Articles | Volume 23, issue 6 
            
                
                    
                    
                        
            
            
            https://doi.org/10.5194/nhess-23-2313-2023
                    © Author(s) 2023. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Special issue:
                        
                    https://doi.org/10.5194/nhess-23-2313-2023
                    © Author(s) 2023. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
The potential of open-access data for flood estimations: uncovering inundation hotspots in Ho Chi Minh City, Vietnam, through a normalized flood severity index
Leon Scheiber
CORRESPONDING AUTHOR
                                            
                                    
                                            Ludwig-Franzius-Institute of Hydraulic, Estuarine and Coastal
Engineering,  Leibniz University Hannover, 30167 Hanover, Germany
                                        
                                    Mazen Hoballah Jalloul
                                            Ludwig-Franzius-Institute of Hydraulic, Estuarine and Coastal
Engineering,  Leibniz University Hannover, 30167 Hanover, Germany
                                        
                                    Christian Jordan
                                            Ludwig-Franzius-Institute of Hydraulic, Estuarine and Coastal
Engineering,  Leibniz University Hannover, 30167 Hanover, Germany
                                        
                                    Jan Visscher
                                            Ludwig-Franzius-Institute of Hydraulic, Estuarine and Coastal
Engineering,  Leibniz University Hannover, 30167 Hanover, Germany
                                        
                                    Hong Quan Nguyen
                                            Institute for Circular Economy Development, Vietnam National
University Ho Chi Minh City, 700000 Ho Chi Minh City, Vietnam
                                        
                                    
                                            Institute for Environment and Resources, Vietnam National University Ho Chi Minh City, 700000 Ho Chi Minh City, Vietnam
                                        
                                    Torsten Schlurmann
                                            Ludwig-Franzius-Institute of Hydraulic, Estuarine and Coastal
Engineering,  Leibniz University Hannover, 30167 Hanover, Germany
                                        
                                    Related authors
Leon Scheiber, Christoph Gabriel David, Mazen Hoballah Jalloul, Jan Visscher, Hong Quan Nguyen, Roxana Leitold, Javier Revilla Diez, and Torsten Schlurmann
                                    Nat. Hazards Earth Syst. Sci., 23, 2333–2347, https://doi.org/10.5194/nhess-23-2333-2023, https://doi.org/10.5194/nhess-23-2333-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Like many other megacities in low-elevation coastal zones, Ho Chi Minh City in southern Vietnam suffers from the convoluting impact of changing environmental stressors and rapid urbanization. This study assesses quantitative hydro-numerical results against the background of the low-regret paradigm for (1) a large-scale flood protection scheme as currently constructed and (2) the widespread implementation of small-scale rainwater detention as envisioned in the Chinese Sponge City Program.
                                            
                                            
                                        Karen Garcia, Christian Jordan, Gregor Melling, Alexander Schendel, Mario Welzel, and Torsten Schlurmann
                                    Wind Energ. Sci., 10, 2189–2216, https://doi.org/10.5194/wes-10-2189-2025, https://doi.org/10.5194/wes-10-2189-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Scour depths at nine British offshore wind farms (OWFs) were analysed. Site-specific scour drivers were identified, including the relative water depth, relative median grain size, Keulegan–Carpenter number, and sediment mobility. These findings improve our understanding of scour behaviour at different scales and lay the groundwork for enhancing scour prediction frameworks at future offshore wind farms, thereby supporting the expansion of sustainable energy.
                                            
                                            
                                        Tim Hans Martin van Emmerik, Tim Willem Janssen, Tianlong Jia, Thank-Khiet L. Bui, Riccardo Taormina, Hong-Q. Nguyen, and Louise Jeanne Schreyers
                                        EGUsphere, https://doi.org/10.5194/egusphere-2024-2270, https://doi.org/10.5194/egusphere-2024-2270, 2024
                                    Preprint archived 
                                    Short summary
                                    Short summary
                                            
                                                Plastic pollution has negative effects on the environment. Tropical rivers around the world suffer from both plastic pollution and invasive water hyacinths. Water hyacinths grow rapidly and form dense floating mats. Using drones, cameras and AI, we show that along the Saigon river, Vietnam, the majority of floating plastic pollution is carried by water hyacinths. Better understanding water hyacinth-plastic trapping supports improving pollution monitoring and management strategies.
                                            
                                            
                                        Robert Lepper, Leon Jänicke, Ingo Hache, Christian Jordan, and Frank Kösters
                                    Ocean Sci., 20, 711–723, https://doi.org/10.5194/os-20-711-2024, https://doi.org/10.5194/os-20-711-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Most coastal environments are sheltered by tidal flats and salt marshes. These habitats are threatened from drowning under sea level rise. Contrary to expectation, recent analyses in the Wadden Sea showed that tidal flats can accrete faster than sea level rise. We found that this phenomenon was facilitated by the nonlinear link between tidal characteristics and coastal bathymetry evolution. This link caused local and regional tidal adaptation with sharp increase–decrease edges at the coast.
                                            
                                            
                                        Louise J. Schreyers, Tim H. M. van Emmerik, Thanh-Khiet L. Bui, Khoa L. van Thi, Bart Vermeulen, Hong-Q. Nguyen, Nicholas Wallerstein, Remko Uijlenhoet, and Martine van der Ploeg
                                    Hydrol. Earth Syst. Sci., 28, 589–610, https://doi.org/10.5194/hess-28-589-2024, https://doi.org/10.5194/hess-28-589-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                River plastic emissions into the ocean are of global concern, but the transfer dynamics between fresh water and the marine environment remain poorly understood. We developed a simple Eulerian approach to estimate the net and total plastic transport in tidal rivers. Applied to the Saigon River, Vietnam, we found that net plastic transport amounted to less than one-third of total transport, highlighting the need to better integrate tidal dynamics in plastic transport and emission models.
                                            
                                            
                                        Leon Scheiber, Christoph Gabriel David, Mazen Hoballah Jalloul, Jan Visscher, Hong Quan Nguyen, Roxana Leitold, Javier Revilla Diez, and Torsten Schlurmann
                                    Nat. Hazards Earth Syst. Sci., 23, 2333–2347, https://doi.org/10.5194/nhess-23-2333-2023, https://doi.org/10.5194/nhess-23-2333-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Like many other megacities in low-elevation coastal zones, Ho Chi Minh City in southern Vietnam suffers from the convoluting impact of changing environmental stressors and rapid urbanization. This study assesses quantitative hydro-numerical results against the background of the low-regret paradigm for (1) a large-scale flood protection scheme as currently constructed and (2) the widespread implementation of small-scale rainwater detention as envisioned in the Chinese Sponge City Program.
                                            
                                            
                                        Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
                                    Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
                                            
                                            
                                        Cited articles
                        
                        ADB: Ho Chi Minh City – Adaptation to Climate Change: Summary Report, Asian
Development Bank, Manila, the Philippines, 1–36 pp., ISBN 978-971-561-893-9, 2010. 
                    
