Articles | Volume 23, issue 11
https://doi.org/10.5194/nhess-23-3509-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-3509-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Back analysis of a building collapse under snow and rain loads in a Mediterranean area
Isabelle Ousset
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Damien Raynaud
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Thierry Faug
Univ. Grenoble Alpes, INRAE, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Related authors
Philomène Favier, David Bertrand, Nicolas Eckert, Isabelle Ousset, and Mohamed Naaim
Nat. Hazards Earth Syst. Sci., 18, 2507–2524, https://doi.org/10.5194/nhess-18-2507-2018, https://doi.org/10.5194/nhess-18-2507-2018, 2018
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
EGUsphere, https://doi.org/10.5194/egusphere-2025-1779, https://doi.org/10.5194/egusphere-2025-1779, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Traditional precipitation analyses often misrepresent intense rainfall's spatial variability. This study evaluates different spatial covariances to capture this variability in a geostatistical framework. The best covariance includes anisotropy derived from daily climate model simulations, offering a reliable alternative to anisotropy estimation using rain gauges. These findings highlight the importance of including anisotropy when generating precipitation inputs for hydrological modeling.
Elisa Kamir, Samuel Morin, Guillaume Evin, Penelope Gehring, Bodo Wichura, and Ali Nadir Arslan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-225, https://doi.org/10.5194/essd-2025-225, 2025
Preprint under review for ESSD
Short summary
Short summary
This article describes a dataset of annual snow depth maximum across Europe, from 1961 to 2015, based on a regional reanalysis. It evaluates the performance of the dataset, against in-situ snow depth observations. This dataset is found to perform well in most environments, with challenges at high elevation and some coastal areas. Assessing the quality of this dataset is necessary in order to use it as a baseline to infer future changes of extreme snow loads under climate change.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Yves Tramblay, Guillaume Thirel, Laurent Strohmenger, Guillaume Evin, Lola Corre, Louis Heraut, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1635, https://doi.org/10.5194/egusphere-2025-1635, 2025
Short summary
Short summary
How climate change impacts floods in France? Using simulations for 3000 rivers in climate projections, results show that flood trends vary depending on the region. In the north, floods may become more severe, but in many other areas, the trends are mixed. Floods from intense rainfall are becoming more frequent, while snowmelt floods are strongly decreasing. Overall, the study shows that understanding what causes floods is key to predicting how they are likely to change with the climate.
Maria Staudinger, Martina Kauzlaric, Alexandre Mas, Guillaume Evin, Benoit Hingray, and Daniel Viviroli
Nat. Hazards Earth Syst. Sci., 25, 247–265, https://doi.org/10.5194/nhess-25-247-2025, https://doi.org/10.5194/nhess-25-247-2025, 2025
Short summary
Short summary
Various combinations of antecedent conditions and precipitation result in floods of varying degrees. Antecedent conditions played a crucial role in generating even large ones. The key predictors and spatial patterns of antecedent conditions leading to flooding at the basin's outlet were distinct. Precipitation and soil moisture from almost all sub-catchments were important for more frequent floods. For rarer events, only the predictors of specific sub-catchments were important.
Saoirse Robin Goodwin, Thierry Faug, and Guillaume Chambon
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-123, https://doi.org/10.5194/nhess-2024-123, 2024
Preprint withdrawn
Short summary
Short summary
This paper considers how we can objectivity define stoppage of numerically-modelled snow avalanches. When modelling real topographies, numerically-modelled avalanche snow velocities typically do not converge to 0, so stoppage is defined with arbitrary criteria, which must be tuned on a case-by-case basis. We propose a new objective arrest criterion based on local flow properties, in tandem with a newly-implemented physical yielding criterion.
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024, https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Short summary
The increase in precipitation as a function of elevation is poorly understood in areas with complex topography. In this article, the reproduction of these orographic gradients is assessed with several precipitation products. The best product is a simulation from a convection-permitting regional climate model. The corresponding seasonal gradients vary significantly in space, with higher values for the first topographical barriers exposed to the dominant air mass circulations.
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, David Penot, Francois Colleoni, Alexandre Mas, Pierre-André Garambois, and Olivier Laurantin
Hydrol. Earth Syst. Sci., 28, 261–281, https://doi.org/10.5194/hess-28-261-2024, https://doi.org/10.5194/hess-28-261-2024, 2024
Short summary
Short summary
Hydrological modelling of mountainous catchments is challenging for many reasons, the main one being the temporal and spatial representation of precipitation forcings. This study presents an evaluation of the hydrological modelling of 55 small mountainous catchments of the northern French Alps, focusing on the influence of the type of precipitation reanalyses used as inputs. These evaluations emphasize the added value of radar measurements, in particular for the reproduction of flood events.
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023, https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Short summary
We assess projected changes in snowfall extremes in the French Alps as a function of elevation and global warming level for a high-emission scenario. On average, heavy snowfall is projected to decrease below 3000 m and increase above 3600 m, while extreme snowfall is projected to decrease below 2400 m and increase above 3300 m. At elevations in between, an increase is projected until +3 °C of global warming and then a decrease. These results have implications for the management of risks.
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023, https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Short summary
High-resolution precipitation data, needed for many applications in hydrology, are typically rare. Such data can be simulated from daily precipitation with stochastic disaggregation. In this work, multiplicative random cascades are used to disaggregate time series of 40 min precipitation from daily precipitation for 81 Swiss stations. We show that very relevant statistics of precipitation are obtained when precipitation asymmetry is accounted for in a continuous way in the cascade generator.
