response capacities in order to effectively reduce the risk associated with current and future outburst events.
Markéta Součková, Roman Juras, Kryštof Dytrt, Vojtěch Moravec, Johanna Ruth Blöcher, and Martin Hanel
Nat. Hazards Earth Syst. Sci., 22, 3501–3525, https://doi.org/10.5194/nhess-22-3501-2022, https://doi.org/10.5194/nhess-22-3501-2022, 2022
Short summary
Short summary
Avalanches are natural hazards that threaten people and infrastructure. With climate change, avalanche activity is changing. We analysed the change in frequency and size of avalanches in the Krkonoše Mountains, Czechia, and detected important variables with machine learning tools from 1979–2020. Wet avalanches in February and March have increased, and slab avalanches have decreased and become smaller. The identified variables and their threshold levels may help in avalanche decision-making.
Annalie Dorph, Erica Marshall, Kate A. Parkins, and Trent D. Penman
Nat. Hazards Earth Syst. Sci., 22, 3487–3499, https://doi.org/10.5194/nhess-22-3487-2022, https://doi.org/10.5194/nhess-22-3487-2022, 2022
Short summary
Short summary
Wildfire spatial patterns are determined by fire ignition sources and vegetation fuel moisture. Fire ignitions can be mediated by humans (owing to proximity to human infrastructure) or caused by lightning (owing to fuel moisture, average annual rainfall and local weather). When moisture in dead vegetation is below 20 % the probability of a wildfire increases. The results of this research enable accurate spatial mapping of ignition probability to aid fire suppression efforts and future research.
John Sykes, Pascal Haegeli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 3247–3270, https://doi.org/10.5194/nhess-22-3247-2022, https://doi.org/10.5194/nhess-22-3247-2022, 2022
Short summary
Short summary
Automated snow avalanche terrain mapping provides an efficient method for large-scale assessment of avalanche hazards, which informs risk management decisions for transportation and recreation. This research reduces the cost of developing avalanche terrain maps by using satellite imagery and open-source software as well as improving performance in forested terrain. The research relies on local expertise to evaluate accuracy, so the methods are broadly applicable in mountainous regions worldwide.
Ivana Čavlina Tomašević, Kevin K. W. Cheung, Višnjica Vučetić, Paul Fox-Hughes, Kristian Horvath, Maja Telišman Prtenjak, Paul J. Beggs, Barbara Malečić, and Velimir Milić
Nat. Hazards Earth Syst. Sci., 22, 3143–3165, https://doi.org/10.5194/nhess-22-3143-2022, https://doi.org/10.5194/nhess-22-3143-2022, 2022
Short summary
Short summary
One of the most severe and impactful urban wildfire events in Croatian history has been reconstructed and analyzed. The study identified some important meteorological influences related to the event: the synoptic conditions of the Azores anticyclone, cold front, and upper-level shortwave trough all led to the highest fire weather index in 2017. A low-level jet, locally known as bura wind that can be explained by hydraulic jump theory, was the dynamic trigger of the event.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Fátima Arrogante-Funes, Inmaculada Aguado, and Emilio Chuvieco
Nat. Hazards Earth Syst. Sci., 22, 2981–3003, https://doi.org/10.5194/nhess-22-2981-2022, https://doi.org/10.5194/nhess-22-2981-2022, 2022
Short summary
Short summary
We show that ecological value might be reduced by 50 % due to fire perturbation in ecosystems that have not developed in the presence of fire and/or that present changes in the fire regime. The biomes most affected are tropical and subtropical forests, tundra, and mangroves. Integration of biotic and abiotic fire regime and regeneration factors resulted in a powerful way to map ecological vulnerability to fire and develop assessments to generate adaptation plans of management in forest masses.
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-22-2673-2022, https://doi.org/10.5194/nhess-22-2673-2022, 2022
Short summary
Short summary
Natural hazard modelers simulate mass movements to better anticipate the risk to people and infrastructure. These simulations require accurate digital elevation models. We test the sensitivity of a well-established snow avalanche model (RAMMS) to the source and spatial resolution of the elevation model. We find key differences in the digital representation of terrain greatly affect the simulated avalanche results, with implications for hazard planning.