                
                        
                        Ahmad, K., Sohail, A., Conci, N., and de Natale, F.: A Comparative Study of
Global and Deep Features for the Analysis of User-Generated Natural Disaster
Related Images, in: 2018 IEEE 13th Image, Video, and Multidimensional Signal
Processing Workshop (IVMSP), Aristi Village, Zagorochoria, Greece, 6 October–6 December 2018, 1–5, https://doi.org/10.1109/IVMSPW.2018.8448670, 2018. 
                    
                
                        
                        ALOS: OpenTopography: ALOS World 3D – 30 m [data set], https://doi.org/10.5069/G94M92HB, 2016. 
                    
                
                        
                        Amadio, M., Scorzini, A. R., Carisi, F., Essenfelder, A. H., Domeneghetti, A., Mysiak, J., and Castellarin, A.: Testing empirical and synthetic flood damage models: the case of Italy, Nat. Hazards Earth Syst. Sci., 19, 661–678, https://doi.org/10.5194/nhess-19-661-2019, 2019. 
                    
                
                        
                        Andimuthu, R., Kandasamy, P., Mudgal, B. V., Jeganathan, A., Balu, A., and
Sankar, G.: Performance of urban storm drainage network under changing
climate scenarios: Flood mitigation in Indian coastal city, Sci.
Rep., 9, 7783, https://doi.org/10.1038/s41598-019-43859-3, 2019. 
                    
                
                        
                        Andreadis, K. M., Schumann, G. J.-P., and Pavelsky, T.: A simple global
river bankfull width and depth database, Water Resour. Res., 49, 7164–7168,
https://doi.org/10.1002/wrcr.20440, 2013. 
                    
                
                        
                        Ansari, R. A. and Buddhiraju, K. M.: Noise Filtering in High-Resolution
Satellite Images Using Composite Multiresolution Transforms, PFG, 86,
249–261, https://doi.org/10.1007/s41064-019-00061-4, 2018. 
                    
                
                        
                        ASTER: ASTER Global Digital Elevation Model V003, NASA Earth Data [data set],
https://doi.org/10.5067/ASTER/ASTGTM.003, 2019. 
                    
                
                        
                        Balbastre-Soldevila, R., García-Bartual, R., and Andrés-Doménech, I.: A
Comparison of Design Storms for Urban Drainage System Applications, Water,
11, 757, https://doi.org/10.3390/w11040757, 2019. 
                    
                
                        
                        Barragán, J. M. and de Andrés, M.: Analysis and trends of the
world's coastal cities and agglomerations, Ocean Coast. Manage.,
114, 11–20, https://doi.org/10.1016/j.ocecoaman.2015.06.004, 2015. 
                    
                
                        
                        Becek, K.: Assessing Global Digital Elevation Models Using the Runway
Method: The Advanced Spaceborne Thermal Emission and Reflection Radiometer
Versus the Shuttle Radar Topography Mission Case, IEEE Trans. Geosci. Remote
Sensing, 52, 4823–4831, https://doi.org/10.1109/TGRS.2013.2285187, 2014. 
                    
                
                        
                        Ben Nhge Port Company Ltd.: Overview, Geographic Location, Ben Nghe Port
Company Ltd., http://www.benngheport.com/about-us/overview.html (last access: 22 July
2022), 2014. 
                    
                
                        
                        Beretta, R., Ravazzani, G., Maiorano, C., and Mancini, M.: Simulating the
Influence of Buildings on Flood Inundation in Urban Areas, Geosciences, 8,
77, https://doi.org/10.3390/geosciences8020077, 2018. 
                    
                
                        
                        Beven, K. J.: Rainfall-Runoff Modelling: The Primer, John Wiley & Sons,
https://doi.org/10.1002/9781119951001, 2011. 
                    
                
                        
                        Bright, E., Coleman, P., Rose, A., and Urban, M.: Landscan 2010, https://landscan.ornl.gov (last access: 10 June 2023), 2011. 
                    
                
                        
                        Brown, S., Nicholls, R. J., Lowe, J. A., and Hinkel, J.: Spatial variations
of sea-level rise and impacts: An application of DIVA, Clim. Change, 134,
403–416, https://doi.org/10.1007/s10584-013-0925-y, 2016. 
                    
                
                        
                        Caldwell, P., Merrifield, M., and Thompson, P.: Sea level measured by tide
gauges from global oceans – the Joint Archive for Sea Level holdings (NCEI
Accession 0019568), Version 5.5, NOAA National Centers for Environmental
Information [data set], https://doi.org/10.7289/v5v40s7w, 2015. 
                    
                
                        
                        Camenen, B., Gratiot, N., Cohard, J.-A., Gard, F., Tran, V. Q., Nguyen,
A.-T., Dramais, G., van Emmerik, T., and Némery, J.: Monitoring
discharge in a tidal river using water level observations: Application to
the Saigon River, Vietnam, The Sci. Total Environ., 761,
143195, https://doi.org/10.1016/j.scitotenv.2020.143195, 2021. 
                    
                
                        
                        Chaudhary, P., D'Aronco, S., Leitão, J. P., Schindler, K., and Wegner,
J. D.: Water level prediction from social media images with a multi-task
ranking approach, ISPRS J. Photogramm., 167,
252–262, https://doi.org/10.1016/j.isprsjprs.2020.07.003, 2020. 
                    