Juliette Blanchet, Alix Reverdy, Antoine Blanc, Jean-Dominique Creutin, Périne Kiennemann, and Guillaume Evin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-197, https://doi.org/10.5194/hess-2023-197, 2023
Revised manuscript not accepted
Short summary
Short summary
The Alpine region is strongly affected by torrential floods, sometimes leading to severe negative impacts on society, economy, and the environment. Understanding such natural hazards and their drivers is essential to mitigate related risks. In this article we study the atmospheric conditions at the origin of damaging torrential events in the Northern French Alps over the long run, using a database of reported occurrence of damaging torrential flooding in the Grenoble conurbation since 1851.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
Nat. Hazards Earth Syst. Sci., 23, 1769–1787, https://doi.org/10.5194/nhess-23-1769-2023, https://doi.org/10.5194/nhess-23-1769-2023, 2023
Short summary
Short summary
In mountain catchments, damage during floods is generally primarily driven by the supply of a massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper uses data gathered during the maintenance operation of about 100 debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Cécile Duvillier, Nicolas Eckert, Guillaume Evin, and Michael Deschâtres
Nat. Hazards Earth Syst. Sci., 23, 1383–1408, https://doi.org/10.5194/nhess-23-1383-2023, https://doi.org/10.5194/nhess-23-1383-2023, 2023
Short summary
Short summary
This study develops a method that identifies individual potential release areas (PRAs) of snow avalanches based on terrain analysis and watershed delineation and demonstrates its efficiency in the French Alps context using an extensive cadastre of past avalanche limits. Results may contribute to better understanding local avalanche hazard. The work may also foster the development of more efficient PRA detection methods based on a rigorous evaluation scheme.
Juliette Blanchet, Alix Reverdy, Antoine Blanc, Jean-Dominique Creutin, Périne Kiennemann, and Guillaume Evin
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-276, https://doi.org/10.5194/nhess-2022-276, 2023
Manuscript not accepted for further review
Short summary
Short summary
We study the atmospheric conditions at the origin of damaging torrential events in the Northern French Alps over the long run. We consider seven atmospheric variables that describe the nature of the air masses involved and the possible triggers of precipitation and we try to isolate the most discriminating variables. The results show that humidity and particularly humidity transport plays the greatest role under westerly flows while instability potential is mostly at play under southerly flows.
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci., 22, 2891–2920, https://doi.org/10.5194/nhess-22-2891-2022, https://doi.org/10.5194/nhess-22-2891-2022, 2022
Short summary
Short summary
Estimating the magnitude of rare to very rare floods is a challenging task due to a lack of sufficiently long observations. The challenge is even greater in large river basins, where precipitation patterns and amounts differ considerably between individual events and floods from different parts of the basin coincide. We show that a hydrometeorological model chain can provide plausible estimates in this setting and can thus inform flood risk and safety assessments for critical infrastructure.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Earth Syst. Dynam., 13, 1059–1075, https://doi.org/10.5194/esd-13-1059-2022, https://doi.org/10.5194/esd-13-1059-2022, 2022
Short summary
Short summary
Anticipating risks related to climate extremes is critical for societal adaptation to climate change. In this study, we propose a statistical method in order to estimate future climate extremes from past observations and an ensemble of climate change simulations. We apply this approach to snow load data available in the French Alps at 1500 m elevation and find that extreme snow load is projected to decrease by −2.9 kN m−2 (−50 %) between 1986–2005 and 2080–2099 for a high-emission scenario.
Guillaume Evin, Samuel Somot, and Benoit Hingray
Earth Syst. Dynam., 12, 1543–1569, https://doi.org/10.5194/esd-12-1543-2021, https://doi.org/10.5194/esd-12-1543-2021, 2021
Short summary
Short summary
This research paper proposes an assessment of mean climate change responses and related uncertainties over Europe for mean seasonal temperature and total seasonal precipitation. An advanced statistical approach is applied to a large ensemble of 87 high-resolution EURO-CORDEX projections. For the first time, we provide a comprehensive estimation of the relative contribution of GCMs and RCMs, RCP scenarios, and internal variability to the total variance of a very large ensemble.
Guillaume Evin, Matthieu Lafaysse, Maxime Taillardat, and Michaël Zamo
Nonlin. Processes Geophys., 28, 467–480, https://doi.org/10.5194/npg-28-467-2021, https://doi.org/10.5194/npg-28-467-2021, 2021
Short summary
Short summary
Forecasting the height of new snow is essential for avalanche hazard surveys, road and ski resort management, tourism attractiveness, etc. Météo-France operates a probabilistic forecasting system using a numerical weather prediction system and a snowpack model. It provides better forecasts than direct diagnostics but exhibits significant biases. Post-processing methods can be applied to provide automatic forecasting products from this system.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 15, 4335–4356, https://doi.org/10.5194/tc-15-4335-2021, https://doi.org/10.5194/tc-15-4335-2021, 2021
Short summary
Short summary
Extreme snowfall can cause major natural hazards (avalanches, winter storms) that can generate casualties and economic damage. In the French Alps, we show that between 1959 and 2019 extreme snowfall mainly decreased below 2000 m of elevation and increased above 2000 m. At 2500 m, we find a contrasting pattern: extreme snowfall decreased in the north, while it increased in the south. This pattern might be related to increasing trends in extreme snowfall observed near the Mediterranean Sea.
Erwan Le Roux, Guillaume Evin, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
Nat. Hazards Earth Syst. Sci., 20, 2961–2977, https://doi.org/10.5194/nhess-20-2961-2020, https://doi.org/10.5194/nhess-20-2961-2020, 2020
Short summary
Short summary
To minimize the risk of structure collapse due to extreme snow loads, structure standards rely on 50-year return levels of ground snow load (GSL), i.e. levels exceeded once every 50 years on average, that do not account for climate change. We study GSL data in the French Alps massifs from 1959 and 2019 and find that these 50-year return levels are decreasing with time between 900 and 4800 m of altitude, but they still exceed return levels of structure standards for half of the massifs at 1800 m.
Damien Raynaud, Benoit Hingray, Guillaume Evin, Anne-Catherine Favre, and Jérémy Chardon
Hydrol. Earth Syst. Sci., 24, 4339–4352, https://doi.org/10.5194/hess-24-4339-2020, https://doi.org/10.5194/hess-24-4339-2020, 2020
Short summary
Short summary
This research paper proposes a weather generator combining two sampling approaches. A first generator recombines large-scale atmospheric situations. A second generator is applied to these atmospheric trajectories in order to simulate long time series of daily regional precipitation and temperature. The method is applied to daily time series in Switzerland. It reproduces adequately the observed climatology and improves the reproduction of extreme precipitation values.
Jari-Pekka Nousu, Matthieu Lafaysse, Matthieu Vernay, Joseph Bellier, Guillaume Evin, and Bruno Joly
Nonlin. Processes Geophys., 26, 339–357, https://doi.org/10.5194/npg-26-339-2019, https://doi.org/10.5194/npg-26-339-2019, 2019
Short summary
Short summary
Forecasting the height of new snow is crucial for avalanche hazard, road viability, ski resorts and tourism. The numerical models suffer from systematic and significant errors which are misleading for the final users. Here, we applied for the first time a state-of-the-art statistical method to correct ensemble numerical forecasts of the height of new snow from their statistical link with measurements in French Alps and Pyrenees. Thus the realism of automatic forecasts can be quickly improved.