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 22, 1973–2000, https://doi.org/10.5194/nhess-22-1973-2022, https://doi.org/10.5194/nhess-22-1973-2022, 2022
Short summary
Short summary
Avalanche bulletins include travel and terrain statements to provide recreationists with tangible guidance about how to apply the hazard information. We examined which bulletin users pay attention to these statements, what determines their usefulness, and how they could be improved. Our study shows that reducing jargon and adding simple explanations can significantly improve the usefulness of the statements for users with lower levels of avalanche awareness education who depend on this advice.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022, https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Short summary
Can the resolution of forecasts of avalanche danger be increased by using a combination of absolute and comparative judgments? Using 5 years of Swiss avalanche forecasts, we show that, on average, sub-levels assigned to a danger level reflect the expected increase in the number of locations with poor snow stability and in the number and size of avalanches with increasing forecast sub-level.
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022, https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary
Short summary
To calculate and visualize the potential avalanche hazard, we develop a method that automatically and efficiently pinpoints avalanche starting zones and simulate their runout for the entire canton of Grisons. The maps produced in this way highlight areas that could be endangered by avalanches and are extremely useful in multiple applications for the cantonal authorities, including the planning of new infrastructure, making alpine regions more safe.
Tero M. Partanen and Mikhail Sofiev
Nat. Hazards Earth Syst. Sci., 22, 1335–1346, https://doi.org/10.5194/nhess-22-1335-2022, https://doi.org/10.5194/nhess-22-1335-2022, 2022
Short summary
Short summary
The presented method aims to forecast regional wildfire-emitted radiative power in a time-dependent manner several days in advance. The temporal fire radiative power can be converted to an emission production rate, which can be implemented in air quality forecasting simulations. It is shown that in areas with a high incidence of wildfires, the fire radiative power is quite predictable, but otherwise it is not.
Christos Bountzouklis, Dennis M. Fox, and Elena Di Bernardino
Nat. Hazards Earth Syst. Sci., 22, 1181–1200, https://doi.org/10.5194/nhess-22-1181-2022, https://doi.org/10.5194/nhess-22-1181-2022, 2022
Short summary
Short summary
The study addresses the evolution of burned areas in southeastern France from 1970 to 2019 through the scope of a firefighting policy shift in 1994 that resulted in a significant decrease in the burned area. Regions with large fires were particularly impacted, whereas, in other areas, the fires remained frequent and occurred closer to built-up zones. Environmental characteristics such as south-facing slopes and low vegetation (bushes) are increasingly associated with burned areas.
Louis Védrine, Xingyue Li, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 22, 1015–1028, https://doi.org/10.5194/nhess-22-1015-2022, https://doi.org/10.5194/nhess-22-1015-2022, 2022
Short summary
Short summary
This study investigates how forests affect the behaviour of snow avalanches through the evaluation of the amount of snow stopped by the trees and the analysis of energy dissipation mechanisms. Different avalanche features and tree configurations have been examined, leading to the proposal of a unified law for the detrained snow mass. Outcomes from this study can be directly implemented in operational models for avalanche risk assessment and contribute to improved forest management strategy.
Cited articles
Al-Rawi, K. R., Casanova, J. L., and Romo, A.: IFEMS: a new approach for monitoring wildfire evolution with NOAA-AVHRR imagery, Int. J. Remote Sens., 22, 2033–2042, 2001.
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019.
Andrews, P. L.: How to generate and interpret fire characteristics charts for surface and crown fire behavior, US Department of Agriculture, Forest Service, Rocky Mountain Research Station, ISBN-13 9781480144781, 2011.
Angelis, A., Bajocco, S., and Ricotta, C.: Phenological variability drives the distribution of wildfires in Sardinia, Landscape Ecol., 27, 1535–1545, https://doi.org/10.1007/s10980-012-9808-2, 2012.
Barros, A. and Pereira, J.: Wildfire Selectivity for Land Cover Type: Does Size Matter?, PLoS ONE, 9, e84760, https://doi.org/10.1371/journal.pone.0084760, 2014.
Belcher, C. M., Brown, I., Clay, G. D., Doerr, S. H., Elliott, A., Gazzard, R., Kettridge, N., Morison, J., Perry, M., and Smith, T. E. L.: UK Wildfires and their Climate Challenges, E Third UK Clim. Change Risk Assess, CCRA3, 79, 16, 2021.
Benali, A., Russo, A., Sá, A. C. L., Pinto, R. M. S., Price, O., Koutsias, N., and Pereira, J. M. C.: Determining Fire Dates and Locating Ignition Points With Satellite Data, Remote Sens.-Basel, 8, 326, https://doi.org/10.3390/rs8040326, 2016.
Cardil, A., Monedero, S., Ramírez, J., and Silva, C. A.: Assessing and reinitializing wildland fire simulations through satellite active fire data, J. Environ. Manage., 231, 996–1003, https://doi.org/10.1016/j.jenvman.2018.10.115, 2019.