                
                        
                        Chen, A. S., Evans, B., Djordjević, S., and Savić, D. A.: A
coarse-grid approach to representing building blockage effects in 2D urban
flood modelling, J. Hydrol., 426–427, 1–16,
https://doi.org/10.1016/j.jhydrol.2012.01.007, 2012. 
                    
                
                        
                        Chu, T. and Lindenschmidt, K.-E.: Comparison and Validation of Digital
Elevation Models Derived from InSAR for a Flat Inland Delta in the High
Latitudes of Northern Canada, Can. J. Remote Sens., 43,
109–123, https://doi.org/10.1080/07038992.2017.1286936, 2017. 
                    
                
                        
                        CoastalDEM: CoastalDEM®: New v2.1 release provides even better elevation data for flood risk assessment [data set], https://go.climatecentral.org/coastaldem/, last access: 20 June 2023. 
                    
                
                        
                        ESA: Copernicus DEM – Global and European Digital Elevation Model (COP-DEM), Version 1, European Space Agency (ESA),
https://doi.org/10.5270/ESA-c5d3d65, 2019. 
                    
                
                        
                        Crameri, F.: Scientific colour maps, Zenodo, https://doi.org/10.5281/zenodo.5501399, 2021. 
                    
                
                        
                        Dasallas, L., An, H., and Lee, S.: Developing an integrated multiscale
rainfall-runoff and inundation model: Application to an extreme rainfall
event in Marikina-Pasig River Basin, Philippines, J. Hydrol.-Reg. Stud., 39, 100995, https://doi.org/10.1016/j.ejrh.2022.100995,
2022. 
                    
                
                        
                        Debusscher, B., Landuyt, L., and van Coillie, F.: A Visualization Tool for
Flood Dynamics Monitoring Using a Graph-Based Approach, Remote Sens., 12,
2118, https://doi.org/10.3390/rs12132118, 2020. 
                    
                
                        
                        DECIDER project: Decisions for the Design of Adaptation Pathways and the Integrative Development, Evaluation and Governance of Flood
Risk Mitigation Strategies in Changing Urban-rural Systems (DECIDER) [data set], https://www.decider-project.org (last access: 20 June 2023), 2023. 
                    
                
                        
                        Di Baldassarre, G. and Uhlenbrook, S.: Is the current flood of data enough?
A treatise on research needs for the improvement of flood modelling, Hydrol.
Process., 26, 153–158, https://doi.org/10.1002/hyp.8226, 2012. 
                    
                
                        
                        Doocy, S., Daniels, A., Murray, S., and Kirsch, T. D.: The human impact of
floods: a historical review of events 1980–2009 and systematic literature
review, PLoS Curr., 5, PubMed-ID: 23857425, 1–27 pp., 2013. 
                    
                
                        
                        Duffy, C. E., Braun, A., and Hochschild, V.: Surface Subsidence in Urbanized
Coastal Areas: PSI Methods Based on Sentinel-1 for Ho Chi Minh City, Remote
Sens., 12, 4130, https://doi.org/10.3390/rs12244130, 2020. 
                    
                
                        
                        Dyck, S.: Angewandte Hydrologie, Teil 2: Der Wasserhaushalt der Fußgebiete, 2nd printing, Verlag für Bauwesen, Berlin, 1980. 
                    
                
                        
                        Ekeu-wei, I. T. and Blackburn, G. A.: Catchment-Scale Flood Modelling in
Data-Sparse Regions Using Open-Access Geospatial Technology, IJGI, 9, 512,
https://doi.org/10.3390/ijgi9090512, 2020. 
                    
                
                        
                        Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004/2007,
https://doi.org/10.1029/2005RG000183, 2007. 
                    
                
                        
                        Feng, Y., Brubaker, K. L., and McCuen, R. H.: New View of Flood Frequency
Incorporating Duration, J. Hydrol. Eng., 22, 4017051,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001573, 2017. 
                    
                
                        
                        Feng, Y., Brenner, C., and Sester, M.: Flood severity mapping from
Volunteered Geographic Information by interpreting water level from images
containing people: A case study of Hurricane Harvey, ISPRS J.
Photogramm., 169, 301–319,
https://doi.org/10.1016/j.isprsjprs.2020.09.011, 2020. 
                    
                
                        
                        FIM: Ho Chi Minh City Flood and Inundation Management, Final report, volume
2: IFRM strategy annex 1: Analysis of flood and inundation hazards, Ho Chi
Minh City, Vietnam, Internal Report, 2013. 
                    
                
                        
                        Gallien, T. W., Schubert, J. E., and Sanders, B. F.: Predicting tidal
flooding of urbanized embayments: A modeling framework and data
requirements, Coast. Eng., 58, 567–577,
https://doi.org/10.1016/j.coastaleng.2011.01.011, 2011. 
                    
                
                        
                        GO FAIR: Fair Principles, https://www.go-fair.org/fair-principles/ (last
access: 15 September 2022), 2016. 
                    
                
                        
                        Guan, M., Guo, K., Yan, H., and Wright, N.: Bottom-up multilevel flood
hazard mapping by integrated inundation modelling in data scarce cities,
J. Hydrol., 617, 129114,
https://doi.org/10.1016/j.jhydrol.2023.129114, 2023. 
                    
                
                        
                        Gugliotta, M., Saito, Y., Ta, T. K. O., van Nguyen, L., Uehara, K., Tamura,
T., Nakashima, R., and Lieu, K. P.: Sediment distribution along the fluvial
to marine transition zone of the Dong Nai River System, southern Vietnam,
Mar. Geol., 429, 106314, https://doi.org/10.1016/j.margeo.2020.106314,
2020. 
                    
                
                        
                        Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future
flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806,
https://doi.org/10.1038/nclimate1979, 2013. 
                    
                
                        
                        Hamel, P. and Tan, L.: Blue-Green Infrastructure for Flood and Water Quality
Management in Southeast Asia: Evidence and Knowledge Gaps, Environ.
Manage., 1–20, https://doi.org/10.1007/s00267-021-01467-w, 2021. 
                    