Guillaume Evin, Thomas Curt, and Nicolas Eckert
Nat. Hazards Earth Syst. Sci., 18, 2641–2651, https://doi.org/10.5194/nhess-18-2641-2018, https://doi.org/10.5194/nhess-18-2641-2018, 2018
Short summary
Short summary
Very large wildfires have high human, economic, and ecological impacts. Preventing such events is a major objective of the new fire policy set up in France in 1994, which is oriented towards fast and massive fire suppression. This study investigates the effect of this policy on the largest fires. We estimate the burned area corresponding to fires that occur every 5, 20, and 50 years on average (so-called return periods) in southern France.
Philomène Favier, David Bertrand, Nicolas Eckert, Isabelle Ousset, and Mohamed Naaim
Nat. Hazards Earth Syst. Sci., 18, 2507–2524, https://doi.org/10.5194/nhess-18-2507-2018, https://doi.org/10.5194/nhess-18-2507-2018, 2018
Guillaume Evin, Anne-Catherine Favre, and Benoit Hingray
Hydrol. Earth Syst. Sci., 22, 655–672, https://doi.org/10.5194/hess-22-655-2018, https://doi.org/10.5194/hess-22-655-2018, 2018
Short summary
Short summary
This research paper proposes a multi-site daily precipitation model, named GWEX, which aims to reproduce the statistical features of extremely rare events at different temporal and spatial scales. Recent advances and various statistical methods (regionalization, disaggregation) are considered in order to obtain a robust and appropriate representation of the most extreme precipitation fields. Performances are shown with an application to 105 stations, covering a large region in Switzerland.
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Modeling regional production capacity loss rates considering response bias: insights from a questionnaire survey on the Zhengzhou flood
Warnings based on risk matrices: a coherent framework with consistent evaluation
Invited perspectives: Advancing knowledge co-creation in drought impact studies
How does perceived heat stress differ between urban forms and human vulnerability profiles? Case study Berlin
Modelling flood losses of micro-businesses in Ho Chi Minh City, Vietnam
Tracing online flood conversations across borders: a watershed-level analysis of geo-social media topics during the 2021 European flood
An evaluation of the alignment of drought policy and planning guidelines with the contemporary disaster risk reduction agenda
Qualitative risk assessment of sensitive infrastructures at the local level: flooding and heavy rainfall
Measuring extremes-driven direct biophysical impacts in agricultural drought damages
Brief communication: Bridging the data gap – a call to enhance the representation of global coastal flood protection
Disaster management following the great Kahramanmaraş earthquakes in 2023, Türkiye
From insufficient rainfall to livelihoods: understanding the cascade of drought impacts and policy implications
Assessing future impacts of tropical cyclones on global banana production
Review article: Applicability and effectiveness of structural measures for subsidence (risk) reduction in urban areas
The Effect of Community Resilience and Disaster Risk Management Cycle Stages on Morbi-Mortality Following Floods: An Empirical Assessment
Unravelling the capacity–action gap in flood risk adaptation
Mapping vulnerability to climate change for spatial planning in the region of Stuttgart
Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling
How are public compensation efforts implemented in multi-hazard events? Insights from the 2020 Gloria storm in Catalonia
Review article: Rethinking Preparedness for Coastal Compound Flooding: Insights from a Systematic Review
Adaptive behavior of farmers under consecutive droughts results in more vulnerable farmers: a large-scale agent-based modeling analysis in the Bhima basin, India
Identifying urban settlement archetypes: clustering for enhanced multi-risk exposure and vulnerability analysis
Content analysis of multi-annual time series of flood-related Twitter (X) data
Enhancement of state response capability and famine mitigation: a comparative analysis of two drought events in northern China during the Ming dynasty
Flood exposure of environmental assets
A new method for calculating highway blocking due to high-impact weather conditions
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Flood exposure in Rotterdam’s unembanked areas from 1970 to 2150: sensitivities to urban development, sea level rise and adaptation
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Monitoring agricultural and economic drought: the Australian Agricultural Drought Indicators (AADI)
Ready, Set & Go! An anticipatory action system against droughts
Between global risk reduction goals, scientific–technical capabilities and local realities: a modular approach for user-centric multi-risk assessment
Flood risk assessment through large-scale modeling under uncertainty
Migration as a hidden risk factor in seismic fatality: spatial modeling of the Chi-Chi earthquake and suburban syndrome
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Current status of water-related planning for climate change adaptation in the Spree river basin, Germany
Using a convection-permitting climate model to assess wine grape productivity: two case studies in Italy
Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Dynamic response of pile–slab retaining wall structure under rockfall impact
Reevaluating Flood Protection: Disaster Risk Reduction for Urbanized Alluvial Fans
Brief communication: Comprehensive Resilience to Typhoon Disasters: An Urban Assessment of 27 Cities in Seven Major River Basin, China
What if extreme droughts occur more frequently? – Mechanisms and limits of forest adaptation in pine monocultures and mixed forests in Berlin-Brandenburg, Germany
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Sectoral Vulnerability to Drought: Exploring the Role of Blue and Green Water Dependency in Mid and High-Latitudes
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Invited perspectives: Fostering interoperability of data, models, communication and governance for disaster resilience through transdisciplinary knowledge co-production
Lijiao Yang, Yan Luo, Zilong Li, and Xinyu Jiang
Nat. Hazards Earth Syst. Sci., 25, 2717–2730, https://doi.org/10.5194/nhess-25-2717-2025, https://doi.org/10.5194/nhess-25-2717-2025, 2025
Short summary
Short summary
This study proposes a response-bias-tolerant methodology for estimating the production capacity loss rate (PCLR), which addresses response bias in extreme flood scenarios and considers the distribution characteristics of PCLR under different damage states. The core value of this study is to provide a competing and promising input in economic modeling, such as input–output and computable general equilibrium models.