Chen, Y., Hantson, S., Andela, N., Coffield, S. R., Graff, C. A., Morton, D. C., Ott, L. E., Foufoula-Georgiou, E., Smyth, P., Golden, M. L., and Randerson, J. T.: California wildfire spread derived using VIIRS satellite observations and an object-based tracking system, Scientific Data, 9, 1–15, 2022.
Chéret, V. and Denux, J. P.: Mapping wildfire danger at regional scale with an index model integrating coarse spatial resolution remote sensing data, J. Geophys. Res.-Biogeo., 112, G02006, https://doi.org/10.1029/2005JG000125, 2007.
Chuine, I. and Cour, P.: Climatic determinants of budburst seasonality in four temperate-zone tree species, New Phytol., 143, 339–349, 1999.
Chuvieco, E. and Martin, M. P.: A simple method for Are growth mapping using AVHRR channel 3 data, Remote Sens.-Basel, 15, 3141–3146, 1994.
Cui, W. and Perera, A. H.: What do we know about forest fire size distribution, and why is this knowledge useful for forest management?, Int. J. Wildland Fire, 17, 234–244, 2008.
Davies, G. M., Legg, C. J., O'hara, R., MacDonald, A. J., and Smith, A. A.: Winter desiccation and rapid changes in the live fuel moisture content of Calluna vulgaris, Plant Ecol. Divers., 3, 289–299, 2010.
de Jong, M. C., Wooster, M. J., Kitchen, K., Manley, C., Gazzard, R., and McCall, F. F.: Calibration and evaluation of the Canadian Forest Fire Weather Index (FWI) System for improved wildland fire danger rating in the United Kingdom, Nat. Hazards Earth Syst. Sci., 16, 1217–1237, https://doi.org/10.5194/nhess-16-1217-2016, 2016.
Department of Agriculture, Food and the Marine: Prescribed Burning Code of Practice – Ireland, https://www.gov.ie/en/publication/01773-fire-management/ (last access: January 2022), 2021.
de Rigo, D., Libertà, G., Houston Durrant, T., Vivancos, T. A., and
San-Miguel-Ayanz, J.: Forest fire danger extremes in Europe under climate change: variability and uncertainty, Publications Office of the European Union, https://doi.org/10.2760/13180, 2017.
European Union: Corine Land Cover (CLC) 2018, Copernicus Land Monitoring Service [data set], https://land.copernicus.eu/pan-european/corine-land-cover (last access: January 2022), 2019.
Fares, S., Bajocco, S., Salvati, L., Camarretta, N., Dupuy, J.-L., Xanthopoulos, G., Guijarro, M., Madrigal, J., Hernando, C., and Corona, P.: Characterizing potential wildland fire fuel in live vegetation in the Mediterranean region, Ann. For. Sci., 74, 1, 2017.
Feranec, J., Jaffrain, G., Soukup, T., and Hazeu, G.: Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data, Appl. Geogr., 30, 19–35, 2010.
Fernandez-Anez, N., Krasovskiy, A., Müller, M., Vacik, H., Baetens, J., Hukić, E., Kapovic Solomun, M., Atanassova, I., Glushkova, M., and Bogunović, I.: Current wildland fire patterns and challenges in Europe: a synthesis of national perspectives, Air Soil Water Res., 14, 11786221211028184, https://doi.org/10.1177/11786221211028185, 2021.
Fire Management: https://www.gov.ie/en/publication/01773-fire-management/, last access: 18 November 2021.
Foresty Commission England: Wildfire Statistics for England 2009–10 to 2016–17, Forestry Commission England, Bristol, https://www.gov.uk/government/publications/forestry-commission-england-wildfire-statistics-for-england-2009-10-to-2016-17 (last access: January 2022), 2019.
Gazzard, R., McMorrow, J., and Aylen, J.: Wildfire policy and management in England: an evolving response from Fire and Rescue Services, forestry and cross-sector groups, Philos. T. Roy. Soc. B, 371, 20150341, https://doi.org/10.1098/rstb.2015.0341, 2016.
Gill, A. M., and Allan, G.: Large fires, fire effects and the fire-regime concept, Int. J. Wildland Fire, 17, 688–695, https://doi.org/10.1071/WF07145, 2008.
Girden, E..: ANOVA: Repeated measures, no. 84, Sage University Papers Series, ISBN-13 9780803942578, 1991.
Guidance – The Muirburn Code: https://www.nature.scot/doc/guidance-muirburn-code, last access: 19 November 2021.
Hantson, S., Pueyo, S., and Chuvieco, E.: Global fire size distribution is driven by human impact and climate, Global Ecol. Biogeogr., 24, 77–86, 2015.