                
                        
                        Hansen, A.: The Three Extreme Value Distributions: An Introductory Review,
Front. Phys., 8, 604053, https://doi.org/10.3389/fphy.2020.604053, 2020. 
                    
                
                        
                        Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J.,
Herweijer, C., and Chateau, J.: A global ranking of port cities with high
exposure to climate extremes, Clim. Change, 104, 89–111,
https://doi.org/10.1007/s10584-010-9977-4, 2011. 
                    
                
                        
                        Hawker, L., Bates, P., Neal, J., and Rougier, J.: Perspectives on Digital
Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a
High-Accuracy Open Access Global DEM, Front. Earth Sci., 6,
https://doi.org/10.3389/feart.2018.00233, 2018. 
                    
                
                        
                        Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Sampson, C., and Neal,
J.: A 30 m global map of elevation with forests and buildings removed,
Environ. Res. Lett., 17, 24016, https://doi.org/10.1088/1748-9326/ac4d4f,
2022. 
                    
                
                        
                        Hejl, L.: A Method for adjusting values of Manning's Roughness Coefficient
for flooded urban areas, J. Res. U.S. Geol. Survey, 5, 541–545,
1977. 
                    
                
                        
                        Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A.-X., and Chen, W.:
Application of fuzzy weight of evidence and data mining techniques in
construction of flood susceptibility map of Poyang County, China, The
Sci. Total Environ., 625, 575–588,
https://doi.org/10.1016/j.scitotenv.2017.12.256, 2018. 
                    
                
                        
                        Ho Tong Minh, D., Ngo, Y.-N., Lê, T. T., Le, T. C., Bui, H. S., Vuong,
Q. V., and Le Toan, T.: Quantifying Horizontal and Vertical Movements in Ho
Chi Minh City by Sentinel-1 Radar Interferometry,
https://www.preprints.org/manuscript/202012.0382/v2 (last access: 11 June 2023), Preprint, 2020. 
                    
                
                        
                        Hu, Z., Peng, J., Hou, Y., and Shan, J.: Evaluation of Recently Released
Open Global Digital Elevation Models of Hubei, China, Remote Sens., 9,
262, https://doi.org/10.3390/rs9030262, 2017. 
                    
                
                        
                        Huong, H. T. L. and Pathirana, A.: Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam, Hydrol. Earth Syst. Sci., 17, 379–394, https://doi.org/10.5194/hess-17-379-2013, 2013. 
                    
                
                        
                        IGES: Sustainable Groundwater Management in Asian Cities: A final report of
Research on Sustainable Water Management Policy, ISBN 4-88788-039-9, 69–71 pp., 2007. 
                    
                
                        
                        Intermap: NextMap World 10, https://www.intermap.com/data/nextmap (last access: 13 January 2023), 2018. 
                    
                
                        
                        IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability:
Contribution of Working Group II to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor,
M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009325844, 1–3068 pp., 2022. 
                    
                
                        
                        Ismail, M. S. N., Ghani, A. N. A., Ghazaly, Z. M., and Dafalla, M.: A study
on the effect of flooding depths and duration on soil subgrade performance
and stability, Int. J. Geotech., Construction Material
and Environment (GEOMATE), 19,
182–187, https://doi.org/10.21660/2020.71.9336, 2020. 
                    
                
                        
                        Jarihani, A. A., Callow, J. N., McVicar, T. R., van Niel, T. G., and Larsen,
J. R.: Satellite-derived Digital Elevation Model (DEM) selection,
preparation and correction for hydrodynamic modelling in large, low-gradient
and data-sparse catchments, J. Hydrol., 524, 489–506,
https://doi.org/10.1016/j.jhydrol.2015.02.049, 2015. 
                    
                
                        
                        JICA: Detailed Design Study on HCMC Water Environment Improvement Project
(Final Report), Japan International Cooperation Agency, Ho Chi Minh City, https://openjicareport.jica.go.jp/pdf/11650298.pdf (last access: 13 June 2023), 1–48 pp.,
2001. 
                    
                
                        
                        Khiem, M. V., Minh, H. T., and Linh, L. N.: Impact of Climate Change on Intensity-Duration-Frequency
Curves in Ho Chi Minh City, J. Clim. Change Sci., (last access: 13 January 2023), 40–46 pp., 2017. 
                    
                
                        
                        Kim, D., Sun, Y., Wendi, D., Jiang, Z., Liong, S.-Y., and Gourbesville, P.:
Flood Modelling Framework for Kuching City, Malaysia: Overcoming the Lack of
Data, Advances in Hydroinformatics, Springer Singapore, 559–568, 559–568,
https://doi.org/10.1007/978-981-10-7218-5_39, 2018. 
                    
                
                        
                        Kim, D.-E., Gourbesville, P., and Liong, S.-Y.: Overcoming data scarcity in
flood hazard assessment using remote sensing and artificial neural network,
Smart Water, 4, 2, https://doi.org/10.1186/s40713-018-0014-5, 2019. 
                    
                
                        
                        Koks, E. E., Bočkarjova, M., de Moel, H., and Aerts, J. C. J. H.:
Integrated Direct and Indirect Flood Risk Modeling: Development and
Sensitivity Analysis, Risk analysis an official publication of the Society
for Risk Analysis, 35, 882–900, https://doi.org/10.1111/risa.12300, 2015. 
                    
                
                        
                        Kontgis, C., Schneider, A., Fox, J., Saksena, S., Spencer, J. H., and
Castrence, M.: Monitoring peri-urbanization in the greater Ho Chi Minh City
metropolitan area, Appl. Geogr., 53, 377–388,
https://doi.org/10.1016/j.apgeog.2014.06.029, 2014. 
                    
                
                        
                        Kreibich, H., Piroth, K., Seifert, I., Maiwald, H., Kunert, U., Schwarz, J., Merz, B., and Thieken, A. H.: Is flow velocity a significant parameter in flood damage modelling?, Nat. Hazards Earth Syst. Sci., 9, 1679–1692, https://doi.org/10.5194/nhess-9-1679-2009, 2009. 
                    