Robert J. Taggart and David J. Wilke
Nat. Hazards Earth Syst. Sci., 25, 2657–2677, https://doi.org/10.5194/nhess-25-2657-2025, https://doi.org/10.5194/nhess-25-2657-2025, 2025
Short summary
Short summary
Our research presents a new method for determining warning levels for any hazard. Using risk matrices, our framework addresses issues found in other approaches. Illustrative examples demonstrate how the approach works. A powerful method for evaluating warning accuracy is given, allowing for a cycle of continuous improvement in warning services. This research is relevant to a broad audience, from those who develop forecast systems to practitioners who issue or communicate warnings.
Silvia De Angeli, Lorenzo Villani, Giulio Castelli, Maria Rusca, Giorgio Boni, Elena Bresci, and Luigi Piemontese
Nat. Hazards Earth Syst. Sci., 25, 2571–2589, https://doi.org/10.5194/nhess-25-2571-2025, https://doi.org/10.5194/nhess-25-2571-2025, 2025
Short summary
Short summary
Despite transdisciplinary approaches being increasingly explored to study droughts and their impacts, their depth and breadth are yet to be fully exploited. By integrating insights from different research fields, we present five key dimensions to deepen and broaden the knowledge co-creation process for drought impact studies. Emphasizing social dynamics and power imbalances, we support hydrologists in developing more integrated, power-sensitive, inclusive, situated, and reflexive studies.
Nimra Iqbal, Marvin Ravan, Zina Mitraka, Joern Birkmann, Sue Grimmond, Denise Hertwig, Nektarios Chrysoulakis, Giorgos Somarakis, Angela Wendnagel-Beck, and Emmanouil Panagiotakis
Nat. Hazards Earth Syst. Sci., 25, 2481–2502, https://doi.org/10.5194/nhess-25-2481-2025, https://doi.org/10.5194/nhess-25-2481-2025, 2025
Short summary
Short summary
This work deepens the understanding of how perceived heat stress, human vulnerability (e.g. age, income) and adaptive capacities (e.g. green, shaded spaces) are coupled with urban structures. The results show that perceived heat stress decreases with distance from the urban center, however, human vulnerability and adaptive capacities depend more strongly on inner variations and differences between urban structures. Planning policies and adaptation strategies should account for these differences.
Anna Buch, Dominik Paprotny, Kasra Rafiezadeh Shahi, Heidi Kreibich, and Nivedita Sairam
Nat. Hazards Earth Syst. Sci., 25, 2437–2453, https://doi.org/10.5194/nhess-25-2437-2025, https://doi.org/10.5194/nhess-25-2437-2025, 2025
Short summary
Short summary
Many households in Vietnam depend on revenue from micro-businesses (shop houses). However, losses caused by regular flooding are not modelled. Business turnover, building age, and water depth were found to be the main drivers of flood losses of micro-businesses. We built and validated probabilistic models (non-parametric Bayesian networks) that estimate flood losses of micro-businesses. The results help with flood risk management and adaption decision making for micro-businesses.
Sébastien Dujardin, Dorian Arifi, Sebastian Schmidt, Catherine Linard, and Bernd Resch
Nat. Hazards Earth Syst. Sci., 25, 2351–2369, https://doi.org/10.5194/nhess-25-2351-2025, https://doi.org/10.5194/nhess-25-2351-2025, 2025
Short summary
Short summary
Our research explores how social media can help understand public responses to floods, focusing on the 2021 western European flood. We found that discussions varied by location and flood impact: in-disaster concerns were more common in severely affected upstream areas, while post-disaster topics dominated downstream. Findings show the potential of social media for improving disaster coordination along cross-border rivers in time-sensitive situations.
Ilyas Masih
Nat. Hazards Earth Syst. Sci., 25, 2155–2178, https://doi.org/10.5194/nhess-25-2155-2025, https://doi.org/10.5194/nhess-25-2155-2025, 2025
Short summary
Short summary
This study evaluates 12 sets of drought policy and planning guidelines for their alignment with the four priority areas of the SENDAI framework. The guidelines do not align very well with the contemporary disaster risk reduction agenda. The study highlights strengths, weaknesses, opportunities, and threats and provides useful insights to develop the next generation of drought guidelines that are better aligned with contemporary science–policy–practice agendas.
Alessa Truedinger, Joern Birkmann, Mark Fleischhauer, and Celso Ferreira
Nat. Hazards Earth Syst. Sci., 25, 2097–2113, https://doi.org/10.5194/nhess-25-2097-2025, https://doi.org/10.5194/nhess-25-2097-2025, 2025
Short summary
Short summary
In post-disaster reconstruction, emphasis should be placed on critical and sensitive infrastructures. In Germany, as in other countries, sensitive infrastructures have not yet been focused on; therefore, we developed a method for determining the risk that sensitive infrastructures are facing in the context of riverine and pluvial flooding. The easy-to-use assessment framework can be applied to various sensitive infrastructures, e.g., to qualify and accelerate decisions in the reconstruction process.
Mansi Nagpal, Jasmin Heilemann, Luis Samaniego, Bernd Klauer, Erik Gawel, and Christian Klassert
Nat. Hazards Earth Syst. Sci., 25, 2115–2135, https://doi.org/10.5194/nhess-25-2115-2025, https://doi.org/10.5194/nhess-25-2115-2025, 2025
Short summary
Short summary
This study measures the direct effects of droughts in association with other extreme weather events on agriculture in Germany at the district level. Using a statistical yield model, we quantify the direct damage of extremes on crop yields and farm revenue. Extreme events during drought cause an average annual damage of EUR 781 million, accounting for 45 % of reported revenue losses. The insights herein can help develop better strategies for managing and mitigating the effects of future climate extremes.
Nicole van Maanen, Joël J.-F. G. De Plaen, Timothy Tiggeloven, Maria Luisa Colmenares, Philip J. Ward, Paolo Scussolini, and Elco Koks
Nat. Hazards Earth Syst. Sci., 25, 2075–2080, https://doi.org/10.5194/nhess-25-2075-2025, https://doi.org/10.5194/nhess-25-2075-2025, 2025
Short summary
Short summary
Understanding coastal flood protection is vital for assessing risks from natural disasters and climate change. However, current global data on coastal flood protection are limited and based on simplified assumptions, leading to potential uncertainties in risk estimates. As a step in this direction, we propose a comprehensive dataset, COASTtal flood PROtection Standards within EUrope (COASTPROS-EU), which compiles coastal flood protection standards in Europe.