Hantson, S., Andela, N., Goulden, M. L., and Randerson, J. T.: Human-ignited fires result in more extreme fire behavior and ecosystem impacts, Nat. Commun., 13, 1–8, 2022.
Heather and grass burning: rules and applying for a licence: https://www.gov.uk/guidance/heather-and-grass-burning-apply-for-a-licence, last access: 19 November 2021.
Huang, X. and Rein, G.: Downward spread of smouldering peat fire: the role of moisture, density and oxygen supply, Int. J. Wildland Fire, 26, 907–918, 2017.
Jin, Y., Goulden, M. L., Faivre, N., Veraverbeke, S., Sun, F., Hall, A., Hand, M. S., Hook, S., and Randerson, J. T.: Identification of two distinct fire regimes in Southern California: implications for economic impact and future change, Environ. Res. Lett., 10, 094005, https://doi.org/10.1088/1748-9326/10/9/094005, 2015.
Johnston, J. M., Jackson, N., McFayden, C., Ngo Phong, L., Lawrence, B., Davignon, D., Wooster, M. J., van Mierlo, H., Thompson, D. K., and Cantin, A. S.: Development of the User Requirements for the Canadian WildFireSat Satellite Mission, Sensors, 20, 5081, 2020.
Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., and Bradstock, R. A.: Fire as an evolutionary pressure shaping plant traits, Trends Plant Sci., 16, 406–411, https://doi.org/10.1016/j.tplants.2011.04.002, 2011.
Kitzberger, T., Perry, G. L. W., Paritsis, J., Gowda, J. H., Tepley, A. J., Holz, A., and Veblen, T. T.: Fire–vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand, New Zeal. J. Bot., 54, 247–272, 2016.
Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Dorn, J. V., and Hayhoe, K.: Global Pyrogeography: the Current and Future Distribution of Wildfire, PLoS ONE, 4, e5102, https://doi.org/10.1371/journal.pone.0005102, 2009.
Le Houérou, H. N.: Fire and vegetation in the Mediterranean Basin, FAO, ISSN 0082-1527, 1973.
Liu, X., He, B., Quan, X., Yebra, M., Qiu, S., Yin, C., Liao, Z., and Zhang, H.: Near Real-Time Extracting Wildfire Spread Rate from Himawari-8 Satellite Data, Remote Sens.-Basel, 10, 1654, https://doi.org/10.3390/rs10101654, 2018.
Loboda, T. V. and Csiszar, I. A.: Reconstruction of fire spread within wildland fire events in Northern Eurasia from the MODIS active fire product, Global Planet. Change, 56, 258–273, https://doi.org/10.1016/j.gloplacha.2006.07.015, 2007.
Lung, T., Lavalle, C., Hiederer, R., Dosio, A., and Bouwer, L. M.: A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change, Global Environ. Chang., 23, 522–536, https://doi.org/10.1016/j.gloenvcha.2012.11.009, 2013.
McWethy, D. B., Higuera, P. E., Whitlock, C., Veblen, T. T., Bowman, D. M. J. S., Cary, G. J., Haberle, S. G., Keane, R. E., Maxwell, B. D., McGlone, M. S., Perry, G. L. W., Wilmshurst, J. M., Holz, A., and Tepley, A. J.: A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes, Global Ecol. Biogeogr., 22, 900–912, https://doi.org/10.1111/geb.12038, 2013.
Miller, R. G., Tangney, R., Enright, N. J., Fontaine, J. B., Merritt, D. J., Ooi, M. K., Ruthrof, K. X., and Miller, B. P.: Mechanisms of fire seasonality effects on plant populations, Trends Ecol. Evol., 34, 1104–1117, 2019.
Moreira, F., Vaz, P., Catry, F., and Silva, J. S.: Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard, Int. J. Wildland Fire, 18, 563–574, 2009.
Moreno, M. V. and Chuvieco, E.: Characterising fire regimes in Spain from fire statistics, Int. J. Wildland Fire, 22, 296–305, 2013.
Moritz, M. A., Parisien, M.-A., Batllori, E., Krawchuk, M. A., Dorn, J. V., Ganz, D. J., and Hayhoe, K.: Climate change and disruptions to global fire activity, Ecosphere, 3, art49, https://doi.org/10.1890/ES11-00345.1, 2012.
Oliva, P. and Schroeder, W.: Assessment of VIIRS 375 m active fire detection product for direct burned area mapping, Remote Sens. Environ., 160, 144–155, https://doi.org/10.1016/j.rse.2015.01.010, 2015.