                
                        
                        Kulp, S. A. and Strauss, B. H.: CoastalDEM: A global coastal digital
elevation model improved from SRTM using a neural network, Remote Sens.
Environ., 206, 231–239, https://doi.org/10.1016/j.rse.2017.12.026, 2018. 
                    
                
                        
                        Kulp, S. A. and Strauss, B. H.: New elevation data triple estimates of
global vulnerability to sea-level rise and coastal flooding, Nat.
Commun., 10, 4844, https://doi.org/10.1038/s41467-019-12808-z, 2019. 
                    
                
                        
                        LaLonde, T., Shortridge, A., and Messina, J.: The Influence of Land Cover on
Shuttle Radar Topography Mission (SRTM) Elevations in Low-relief Areas,
Trans. GIS, 14, 461–479,
https://doi.org/10.1111/j.1467-9671.2010.01217.x, 2010. 
                    
                
                        
                        Le Binh, T. H., Umamahesh, N. V., and Rathnam, E. V.: High-resolution flood
hazard mapping based on nonstationary frequency analysis: case study of Ho
Chi Minh City, Vietnam, Hydrol. Sci. J., 64, 318–335,
https://doi.org/10.1080/02626667.2019.1581363, 2019. 
                    
                
                        
                        Le Dung, T., Le Phu, V., Lan, N. H. M., Tien, N. T. C., and Hiep, L. D.:
Sustainable Urban Drainage System Model for The Nhieu Loc – Thi Nghe Basin,
Ho Chi Minh City, IOP Conf. Ser.: Earth Environ. Sci., 652, 12012,
https://doi.org/10.1088/1755-1315/652/1/012012, 2021. 
                    
                
                        
                        Lindsay, J. B.: Efficient hybrid breaching-filling sink removal methods for
flow path enforcement in digital elevation models, Hydrol. Process., 30,
846–857, https://doi.org/10.1002/hyp.10648, 2016. 
                    
                
                        
                        Liu, J., Shao, W., Xiang, C., Mei, C., and Li, Z.: Uncertainties of urban
flood modeling: Influence of parameters for different underlying surfaces,
Environ. Res., 182, 108929,
https://doi.org/10.1016/j.envres.2019.108929, 2020. 
                    
                
                        
                        Liu, L., Liu, Y., Wang, X., Yu, D., Liu, K., Huang, H., and Hu, G.: Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata, Nat. Hazards Earth Syst. Sci., 15, 381–391, https://doi.org/10.5194/nhess-15-381-2015, 2015. 
                    
                
                        
                        Loc, H. H., Babel, M. S., Weesakul, S., Irvine, K., and Duyen, P.:
Exploratory Assessment of SUDS Feasibility in Nhieu Loc-Thi Nghe Basin, Ho
Chi Minh City, Vietnam, British J. Environ. Clim.
Change, 5, 91–103, https://doi.org/10.9734/BJECC/2015/11534, 2015. 
                    
                
                        
                        Meesuk, V., Vojinovic, Z., Mynett, A. E., and Abdullah, A. F.: Urban flood
modelling combining top-view LiDAR data with ground-view SfM observations,
Adv. Water Resour., 75, 105–117,
https://doi.org/10.1016/j.advwatres.2014.11.008, 2015. 
                    
                
                        
                        Mehta, D. J., Eslamian, S., and Prajapati, K.: Flood modelling for a
data-scare semi-arid region using 1-D hydrodynamic model: a case study of
Navsari Region, Model. Earth Syst. Environ., 8, 2675–2685,
https://doi.org/10.1007/s40808-021-01259-5, 2022. 
                    
                
                        
                        Menabde, M., Seed, A., and Pegram, G.: A simple scaling model for extreme
rainfall, Water Resour. Res., 35, 335–339,
https://doi.org/10.1029/1998WR900012, 1999. 
                    
                
                        
                        Miedema, F.: Open Science: the Very Idea, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-024-2115-6, XXII, 1–247 pp., 2022. 
                    
                
                        
                        Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H., and
Stouthamer, E.: Mekong delta much lower than previously assumed in sea-level
rise impact assessments, Nat. Commun., 10, 3847,
https://doi.org/10.1038/s41467-019-11602-1, 2019. 
                    
                
                        
                        Molinari, D., Menoni, S., Aronica, G. T., Ballio, F., Berni, N., Pandolfo, C., Stelluti, M., and Minucci, G.: Ex post damage assessment: an Italian experience, Nat. Hazards Earth Syst. Sci., 14, 901–916, https://doi.org/10.5194/nhess-14-901-2014, 2014. 
                    
                
                        
                        Mons, B., Neylon, C., Velterop, J., Dumontier, M., Da Silva Santos, L. O.
B., and Wilkinson, M. D.: Cloudy, increasingly FAIR; revisiting the FAIR
Data guiding principles for the European Open Science Cloud, ISU, 37,
49–56, https://doi.org/10.3233/ISU-170824, 2017. 
                    
                
                        
                        Moramarco, T., Barbetta, S., Bjerklie, D. M., Fulton, J. W., and Tarpanelli,
A.: River Bathymetry Estimate and Discharge Assessment from Remote Sensing,
Water Resour. Res., 55, 6692–6711, https://doi.org/10.1029/2018WR024220,
2019. 
                    
                
                        
                        Moy de Vitry, M., Kramer, S., Wegner, J. D., and Leitão, J. P.: Scalable flood level trend monitoring with surveillance cameras using a deep convolutional neural network, Hydrol. Earth Syst. Sci., 23, 4621–4634, https://doi.org/10.5194/hess-23-4621-2019, 2019. 
                    
                
                        
                        Muhadi, N. A., Abdullah, A. F., Bejo, S. K., Mahadi, M. R., and Mijic, A.:
Deep Learning Semantic Segmentation for Water Level Estimation Using
Surveillance Camera, Appl. Sci., 11, 9691,
https://doi.org/10.3390/app11209691, 2021. 
                    