Bektaş Sarı
Nat. Hazards Earth Syst. Sci., 25, 2031–2043, https://doi.org/10.5194/nhess-25-2031-2025, https://doi.org/10.5194/nhess-25-2031-2025, 2025
Short summary
Short summary
After the Kahramanmaraş earthquakes, the Turkish Government mobilized all available resources, ensured regular information updates, and deployed a significant number of rescue personnel to the affected areas. However, the scale of this devastating disaster, resulting in the loss of over 50 000 lives, underscores the critical importance of building earthquake-resistant structures as the most effective means to mitigate such calamities.
Louise Cavalcante, David W. Walker, Sarra Kchouk, Germano Ribeiro Neto, Taís Maria Nunes Carvalho, Mariana Madruga de Brito, Wieke Pot, Art Dewulf, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 1993–2005, https://doi.org/10.5194/nhess-25-1993-2025, https://doi.org/10.5194/nhess-25-1993-2025, 2025
Short summary
Short summary
Drought affects not only water availability but also agriculture, the economy, and communities. This study explores how public policies help reduce these impacts in Ceará, Northeast Brazil. Using qualitative drought monitoring data, interviews, and policy analysis, we found that policies supporting local economies help lessen drought effects. However, most reported impacts are still related to water shortages, showing the need for broader strategies beyond water supply investment.
Sophie Kaashoek, Žiga Malek, Nadia Bloemendaal, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 25, 1963–1974, https://doi.org/10.5194/nhess-25-1963-2025, https://doi.org/10.5194/nhess-25-1963-2025, 2025
Short summary
Short summary
Tropical storms are expected to get stronger all over the world, and this will have a big impact on people, buildings and important activities like growing bananas. Already, in different parts of the world, banana farms are being hurt by these storms, which makes banana prices go up and affects the people who grow them. We are not sure how these storms will affect bananas everywhere in the future. We assessed what happened to banana farms during storms in different parts of the world.
Nicoletta Nappo and Mandy Korff
Nat. Hazards Earth Syst. Sci., 25, 1811–1839, https://doi.org/10.5194/nhess-25-1811-2025, https://doi.org/10.5194/nhess-25-1811-2025, 2025
Short summary
Short summary
Cities in coastal and delta areas need effective engineering techniques to counteract subsidence and its damage. This paper presents a framework for choosing these techniques using a decision tree and four performance parameters. This procedure was tested on various cases representative of different scenarios. This demonstrated the potential of this method for initial screenings of techniques which site-specific assessments should always follow.
Raquel Guimaraes, Reinhard Mechler, Stefan Velev, and Dipesh Chapagain
EGUsphere, https://doi.org/10.5194/egusphere-2025-1947, https://doi.org/10.5194/egusphere-2025-1947, 2025
Short summary
Short summary
This study explores how communities can better protect people's lives and health during floods. By looking at 66 communities in seven countries, we found that strong social ties and preparedness before disasters helped reduce injuries and deaths. However, some environmental efforts didn't show clear health benefits, especially in degraded areas. Our research highlights how early planning and strong local networks can make a real difference during crises.
Annika Schubert, Anne von Streit, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 25, 1621–1653, https://doi.org/10.5194/nhess-25-1621-2025, https://doi.org/10.5194/nhess-25-1621-2025, 2025
Short summary
Short summary
Households play a crucial role in climate adaptation efforts. Yet, households require capacities to implement measures. We explore which capacities enable German households to adapt to flooding. Our results indicate that flood-related capacities such as risk perception, responsibility appraisal, and motivation are pivotal, whereas financial assets are secondary. Enhancing these specific capacities, e.g. through collaborations between households and municipalities, could promote local adaptation.
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
Nat. Hazards Earth Syst. Sci., 25, 1573–1596, https://doi.org/10.5194/nhess-25-1573-2025, https://doi.org/10.5194/nhess-25-1573-2025, 2025
Short summary
Short summary
Adapting to climate extremes is a challenge for spatial planning. Risk maps that include not just a consideration of hazards but also social vulnerability can help. We develop social vulnerability maps for the Stuttgart region, Germany. We show the maps, describe how and why we developed them, and provide an analysis of practitioners' needs and their feedback. Insights presented in this paper can help to improve map usability and to better link research and planning practice.
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025, https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Short summary
This work uses agent-based modelling to evaluate the impact of flood warning and evacuation systems on human losses during the 2021 Ahr Valley flood in Germany. While the first flood warning with evacuation instructions is identified as timely, its lack of detail and effectiveness resulted in low public risk awareness. Better dissemination of warnings and improved risk perception and preparedness among the population could reduce casualties by up to 80 %.
Núria Pantaleoni Reluy, Marcel Hürlimann, and Nieves Lantada
EGUsphere, https://doi.org/10.5194/egusphere-2025-1009, https://doi.org/10.5194/egusphere-2025-1009, 2025
Short summary
Short summary
Spain combines public funds with a state-backed insurance program for natural disaster recovery. Our study examines Storm Gloria, which struck Catalonia in 2020, causing severe damage. By systematically collecting and classifying direct losses, we offer insights into the role of government interventions in disaster response, define multi-hazard municipalities based on a loss database, and provide initial insights into loss assessments relative to annual occurrence probability.
Dina Vanessa Gomez Rave, Anna Scolobig, and Manuel del Jesus
EGUsphere, https://doi.org/10.5194/egusphere-2025-262, https://doi.org/10.5194/egusphere-2025-262, 2025
Short summary
Short summary
This study examines how preparedness strategies for compound flooding in coastal areas are evolving. These events arise from the interaction of drivers such as storm surges, heavy rainfall, and river discharge, amplifying risks for communities. The research highlights advancements in technical, environmental, and social approaches, alongside the role of governance and collaboration. By addressing these complexities, the study identifies pathways to foster resilience.
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025, https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated farmers' individual choices – like changing crops or digging wells – and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damage. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrological models in shaping policies to lessen drought impacts.