Parsons, R., Jolly, W. M., Hoffman, C., and Ottmar, R.: The role
of fuels in extreme fire behavior, Synthesis of Knowledge of Extreme Fire
Behavior: Volume 2 for fire behavior specialists, researchers, and meteorologists, 55–82, https://doi.org/10.2737/PNW-GTR-891, 2016.
Pausas, J. G. and Paula, S.: Fuel shapes the fire–climate relationship: evidence from Mediterranean ecosystems, Global Ecol. Biogeogr., 21, 1074–1082, 2012.
Rein, G. and Huang, X.: Smouldering wildfires in peatlands, forests and the arctic: Challenges and perspectives, Current Opinion in Environmental Science and Health, 24, 100296, https://doi.org/10.1016/j.coesh.2021.100296, 2021.
Sá, A. C. L., Benali, A., Fernandes, P. M., Pinto, R. M. S., Trigo, R. M., Salis, M., Russo, A., Jerez, S., Soares, P. M. M., Schroeder, W., and Pereira, J. M. C.: Evaluating fire growth simulations using satellite active fire data, Remote Sens. Environ., 190, 302–317, https://doi.org/10.1016/j.rse.2016.12.023, 2017.
San-Miguel-Ayanz, J., Durrant, T., Boca, R., Libertà, G., Branco, A., de Rigo, D., Ferrari, D., Maianti, P., Artes, V., Oom, D., Pfeiffer, H., Nuijten, D., and Leray, T.: JRC Technical Report – Forest Fires in Europe, Middle East and North Africa 2018, Publ. Off. Eur. Union, 164, https://doi.org/10.2760/561734, 2019.
San-Miguel-Ayanz, J., Durrant, T., Boca, R., Libertà, G., Branco, A., de Rigo, D., Ferrari, D., Maianti, P., Artes, V., Oom, D., Pfeiffer, H., Grecchi, R., Nuijten, D., Onida, M., and Loffler, P.: JRC Technical Report – Forest Fires in Europe, Middle East and North Africa 2020, Publ. Off. Eur. Union, 174, https://doi.org/10.2760/059331, 2021.
Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I. A.: The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment, Remote Sens. Environ., 143, 85–96, 2014.
Stoof, C. R., Tapia, V. M., Marcotte, A. L., Cardil, A., Stoorvogel, J. J., and Castellnou Ribau, M.: Relatie tussen natuurbeheer en brandveiligheid in de Deurnese Peel: onderzoek naar aanleiding van de brand in de Deurnese Peel van 20 april 2020, Wageningen University and Research, Wageningen, https://doi.org/10.18174/533574, 2020.
Sundseth, K., Houston, J., and Eriksson, M.: Natura 2000 in the Atlantic Region, Office for Official Publications of the European Communities, LU, 12 pp., https://data.europa.eu/doi/10.2779/82343 (last access: December 2019), 2009.
Tapia, V. M., Monedero, S., Little, K., de Miguel, S.,
Stoof C., Cardíl, A, and Quiñones, T.: Northwestern Europe Wildfire Perimeter Polygons [2012–2020], Zenodo [data set], https://doi.org/10.5281/zenodo.7019770, 2022.
Tedim, F., Xanthopoulos, G., and Leone, V.: Forest fires in Europe: Facts and challenges, in: Wildfire hazards, risks and disasters, Elsevier, 77–99, https://doi.org/10.1016/B978-0-12-410434-1.00005-1, 2015.
Vaillant, N. M., Fites-Kaufman, J., Reiner, A. L., Noonan-Wright, E. K., and Dailey, S. N.: Effect of Fuel Treatments on Fuels and Potential Fire Behavior in California, USA, National Forests, Fire Ecol., 5, 14–29, https://doi.org/10.4996/fireecology.0502014, 2009.
Veraverbeke, S., Sedano, F., Hook, S. J., Randerson, J. T.,
Jin, Y., and Rogers, B. M.: Mapping the daily progression of large wildland fires using MODIS active fire data, Int. J. Wildland Fire, 23, 655–667, https://doi.org/10.1071/WF13015, 2014.
Short summary
This study aims to unravel large-fire behavior in northwest Europe, a temperate region with a projected increase in wildfire risk. We propose a new method to identify wildfire rate of spread from satellites because it is important to know periods of elevated fire risk for suppression methods and land management. Results indicate that there is a peak in the area burned and rate of spread in the months of March and April, and there are significant differences for forest-type land covers.
This study aims to unravel large-fire behavior in northwest Europe, a temperate region with a...
Altmetrics
Final-revised paper
Preprint