                
                        
                        Musolino, G., Ahmadian, R., Xia, J., and Falconer, R. A.: Mapping the danger
to life in flash flood events adopting a mechanics based methodology and
planning evacuation routes, J. Flood Risk Manage., 13,
https://doi.org/10.1111/jfr3.12627, 2020. 
                    
                
                        
                        NASA: Shuttle Radar Topography Mission (SRTM), NASA Earth Data [data set], https://www.earthdata.nasa.gov/sensors/srtm, last access: 20 June, 2023. 
                    
                
                        
                        Neal, J., Schumann, G., and Bates, P.: A subgrid channel model for
simulating river hydraulics and floodplain inundation over large and data
sparse areas, Water Resour. Res., 48, W11506, https://doi.org/10.1029/2012WR012514,
2012. 
                    
                
                        
                        Nguyen, H. Q., Radhakrishnan, M., Bui, T. K. N., Tran, D. D., Ho, L. P.,
Tong, V. T., Huynh, L. T. P., Chau, N. X. Q., Ngo, T. T. T., Pathirana, A.,
and Ho, H. L.: Evaluation of retrofitting responses to urban flood risk in
Ho Chi Minh City using the Motivation and Ability (MOTA) framework,
Sustain. Cities Soc., 47, 101465,
https://doi.org/10.1016/j.scs.2019.101465, 2019. 
                    
                
                        
                        Nguyen, Q. T.: The Main Causes of Land Subsidence in Ho Chi Minh City,
Proc. Eng., 142, 334–341,
https://doi.org/10.1016/j.proeng.2016.02.058, 2016. 
                    
                
                        
                        Nhat, L. M., Tachikawa, Y., and Takara, K.: Establishment of
Intensity-Duration-Frequency Curves for Precipitation in the Monsoon Area of
Vietnam, Annuals of Disas. Prev. Res. Inst., 93–103, 2006. 
                    
                
                        
                        Nkwunonwo, U. C., Whitworth, M., and Baily, B.: A review of the current
status of flood modelling for urban flood risk management in the developing
countries, Sci. African, 7, e00269,
https://doi.org/10.1016/j.sciaf.2020.e00269, 2020. 
                    
                
                        
                        NOAA: Climate Data Online, NOAA [data set], https://www.ncdc.noaa.gov/cdo-web/ (last access: 14 September 2022), 2022. 
                    
                
                        
                        O'Hara, R., Green, S., and McCarthy, T.: The agricultural impact of the
2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery,
Irish J. Agr. Food Res., 58, 44–65,
https://doi.org/10.2478/ijafr-2019-0006, 2019. 
                    
                
                        
                        Ozdemir, H., Sampson, C. C., de Almeida, G. A. M., and Bates, P. D.: Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data, Hydrol. Earth Syst. Sci., 17, 4015–4030, https://doi.org/10.5194/hess-17-4015-2013, 2013. 
                    
                
                        
                        Pandya, U., Patel, D. P., and Singh, S. K.: A flood assessment of data
scarce region using an open-source 2D hydrodynamic modeling and Google Earth
Image: a case of Sabarmati flood, India, Arab. J. Geosci., 14, 2200,
https://doi.org/10.1007/s12517-021-08504-2, 2021. 
                    
                
                        
                        Patro, S., Chatterjee, C., Singh, R., and Raghuwanshi, N. S.: Hydrodynamic
modelling of a large flood-prone river system in India with limited data,
Hydrol. Process., 23, 2774–2791, https://doi.org/10.1002/hyp.7375, 2009. 
                    
                
                        
                        Phung, P.: Climate change adaptation planning under uncertainty in Ho Chi
Minh City, Vietnam: a case study on institutional vulnerability, adaptive
capacity and climate change governance, PhD, Planning and Stransport,
University of Westminster, Westminster, https://westminsterresearch.westminster.ac.uk/ (last access: 13 June 2023), 1–323 pp., 2016. 
                    
                
                        
                        Planet Observer: PlanetDEM 30 Plus, Planet Observer [data set], https://www.planetobserver.com/global-elevation-data (last access: 13 June 2023), 2017. 
                    
                
                        
                        Quan, N. H., Hieu, N. D., van Thu, T. T., Buchanan, M., Canh, N. D., da
Cunha Oliveira Santos, M., Luan, P. D. M. H., Hoang, T. T., Phung, H. L. T.,
Canh, K. M., and Smith, M.: Green Infrastructure Modelling for Assessment of
Urban Flood Reduction in Ho Chi Minh city, in: CIGOS 2019, Innovation for
Sustainable Infrastructure, edited by: Ha-Minh, C., van Dao, D.,
Benboudjema, F., Derrible, S., Huynh, D. V. K., and Tang, A. M., Springer
Singapore, Singapore, 1105–1110,
https://doi.org/10.1007/978-981-15-0802-8_177, 2020. 
                    
                
                        
                        Quân, N. T., Nhi, P. T. T., and Khôi, D. N.: Xây dụng du'òng cong IDF mu'a c 'c doan cho tr m Tân So'n Hòa giai do n 1980–2015 (in Vietnamese), Tap chi phat trien khoa hoc va cong nghe, https://www.researchgate.net/profile/Quan-Nguyen-74 (last access: 13 January 2023), 73–81 pp., 2017. 
                    
                
                        
                        Rättich, M., Martinis, S., and Wieland, M.: Automatic Flood Duration
Estimation Based on Multi-Sensor Satellite Data, Remote Sens., 12, 643,
https://doi.org/10.3390/rs12040643, 2020. 
                    
                
                        
                        René, J.-R., Djordjević, S., Butler, D., Madsen, H., and Mark, O.:
Assessing the potential for real-time urban flood forecasting based on a
worldwide survey on data availability, Urban Water J., 11, 573–583,
https://doi.org/10.1080/1573062X.2013.795237, 2014. 
                    
                
                        
                        Rexer, M. and Hirt, C.: Comparison of free high resolution digital elevation
data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate
heights from the Australian National Gravity Database, Aust. J.
Earth Sci., 61, 213–226, https://doi.org/10.1080/08120099.2014.884983,
2014. 
                    