Gabriella Tocchi, Massimiliano Pittore, and Maria Polese
EGUsphere, https://doi.org/10.5194/egusphere-2025-908, https://doi.org/10.5194/egusphere-2025-908, 2025
Short summary
Short summary
This study identifies different types of urban areas in Italy based on population, location, and economic conditions to understand their vulnerability to risks. Using public data and clustering methods, it defines 18 urban archetypes. These archetypes provide a structured understanding of urban vulnerability, helping policymakers assess disaster risk, allocate adaptation funding, and design targeted resilience strategies for urban settlements at regional and national scales.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
Nat. Hazards Earth Syst. Sci., 25, 879–891, https://doi.org/10.5194/nhess-25-879-2025, https://doi.org/10.5194/nhess-25-879-2025, 2025
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help us understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci., 25, 591–607, https://doi.org/10.5194/nhess-25-591-2025, https://doi.org/10.5194/nhess-25-591-2025, 2025
Short summary
Short summary
This study developed a model of extreme drought-induced famine processes and response mechanisms in ancient China. The spatial distribution of drought and famine during the Chenghua drought and the Wanli drought was constructed. By categorizing drought-affected counties into three types, a comparative analysis of the differences in famine severity and response effectiveness between the Chenghua and Wanli droughts was conducted.
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci., 25, 565–580, https://doi.org/10.5194/nhess-25-565-2025, https://doi.org/10.5194/nhess-25-565-2025, 2025
Short summary
Short summary
Environmental assets are crucial to sustaining and fulfilling life on Earth via ecosystem services (ESs). Studying their flood risk is thus seminal, in addition to being required by several norms. However, this field is not yet adequately developed. We studied the exposure component of flood risk and developed an evaluating methodology based on the ESs provided by environmental assets to discern assets and areas that are more important than others with metrics suitable to large-scale studies.
Duanyang Liu, Tian Jing, Mingyue Yan, Ismail Gultepe, Yunxuan Bao, Hongbin Wang, and Fan Zu
Nat. Hazards Earth Syst. Sci., 25, 493–513, https://doi.org/10.5194/nhess-25-493-2025, https://doi.org/10.5194/nhess-25-493-2025, 2025
Short summary
Short summary
Highway-blocking events are characterized by diurnal variation. A classification method of severity levels of highway blocking is catagorized into five levels. The severity levels of highway blocking due to high-impact weather are evaluated. A method for calculating the degree of highway load in China is proposed. A quantitative assessment of the losses of highway blocking due to dense fog is conducted. The highway losses caused by dense fog are concentrated in North, East, and Southwest China.
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025, https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Short summary
Natural hazards like earthquakes often trigger other disasters, such as landslides, creating complex chains of impacts. We developed a risk model using a mathematical approach called hypergraphs to efficiently measure the impact of interconnected hazards. We showed that it can predict broad patterns of damage to buildings and roads from the 2015 Nepal earthquake. The model's efficiency allows it to generate multiple disaster scenarios, even at a national scale, to support preparedness plans.
Cees Oerlemans, Martine van den Boomen, Ties Rijcken, and Matthijs Kok
EGUsphere, https://doi.org/10.5194/egusphere-2024-2910, https://doi.org/10.5194/egusphere-2024-2910, 2025
Short summary
Short summary
This study analyzes flood exposure in Rotterdam's unembanked areas from 1970 to 2150, exploring the interplay between rising sea levels, urban development, and flood protection measures. Without measures, flood exposure will increase, especially after 2100. The Maeslant storm surge barrier had the most impact on flood exposure, followed by urban development and sea level rise. Varied exposure levels across neighborhoods suggest the need for localized adaptation strategies.
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci., 25, 49–76, https://doi.org/10.5194/nhess-25-49-2025, https://doi.org/10.5194/nhess-25-49-2025, 2025
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history mean the data required for vulnerability evaluation by the insurance industry are scarce. A systematic literature review is conducted in this study to determine the suitability of current published literature for this purpose. Knowledge gaps are charted, and a representative asset–hazard taxonomy is proposed to guide future quantitative research.
Neal Hughes, Donald Gaydon, Mihir Gupta, Andrew Schepen, Peter Tan, Geoffrey Brent, Andrew Turner, Sean Bellew, Wei Ying Soh, Christopher Sharman, Peter Taylor, John Carter, Dorine Bruget, Zvi Hochman, Ross Searle, Yong Song, Heidi Horan, Patrick Mitchell, Yacob Beletse, Dean Holzworth, Laura Guillory, Connor Brodie, Jonathon McComb, and Ramneek Singh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3731, https://doi.org/10.5194/egusphere-2024-3731, 2024
Short summary
Short summary
Droughts can impact agriculture and regional economies, and their severity is rising with climate change. Our research introduces a new system, the Australian Agricultural Drought Indicators (AADI), which measures droughts based on their effects on crops, livestock, and farm profits rather than traditional weather metrics. Using climate data and modelling, AADI predicts drought impacts more accurately, helping policymakers prepare and respond to financial and social challenges during droughts.
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Manuel Lemos Pereira Bonifácio
Nat. Hazards Earth Syst. Sci., 24, 4661–4682, https://doi.org/10.5194/nhess-24-4661-2024, https://doi.org/10.5194/nhess-24-4661-2024, 2024
Short summary
Short summary
The
Ready, Set & Go!system, developed by the World Food Programme and partners, employs seasonal forecasts to tackle droughts in Mozambique. With the Maputo Declaration, efforts to expand early warning systems are aligning with global initiatives for universal protection by 2027. Through advanced forecasting and anticipatory action, it could cover 76 % of districts against severe droughts, reaching 87 % national coverage for the first months of the rainy season.
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024, https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Short summary
In this paper, we provide a brief introduction of the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructure to increase their capabilities.
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, https://doi.org/10.5194/nhess-24-4507-2024, https://doi.org/10.5194/nhess-24-4507-2024, 2024
Short summary
Short summary
Several sources of uncertainty affect flood risk estimation for reliable assessment for investment, insurance and risk management. Here, we consider the uncertainty of large-scale flood hazard modeling, providing a range of risk values that show significant variability depending on geomorphic factors and land use types. This allows for identifying the critical points where single-value estimates may underestimate the risk and the areas of vulnerability for prioritizing risk reduction efforts.
