Articles | Volume 23, issue 10
https://doi.org/10.5194/nhess-23-3261-2023
https://doi.org/10.5194/nhess-23-3261-2023
Research article
 | 
18 Oct 2023
Research article |  | 18 Oct 2023

Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA

Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus

Related authors

Hillslope-Torrential Hazard Cascades in Tropical Mountains
Maria Isabel Arango-Carmona, Paul Voit, Marcel Hürlimann, Edier Aristizábal, and Oliver Korup
EGUsphere, https://doi.org/10.5194/egusphere-2025-1698,https://doi.org/10.5194/egusphere-2025-1698, 2025
Short summary
Constraining landslide frequency across the United States to inform county-level risk reduction
Lisa V. Luna, Jacob B. Woodard, Janice L. Bytheway, Gina M. Belair, and Benjamin B. Mirus
EGUsphere, https://doi.org/10.5194/egusphere-2025-947,https://doi.org/10.5194/egusphere-2025-947, 2025
Short summary
Characterizing rockfall hazard with an integrated kinematic analysis and runout model: Skagway, Alaska, USA
Ian D. Wachino, Joshua J. Roering, Reuben Cash, and Annette I. Patton
EGUsphere, https://doi.org/10.5194/egusphere-2025-1168,https://doi.org/10.5194/egusphere-2025-1168, 2025
Short summary
Larger lake outbursts despite glacier thinning at ice-dammed Desolation Lake, Alaska
Natalie Lützow, Bretwood Higman, Martin Truffer, Bodo Bookhagen, Friedrich Knuth, Oliver Korup, Katie E. Hughes, Marten Geertsema, John J. Clague, and Georg Veh
The Cryosphere, 19, 1085–1102, https://doi.org/10.5194/tc-19-1085-2025,https://doi.org/10.5194/tc-19-1085-2025, 2025
Short summary
Invited perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025,https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary

Related subject area

Landslides and Debris Flows Hazards
Large-scale assessment of rainfall-induced landslide hazard based on hydrometeorological information: application to Partenio Massif (Italy)
Daniel Camilo Roman Quintero, Pasquale Marino, Abdullah Abdullah, Giovanni Francesco Santonastaso, and Roberto Greco
Nat. Hazards Earth Syst. Sci., 25, 2679–2698, https://doi.org/10.5194/nhess-25-2679-2025,https://doi.org/10.5194/nhess-25-2679-2025, 2025
Short summary
Transformations in exposure to debris flows in post-earthquake Sichuan, China
Isabelle Utley, Tristram Hales, Ekbal Hussain, and Xuanmei Fan
Nat. Hazards Earth Syst. Sci., 25, 2699–2716, https://doi.org/10.5194/nhess-25-2699-2025,https://doi.org/10.5194/nhess-25-2699-2025, 2025
Short summary
Is higher resolution always better? A comparison of open-access DEMs for optimized slope unit delineation and regional landslide prediction
Mahnoor Ahmed, Giacomo Titti, Sebastiano Trevisani, Lisa Borgatti, and Mirko Francioni
Nat. Hazards Earth Syst. Sci., 25, 2519–2539, https://doi.org/10.5194/nhess-25-2519-2025,https://doi.org/10.5194/nhess-25-2519-2025, 2025
Short summary
Brief communication: AI-driven rapid landslide mapping following the 2024 Hualien earthquake in Taiwan
Lorenzo Nava, Alessandro Novellino, Chengyong Fang, Kushanav Bhuyan, Kathryn Leeming, Itahisa Gonzalez Alvarez, Claire Dashwood, Sophie Doward, Rahul Chahel, Emma McAllister, Sansar Raj Meena, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 25, 2371–2377, https://doi.org/10.5194/nhess-25-2371-2025,https://doi.org/10.5194/nhess-25-2371-2025, 2025
Short summary
Landslide activation during deglaciation in a fjord-dominated landscape: observations from southern Alaska (1984–2022)
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
Nat. Hazards Earth Syst. Sci., 25, 2045–2073, https://doi.org/10.5194/nhess-25-2045-2025,https://doi.org/10.5194/nhess-25-2045-2025, 2025
Short summary

Cited articles

Akaike, H.: Information Theory and an Extension of the Maximum Likelihood Principle, in: Breakthroughs in Statistics: Foundations and Basic Theory, edited by: Kotz, S. and Johnson, N. L., Springer, New York, NY, 610–624, https://doi.org/10.1007/978-1-4612-0919-5_38, 1992 
Ashok, S. P. and Pekkat, S.: A systematic quantitative review on the performance of some of the recent short-term rainfall forecasting techniques, J. Water Clim. Change, 13, 3004–3029, https://doi.org/10.2166/wcc.2022.302, 2022. 
Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach, J. Geophys. Res.-Earth, 117, F04006, https://doi.org/10.1029/2012JF002367, 2012. 
BeVille, S. H., Mirus, B. B., Ebel, B. A., Mader, G. G., and Loague, K.: Using simulated hydrologic response to revisit the 1973 Lerida Court landslide, Environ. Earth Sci., 61, 1249–1257, https://doi.org/10.1007/s12665-010-0448-z, 2010. 
Bogaard, T. and Greco, R.: Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds, Nat. Hazards Earth Syst. Sci., 18, 31–39, https://doi.org/10.5194/nhess-18-31-2018, 2018. 
Download
Short summary
Landslide warning systems often use statistical models to predict landslides based on rainfall. They are typically trained on large datasets with many landslide occurrences, but in rural areas large datasets may not exist. In this study, we evaluate which statistical model types are best suited to predicting landslides and demonstrate that even a small landslide inventory (five storms) can be used to train useful models for landslide early warning when non-landslide events are also included.
Share
Altmetrics
Final-revised paper
Preprint