                
                        
                        Saigon Port Joint Stock Company: Port Information, Saigon Port Joint Stock
Company, http://csg.com.vn/thong-tin/ha-tang-trang-thiet-bi (last access:
22 July 2022), 2019. 
                    
                
                        
                        Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., and Trigg, M. A.:
Perspectives on Open Access High Resolution Digital Elevation Models to
Produce Global Flood Hazard Layers, Front. Earth Sci., 3, 85,
https://doi.org/10.3389/feart.2015.00085, 2016. 
                    
                
                        
                        Sandbach, S. D., Nicholas, A. P., Ashworth, P. J., Best, J. L., Keevil, C.
E., Parsons, D. R., Prokocki, E. W., and Simpson, C. J.: Hydrodynamic
modelling of tidal-fluvial flows in a large river estuary, Estuarine,
Coastal Shelf Sci., 212, 176–188,
https://doi.org/10.1016/j.ecss.2018.06.023, 2018. 
                    
                
                        
                        Sanders, B. F.: Evaluation of on-line DEMs for flood inundation modeling,
Adv. Water Resour., 30, 1831–1843,
https://doi.org/10.1016/j.advwatres.2007.02.005, 2007. 
                    
                
                        
                        Sandink, D.: Urban flooding and ground-related homes in Canada: an overview,
J. Flood Risk Manage., 9, 208–223,
https://doi.org/10.1111/jfr3.12168, 2016. 
                    
                
                        
                        Scheiber, L., David, C. G., Hoballah Jalloul, M., Visscher, J., Nguyen, H. Q., Leitold,
R., Revilla Diez, J., and Schlurmann, T.: Low-regret climate change adaptation in coastal megacities – evaluating large-scale flood protection and small-scale rainwater detention measures for Ho Chi Minh City, Vietnam, Nat. Hazards Earth Syst. Sci., 23, 2333–2347, https://doi.org/10.5194/nhess-23-2333-2023, 2023. 
                    
                
                        
                        Schellekens, J., Brolsma, R. J., Dahm, R. J., Donchyts, G. V., and
Winsemius, H. C.: Rapid setup of hydrological and hydraulic models using
OpenStreetMap and the SRTM derived digital elevation model, Environ.
Model. Softw., 61, 98–105,
https://doi.org/10.1016/j.envsoft.2014.07.006, 2014. 
                    
                
                        
                        Schlurmann, T., Kongko, W., Goseberg, N., Natawidjaja, D. H., and Sieh, K.:
Near-field tsunami hazard map Padang, West Sumatra: Utilizing high
resolution geospatial data and reseasonable source scenarios, in: Coastal Engineering Proceedings: Proceedings of the International Conference on Coastal Engineering 32 (ICCE 2010), Management 26, Reston: American Society of Civil Engineers,
https://doi.org/10.15488/1839, 2010. 
                    
                
                        
                        Schumann, G. J.-P. and Bates, P. D.: The Need for a High-Accuracy,
Open-Access Global DEM, Front. Earth Sci., 6, 225,
https://doi.org/10.3389/feart.2018.00225, 2018. 
                    
                
                        
                        Schumann, G. J.-P., Bates, P. D., Neal, J. C., and Andreadis, K. M.:
Technology: Fight floods on a global scale, Nature, 507, 169,
https://doi.org/10.1038/507169e, 2014. 
                    
                
                        
                        Scussolini, P., van Tran, T. T., Koks, E., Diaz-Loaiza, A., Ho, P. L., and
Lasage, R.: Adaptation to Sea Level Rise: A Multidisciplinary Analysis for
Ho Chi Minh City, Vietnam, Water Resour. Res., 53, 10841–10857,
https://doi.org/10.1002/2017WR021344, 2017. 
                    
                
                        
                        Selaman, O. S., Said, S., and Ptuhena, F. J.: Flood Frequency Analysis for
Sarawak Using Weibull, Grigorten And L-Moments Formula, J. The
Inst. Eng., Malaysia, 68, 43–52, 2007. 
                    
                
                        
                        Shortridge, A. and Messina, J.: Spatial structure and landscape associations
of SRTM error, Remote Sens. Environ., 115, 1576–1587,
https://doi.org/10.1016/j.rse.2011.02.017, 2011. 
                    
                
                        
                        Shrestha, B. B., Okazumi, T., Miyamoto, M., and Sawano, H.: Flood damage
assessment in the Pampanga river basin of the Philippines, J. Flood
Risk Manage., 9, 355–369, https://doi.org/10.1111/jfr3.12174, 2016. 
                    
                
                        
                        Storch, H.: Exploring the spatial-temporal linkages of climate response and
rapid urban growth in Ho Chi Minh City, 47th ISOCARP Congress, 24–28 October 2011, Wuhan, China, http://www.isocarp.net/Data/case_studies/1927.pdf (last access: 13 January 2023), 1–8 pp., 2011. 
                    
                
                        
                        Takaku, J. and Tadono, T.: Quality updates of “AW3D” global DSM generated
from ALOS PRISM, in: 2017 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Fort Worth, TX, 23–28 July  2017, 5666–5669, 2017. 
                    
                
                        
                        Tang, J. C. S., Vongvisessomjai, S., and Sahasakmontri, K.: Estimation of
flood damage cost for Bangkok, Water Resour. Manage., 6, 47–56,
https://doi.org/10.1007/BF00872187, 1992. 
                    
                
                        
                        Taubenböck, H., Goseberg, N., Setiadi, N., Lämmel, G., Moder, F., Oczipka, M., Klüpfel, H., Wahl, R., Schlurmann, T., Strunz, G., Birkmann, J., Nagel, K., Siegert, F., Lehmann, F., Dech, S., Gress, A., and Klein, R.: ”Last-Mile” preparation for a potential disaster – Interdisciplinary approach towards tsunami early warning and an evacuation information system for the coastal city of Padang, Indonesia, Nat. Hazards Earth Syst. Sci., 9, 1509–1528, https://doi.org/10.5194/nhess-9-1509-2009, 2009. 
                    