Tzu-Hsin Karen Chen, Kuan-Hui Elaine Lin, Thung-Hong Lin, Gee-Yu Liu, Chin-Hsun Yeh, and Diana Maria Ceballos
Nat. Hazards Earth Syst. Sci., 24, 4457–4471, https://doi.org/10.5194/nhess-24-4457-2024, https://doi.org/10.5194/nhess-24-4457-2024, 2024
Short summary
Short summary
This study shows migration patterns to be a critical factor in seismic fatalities. Analyzing the Chi-Chi earthquake in Taiwan, we find that lower income and a higher indigenous population at migrants' origins are correlated with higher fatalities at their destinations. This underscores the need for affordable and safe housing on the outskirts of megacities, where migrants from lower-income and historically marginalized groups are more likely to reside due to precarious employment conditions.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, W. J. Wouter Botzen, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 24, 4409–4429, https://doi.org/10.5194/nhess-24-4409-2024, https://doi.org/10.5194/nhess-24-4409-2024, 2024
Short summary
Short summary
As sea levels rise, coastal areas will experience more frequent flooding, and salt water will start seeping into the soil, which is a serious issue for farmers who rely on good soil quality for their crops. Here, we studied coastal Mozambique to understand the risks from sea level rise and flooding by looking at how salt intrusion affects farming and how floods damage buildings. We find that 15 %–21 % of coastal households will adapt and 13 %–20 % will migrate to inland areas in the future.
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci., 24, 4369–4383, https://doi.org/10.5194/nhess-24-4369-2024, https://doi.org/10.5194/nhess-24-4369-2024, 2024
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in plans for water management, spatial planning and landscape planning in the Spree river basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this gap, more frequent updates of plans, a stronger focus on multifunctional measures, and the adaptation of best-practice examples for systematic integration of climate change impacts and adaptation are needed.
Laura T. Massano, Giorgia Fosser, Marco Gaetani, and Cécile Caillaud
Nat. Hazards Earth Syst. Sci., 24, 4293–4315, https://doi.org/10.5194/nhess-24-4293-2024, https://doi.org/10.5194/nhess-24-4293-2024, 2024
Short summary
Short summary
Traditional wine-growing regions are threatened by expected climate change. Climate models and observations are used to calculate bioclimatic indices based on both temperature and precipitation. These indices are correlated with grape productivity in two wine-growing regions in Italy. This analysis paves the way for using climate models to study how climate change will affect wine production in the future.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024, https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Short summary
Central Asia is prone to earthquake losses, which can heavily impact different types of assets. This paper presents the details of a probabilistic earthquake risk model which made use of a regionally consistent approach to assess feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed at facilitating a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024, https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Short summary
To integrate resilience assessment into practical management, this study designs a step-by-step guide that enables managers of critical infrastructure (CI) to create specific indicator systems tailored to real cases. This guide considers the consequences of hazards to CI and the cost–benefit analysis and side effects of implementable actions. The assessment results assist managers, as they are based on a multi-criterion framework that addresses several factors valued in practical management.
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024, https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Short summary
Natural disturbances are projected to intensify in the future, threatening our forests and their functions such as wood production, protection against natural hazards, and carbon sequestration. By assessing risks to forests from wind and fire damage, alongside the vulnerability of carbon, it is possible to prioritize forest stands at high risk. In this study, we propose a novel methodological approach to support climate-smart forest management and inform better decision-making.
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024, https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Short summary
The pile–slab retaining wall, an innovative rockfall shield, is widely used in China's western mountains. However, its dynamic impact response and resistance remain unclear due to structural complexity. A comprehensive dynamic analysis of the structure, under various impacts, was done using the finite-element method. The maximum impact energy that the structure can withstand is 905 kJ, and various indexes were obtained.
Tamir Grodek and Gerardo Benito
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-171, https://doi.org/10.5194/nhess-2024-171, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Check dams, terraces, and trees on steep basins serve to retain sediments, thereby protecting urbanized alluvial fan canals and levees from flooding. However, their effectiveness gradually decreases over time due to sedimentation and aging, which may lead to catastrophic breaching floods. To enhance urban resilience, we propose preserving natural mountain basins and allocating 20–30 % of the alluvial fan for channel migration and sediment deposition corridors.
Zezhao Liu, Jiahui Yang, and Cong Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2343, https://doi.org/10.5194/egusphere-2024-2343, 2024
Short summary
Short summary
We construct an indicator-based framework, and assess urban resilience to typhoon in China’s contexts for the seven major river basins. Results verified the heterogeneity, and the resilience level in certain circumstance was not matched with city strength of economy. The analysis is helpful for government to enhance capability of resilience in specific dimensions, and provides a reference in probing urban resilience assessment confronting typhoon.
Jamir Priesner, Boris Sakschewski, Maik Billing, Werner von Bloh, Sebastian Fiedler, Sarah Bereswill, Kirsten Thonicke, and Britta Tietjen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3066, https://doi.org/10.5194/egusphere-2024-3066, 2024
Short summary
Short summary
Our simulations suggest that increased drought frequencies lead to a drastic reduction in biomass in pine monoculture and mixed forest. Mixed forest eventually recovered, as long as drought frequencies was not too high. The higher resilience of mixed forests was due to higher adaptive capacity. After adaptation mixed forests were mainly composed of smaller, broad-leaved trees with higher wood density and slower growth.This would have strong implications for forestry and other ecosystem services.
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2726, https://doi.org/10.5194/egusphere-2024-2726, 2024
Short summary
Short summary
Utilizing a survey including respondents from seven societal sectors, the role of water dependency for drought vulnerability was explored. Differences were found in the perceived impact of vulnerability factors on drought risk in relation to water dependency (i.e., dependency on either soil moisture, or groundwater and surface water). The results highlight the importance of accounting for water dependency, and to clearly define the drought hazard, in drought vulnerability or risk assessments.
