Articles | Volume 23, issue 10
https://doi.org/10.5194/nhess-23-3305-2023
https://doi.org/10.5194/nhess-23-3305-2023
Research article
 | 
23 Oct 2023
Research article |  | 23 Oct 2023

Sentinel-1-based analysis of the severe flood over Pakistan 2022

Florian Roth, Bernhard Bauer-Marschallinger, Mark Edwin Tupas, Christoph Reimer, Peter Salamon, and Wolfgang Wagner

Related authors

A PRELIMINARY COMPARISON OF TWO EXCLUSION MAPS FOR LARGE-SCALE FLOOD MAPPING USING SENTINEL-1 DATA
J. Zhao, F. Roth, B. Bauer-Marschallinger, W. Wagner, M. Chini, and X. X. Zhu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 911–918, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-911-2023,https://doi.org/10.5194/isprs-annals-X-1-W1-2023-911-2023, 2023
COMPUTING GLOBAL HARMONIC PARAMETERS FOR FLOOD MAPPING USING TU WIEN’S SAR DATACUBE SOFTWARE STACK
M. Tupas, C. Navacchi, F. Roth, B. Bauer-Marschallinger, F. Reuß, and W. Wagner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 495–502, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-495-2022,https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-495-2022, 2022

Related subject area

Hydrological Hazards
Compound droughts under climate change in Switzerland
Christoph Nathanael von Matt, Regula Muelchi, Lukas Gudmundsson, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 1975–2001, https://doi.org/10.5194/nhess-24-1975-2024,https://doi.org/10.5194/nhess-24-1975-2024, 2024
Short summary
Brief communication: SWM – stochastic weather model for precipitation-related hazard assessments using ERA5-Land data
Melody Gwyneth Whitehead and Mark Stephen Bebbington
Nat. Hazards Earth Syst. Sci., 24, 1929–1935, https://doi.org/10.5194/nhess-24-1929-2024,https://doi.org/10.5194/nhess-24-1929-2024, 2024
Short summary
Text mining uncovers the unique dynamics of socio-economic impacts of the 2018–2022 multi-year drought in Germany
Jan Sodoge, Christian Kuhlicke, Miguel D. Mahecha, and Mariana Madruga de Brito
Nat. Hazards Earth Syst. Sci., 24, 1757–1777, https://doi.org/10.5194/nhess-24-1757-2024,https://doi.org/10.5194/nhess-24-1757-2024, 2024
Short summary
The value of multi-source data for improved flood damage modelling with explicit input data uncertainty treatment: INSYDE 2.0
Mario Di Bacco, Daniela Molinari, and Anna Rita Scorzini
Nat. Hazards Earth Syst. Sci., 24, 1681–1696, https://doi.org/10.5194/nhess-24-1681-2024,https://doi.org/10.5194/nhess-24-1681-2024, 2024
Short summary
Limited effect of the confluence angle and tributary gradient on Alpine confluence morphodynamics under intense sediment loads
Théo St. Pierre Ostrander, Thomé Kraus, Bruno Mazzorana, Johannes Holzner, Andrea Andreoli, Francesco Comiti, and Bernhard Gems
Nat. Hazards Earth Syst. Sci., 24, 1607–1634, https://doi.org/10.5194/nhess-24-1607-2024,https://doi.org/10.5194/nhess-24-1607-2024, 2024
Short summary

Cited articles

Bauer-Marschallinger, B., Cao, S., Tupas, M. E., Roth, F., Navacchi, C., Melzer, T., Freeman, V., and Wagner, W.: Satellite-Based Flood Mapping through Bayesian Inference from a Sentinel-1 SAR Datacube, Remote Sens., 14, 3673, https://doi.org/10.3390/rs14153673, 2022. a, b, c
Dasgupta, A., Hostache, R., Ramsankaran, R., Grimaldi, S., Matgen, P., Chini, M., Pauwels, V. R., and Walker, J. P.: Earth observation and hydraulic data assimilation for improved flood inundation forecasting, in: Earth observation for flood applications, Elsevier, 255–294, https://doi.org/10.1016/B978-0-12-819412-6.00012-2, 2021. a
Gaurav, K., Sinha, R., and Panda, P.: The Indus flood of 2010 in Pakistan: a perspective analysis using remote sensing data, Nat. Hazards, 59, 1815–1826, 2011. a, b
Global Flood Monitoring: GFM Product Definition Document, https://extwiki.eodc.eu/GFM/PDD/GFMoutputLayers#output-layer-exclusion-mask (last access: 23 September 2022), 2022. a
Global Flood Monitoring Service: Global Flood Awareness System, https://www.globalfloods.eu/ (last access: 20 October 2023), 2023. a
Download
Short summary
In August and September 2022, millions of people were impacted by a severe flood event in Pakistan. Since many roads and other infrastructure were destroyed, satellite data were the only way of providing large-scale information on the flood's impact. Based on the flood mapping algorithm developed at Technische Universität Wien (TU Wien), we mapped an area of 30 492 km2 that was flooded at least once during the study's time period. This affected area matches about the total area of Belgium.
Altmetrics
Final-revised paper
Preprint