                
                        
                        Thieken, A. H., Müller, M., Kreibich, H., and Merz, B.: Flood damage and
influencing factors: New insights from the August 2002 flood in Germany,
Water Resour. Res., 41, W12430, https://doi.org/10.1029/2005WR004177, 2005. 
                    
                
                        
                        Thorne, C. R., Lawson, E. C., Ozawa, C., Hamlin, S. L., and Smith, L. A.:
Overcoming uncertainty and barriers to adoption of Blue-Green Infrastructure
for urban flood risk management, J.f Flood Risk Manage., 11,
S960–S972, https://doi.org/10.1111/jfr3.12218, 2015. 
                    
                
                        
                        Tighe, M. and Chamberlain, D.: Accuray Comparsion of the SRTM, ASTER, NED,
NEXTMAP USA Digital Terrain Model over Several USA Study Sites DEMs,
Proceedings of the ASPRS/MAPPS 2009 Fall Conference, 16–19 November 2009, San Antonia, Texas, USA, https://www.asprs.org/a/publications/proceedings/sanantonio09/Tighe_2.pdf (last access: 13 June 2023), 1–12 pp., 2009. 
                    
                
                        
                        Trameco S. A.: The infrastructure: Wharf and mining equipment, Trameco,
http://www.tracomeco.com/10/66/Co-so-ha-tang.aspx (last access: 22 July 2022),
2014. 
                    
                
                        
                        Tran Ngoc, T. D., Perset, M., Strady, E., Phan, T. S. H., Vachaud, G.,
Quertamp, F., and Gratiot, N.: Ho Chi Minh City growing with water related
challenges, UNESCO, Paris, France, https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers17-07/010070478.pdf (last access: 13 June 2023), 1–29 pp., 2016. 
                    
                
                        
                        Trinh, M. X. and Molkenthin, F.: Flood hazard mapping for data-scarce and
ungauged coastal river basins using advanced hydrodynamic models, high
temporal-spatial resolution remote sensing precipitation data, and satellite
imageries, Nat. Hazards, 109, 441–469,
https://doi.org/10.1007/s11069-021-04843-1, 2021. 
                    
                
                        
                        Vernimmen, R., Hooijer, A., and Pronk, M.: New ICESat-2 Satellite LiDAR Data
Allow First Global Lowland DTM Suitable for Accurate Coastal Flood Risk
Assessment, Remote Sens., 12, 2827, https://doi.org/10.3390/rs12172827,
2020. 
                    
                
                        
                        Vojinovic, Z. and Tutulic, D.: On the use of 1D and coupled 1D-2D modelling
approaches for assessment of flood damage in urban areas, Urban Water
J., 6, 183–199, https://doi.org/10.1080/15730620802566877, 2009. 
                    
                
                        
                        Wagenaar, D. J., de Bruijn, K. M., Bouwer, L. M., and de Moel, H.: Uncertainty in flood damage estimates and its potential effect on investment decisions, Nat. Hazards Earth Syst. Sci., 16, 1–14, https://doi.org/10.5194/nhess-16-1-2016, 2016. 
                    
                
                        
                        Wagenaar, D., de Jong, J., and Bouwer, L. M.: Multi-variable flood damage modelling with limited data using supervised learning approaches, Nat. Hazards Earth Syst. Sci., 17, 1683–1696, https://doi.org/10.5194/nhess-17-1683-2017, 2017. 
                    
                
                        
                        Wang, Y., Chen, A. S., Fu, G., Djordjević, S., Zhang, C., and Savić,
D. A.: An integrated framework for high-resolution urban flood modelling
considering multiple information sources and urban features, Environ.
Modell. Softw., 107, 85–95,
https://doi.org/10.1016/j.envsoft.2018.06.010, 2018. 
                    
                
                        
                        Watt, W. E., Chow, K. C. A., Hogg, W. D., and Lathem, K. W.: A 1-h urban
design storm for Canada, Can. J. Civ. Eng., 13, 293–300,
https://doi.org/10.1139/l86-041, 1986. 
                    
                
                        
                        Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J.-W., Da Silva Santos, L. B., Bourne,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A.
J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C. 't,
Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons,
A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and stewardship,
Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016. 
                    
                
                        
                        Yamazaki, D., O'Loughlin, F., Trigg, M. A., Miller, Z. F., Pavelsky, T. M.,
and Bates, P. D.: Development of the Global Width Database for Large Rivers,
Water Resour. Res., 50, 3467–3480, https://doi.org/10.1002/2013WR014664,
2014. 
                    
                
                        
                        Yan, K., Tarpanelli, A., Balint, G., Moramarco, T., and Di Baldassarre, G.:
Exploring the Potential of SRTM Topography and Radar Altimetry to Support
Flood Propagation Modeling: Danube Case Study, J. Hydrol. Eng., 20, 4014048,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001018, 2015a. 
                    
                
                        
                        Yan, K., Di Baldassarre, G., Solomatine, D. P., and Schumann, G. J.-P.: A
review of low-cost space-borne data for flood modelling: topography, flood
extent and water level, Hydrol. Process., 29, 3368–3387,
https://doi.org/10.1002/hyp.10449, 2015b. 
                    
                
                        
                        Zhao, W., Kinouchi, T., and Nguyen, H. Q.: A framework for projecting future
intensity-duration-frequency (IDF) curves based on CORDEX Southeast Asia
multi-model simulations: An application for two cities in Southern Vietnam,
J. Hydrol., 598, 126461,
https://doi.org/10.1016/j.jhydrol.2021.126461, 2021. 
                    
                Short summary
                    Numerical models are increasingly important for assessing urban flooding, yet reliable input data are oftentimes hard to obtain. Taking Ho Chi Minh City as an example, this paper explores the usability and reliability of open-access data to produce preliminary risk maps that provide first insights into potential flooding hotspots. As a key novelty, a normalized flood severity index is presented which combines flood depth and duration to enhance the interpretation of hydro-numerical results.
                    Numerical models are increasingly important for assessing urban flooding, yet reliable input...
                    
                Special issue
                        
                    Altmetrics
                
                Final-revised paper
            
            
                    Preprint