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Cited articles
AFNOR: NF EN 1991-1-3/NA: Eurocode 1: Actions sur les structures – Partie 1–3: Actions générales – charges de neige. Annexe nationale à la NF EN 1991-1-3, Association Francaise de Normalisation (AFNOR), 2007. a
Altunişik, A., Ateş, S., and Hüsem, M.: Lateral buckling failure of steel cantilever roof of a tribune due to snow loads, Eng. Fail. Anal., 72, 67–78, https://doi.org/10.1016/j.engfailanal.2016.12.010, 2017. a, b
ASCE: Minimum Design Loads for Buildings and Other Structures – ASCE/SEI 7–10, Tech. rep., https://doi.org/10.1061/9780784412916, 2013. a
Biegus, A. and Kowal, A.: Collapse of halls made from cold-formed steel sheets, Eng. Fail. Anal., 31, 189–194, https://doi.org/10.1016/j.engfailanal.2012.12.009, 2013. a, b
Biegus, A. and Rykaluk, K.: Collapse of Katowice Fair Building, Eng. Fail. Anal., 16, 1643–1654, https://doi.org/10.1016/j.engfailanal.2008.11.008, 2009. a, b
Bouttier, F. and Roulet, B.: Arome, the new high resolution model of Meteo-France, The European forecaster – Newsletter of the WGCEF (Printed by Meteo-France), 13, 27–30, http://www.euroforecaster.org/newsletter13/arome.pdf (last access: 13 November 2023), 2008. a
Brencich, A.: Collapse of an industrial steel shed: A case study for basic errors in computational structural engineering and control procedures, Eng. Fail. Anal., 17, 213–225, https://doi.org/10.1016/j.engfailanal.2009.06.015, 2010. a, b
Caglayan, O. and Yuksel, E.: Experimental and finite element investigations on the collapse of a Mero space truss roof structure – A case study, Eng. Fail. Anal., 15, 458–470, https://doi.org/10.1016/j.engfailanal.2007.05.005, 2008. a, b
Canadian Commission on Building and Fire Codes: National Building Code of Canada: 2010, Tech. rep., National Research Council of Canada, https://doi.org/10.4224/40001268, 2010. a
Colbeck, S. C.: Roof loads resulting from rain on snow: results of a physical model, Can. J. Civil Eng., 4, 482–490, https://doi.org/10.1139/l77-057, 1977. a, b, c
Dassault Systemes: Abaqus/Standard. Version 11.2., Tech. rep., Providence, RI: Dassault Systemes Simulia Corp., 2017. a
del Coz Díaz, J., Álvarez Rabanal, F., García Nieto, P., Roces-García, J., and Alonso-Estébanez, A.: Nonlinear buckling and failure analysis of a self-weighted metallic roof with and without skylights by FEM, Eng. Fail. Anal., 26, 65–80, https://doi.org/10.1016/j.engfailanal.2012.07.019, 2012. a, b
Geis, J., Strobel, K., and Liel, A.: Snow-Induced Building Failures, J. Perform. Constr. Fac., 26, 377–388, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000222, 2012. a
Geis, J. M.: The Effects of Snow Loading on Lightweight Metal Buildings with Open-Web Steel Joists, Master's thesis, University of Colorado, https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/n583xv25x (last access: 15 November 2023), 2011. a
Holický, M. and Sýkora, M.: Failures of Roofs under Snow Load: Causes and Reliability Analysis, American Society of Civil Engineers, 444–453, https://doi.org/10.1061/41082(362)45, 2009. a
Krentowski, J., Chyzy, T., Dunaj, P., and Dunaj, P.: Delayed catastrophe of a steel roofing structure of a shopping facility, Eng. Fail. Anal., 98, 72–82, https://doi.org/10.1016/j.engfailanal.2019.01.082, 2019. a, b
Le Roux, E., Evin, G., Eckert, N., Blanchet, J., and Morin, S.: Non-stationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards, Nat. Hazards Earth Syst. Sci., 20, 2961–2977, https://doi.org/10.5194/nhess-20-2961-2020, 2020. a
O'Rourke, M. and Downey, C.: Rain-on-Snow Surcharge for Roof Design, J. Struct. Eng., 127, 74–79, https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(74), 2001. a, b
O'Rourke, M. and Wikoff, J.: Snow-Related Roof Collapse during the winter of 2010–2011: Implications for Building Codes, American Society of Civil Engineers, https://doi.org/10.1061/9780784478240, 2014. a, b
Otsuki, M., Takahashi, T., Saito, Y., Tsutsumi, T., and Hitomitsu, K.: Study on evaluation of roof snow load considering rain-on-snow surcharge: Statistical evaluation of snow cover and precipitation in winter in Japan, in: Snow engineering: recent advances, ICSE 2016, 8th International Conference on Snow Engineering, Nantes, France, 14–17 June 2016, 166–172, 2016. a
Otsuki, M., Takahashi, T., Tomabechi, T., Chiba, T., Tsutsumi, T., Kamiishi, I., Kikitsu, H., Iwata, Y., Ishihara, T., and Okuda, Y.: Study on Estimation Method for Surcharge Snow Load Due to Rainfall, Journal of Structural and Construction Engineering (Transactions of AIJ), 82, 1329–1338, https://doi.org/10.3130/aijs.82.1329, 2017. a, b
Piroglu, F. and Ozakgul, K.: Partial collapses experienced for a steel space truss roof structure induced by ice ponds, Eng. Fail. Anal., 60, 155–165, https://doi.org/10.1016/j.engfailanal.2015.11.039, 2016. a
Piskoty, G., Wullschleger, L., Loser, R., Herwig, A., Tuchschmid, M., and Terrasi, G.: Failure analysis of a collapsed flat gymnasium roof, Eng. Fail. Anal., 35, 104–113, https://doi.org/10.1016/j.engfailanal.2012.12.006, special issue on ICEFA V- Part 1, 2013. a, b
Smart, D.: Storm Filomena 8 January 2021, Weather, 76, 98–99, https://doi.org/10.1002/wea.3950, 2021. a
Strasser, U.: Snow loads in a changing climate: new risks?, Nat. Hazards Earth Syst. Sci., 8, 1–8, https://doi.org/10.5194/nhess-8-1-2008, 2008. a
Takahashi, T., Takahiro, C., and Kazuki, N.: Structural damage caused by rain-on-snow load in Japan, in: Snow engineering: recent advances, ICSE 2016, 8th International Conference on Snow Engineering, Nantes, France, 14–17 June 2016, 173–178, 2016. a
Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.-M.: A 50 year high-resolution atmospheric reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644, https://doi.org/10.1002/joc.2003, 2010. a
Winter, S. and Kreuzinger, H.: The Bad Reichenhall ice-arena collapse and the necessary consequences for wide span timber structures, in: 10th World Conference on Timber Engineering, vol. 4, 1978–1985, Miyazaki, Japan, ISBN 978-1-61567-088-8 , 2008. a
Short summary
This paper deals with an exceptional snow and rain event in a Mediterranean region of France which is usually not prone to heavy snowfall and its consequences on a particular building that collapsed completely. Independent analyses of the meteorological episode are carried out, and the response of the building to different snow and rain loads is confronted to identify the main critical factors that led to the collapse.
This paper deals with an exceptional snow and rain event in a Mediterranean region of France...
Altmetrics
Final-revised paper
Preprint