Articles | Volume 22, issue 3
https://doi.org/10.5194/nhess-22-831-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-831-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geo-historical database of flood impacts in Alpine catchments (HIFAVa database, Arve River, France, 1850–2015)
Eva Boisson
CORRESPONDING AUTHOR
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Bruno Wilhelm
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Emmanuel Garnier
Université Franche-Comté, CNRS, LCE, 25000 Besançon, France
Alain Mélo
AXALP, Annecy, France
Univ. Savoie Mont-Blanc, CNRS, EDYTEM – UMR 5204, 73370 Le Bourget du Lac, France
Sandrine Anquetin
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Isabelle Ruin
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Related authors
No articles found.
Carlo Destouches, Arona Diedhiou, Sandrine Anquetin, Benoit Hingray, Armand Pierre, Dominique Boisson, and Adermus Joseph
Earth Syst. Dynam., 16, 497–512, https://doi.org/10.5194/esd-16-497-2025, https://doi.org/10.5194/esd-16-497-2025, 2025
Short summary
Short summary
This work provides a relevant analysis of changes in extreme precipitation over the Caribbean and their link with warming in different ocean basins. It also improves our understanding of the impact of warming on extreme precipitation events, which can cause devastating damage to economic sectors such as agriculture, biodiversity, health, and energy.
Akshay Singhal, Louise Crochemore, Isabelle Ruin, and Sanjeev K. Jha
Hydrol. Earth Syst. Sci., 29, 947–967, https://doi.org/10.5194/hess-29-947-2025, https://doi.org/10.5194/hess-29-947-2025, 2025
Short summary
Short summary
A serious game experiment is presented which assesses the interplay between hazard, exposure, and vulnerability in a flash flood event. The results show that participants' use of information to make decisions was based on the severity of the situation. Participants used precipitation forecast and exposure to make correct decisions in the first round, while they used precipitation forecast and vulnerability information in the second round.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
Atmos. Chem. Phys., 25, 997–1021, https://doi.org/10.5194/acp-25-997-2025, https://doi.org/10.5194/acp-25-997-2025, 2025
Short summary
Short summary
Solar energy production in West Africa is set to rise and needs accurate solar radiation estimates which are affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cuts errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Camille Crapart, Sandrine Anquetin, Juliette Blanchet, and Arona Diedhiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3710, https://doi.org/10.5194/egusphere-2024-3710, 2025
Short summary
Short summary
Our study investigates global dryland dynamics and aridification under future climate scenarios. By employing the FAO Aridity Index and an ensemble of 13 CMIP6 models, we provide projections for dryland distribution and aridity index across three socio-economic pathways (SSP2-4.5, SSP3-7.0, and SSP5-8.5), for the near-term (2030–2060) and for the long-term (2070–2100) future. Our findings give insights on the future distribution of the world water resources and climatic conditions.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 711–730, https://doi.org/10.5194/hess-26-711-2022, https://doi.org/10.5194/hess-26-711-2022, 2022
Short summary
Short summary
The impact of initial soil moisture anomalies can persist for up to 3–4 months and is greater on temperature than on precipitation over West Africa. The strongest homogeneous impact on temperature is located over the Central Sahel, with a peak change of −1.5 and 0.5 °C in the wet and dry experiments, respectively. The strongest impact on precipitation in the wet and dry experiments is found over the West and Central Sahel, with a peak change of about 40 % and −8 %, respectively.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 731–754, https://doi.org/10.5194/hess-26-731-2022, https://doi.org/10.5194/hess-26-731-2022, 2022
Short summary
Short summary
The impact of initial soil moisture is more significant on temperature extremes than on precipitation extremes. A stronger impact is found on maximum temperature than on minimum temperature. The impact on extreme precipitation indices is homogeneous, especially over the Central Sahel, and dry (wet) experiments tend to decrease (increase) the number of precipitation extreme events but not their intensity.
Derrick K. Danso, Sandrine Anquetin, Arona Diedhiou, Kouakou Kouadio, and Arsène T. Kobea
Earth Syst. Dynam., 11, 1133–1152, https://doi.org/10.5194/esd-11-1133-2020, https://doi.org/10.5194/esd-11-1133-2020, 2020
Short summary
Short summary
The atmospheric and surface conditions that exist during the occurrence of daytime low-level clouds (LLCs) and their influence on solar radiation were investigated in West Africa. During the monsoon season, these LLCs are linked to high moisture flux driven by strong southwesterly winds from the Gulf of Guinea and significant background moisture levels. Their occurrence leads to a strong reduction in the incoming solar radiation and has large impacts on the surface energy budget.
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Short summary
The study investigates precipitation changes in the Alps, using observations and a 7 km resolution climate simulation over 1900–2010. An increase in mean precipitation is found in winter over the Alps, whereas a drying occurred in summer in the surrounding plains. A general increase in the daily annual maximum of precipitation is evidenced (20 to 40 % per century), suggesting an increase in extreme events that is significant only when considering long time series, typically 50 to 80 years.
Galateia Terti, Isabelle Ruin, Milan Kalas, Ilona Láng, Arnau Cangròs i Alonso, Tommaso Sabbatini, and Valerio Lorini
Nat. Hazards Earth Syst. Sci., 19, 507–533, https://doi.org/10.5194/nhess-19-507-2019, https://doi.org/10.5194/nhess-19-507-2019, 2019
Short summary
Short summary
First applications of the ANYCaRE experiment revealed that multi-model impact-based outputs help forecasters and civil protection to shape a holistic view of the situation and enhance their confidence in specific emergency activities. This interdisciplinary work is conducted in the frame of the ANYWHERE European project, which aims to provide institutions across Europe with a decision-support tool to better anticipate and respond to extreme weather and climate events.
Florian Raymond, Bruno Wilhelm, and Sandrine Anquetin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-100, https://doi.org/10.5194/hess-2019-100, 2019
Manuscript not accepted for further review
Short summary
Short summary
We focus on the role of precipitation on the high magnitude flood generation to explore in what extent such events could be explained by only atmospheric variables. The role of the precipitation accumulations prior to the flood day progressively decreases when considering floods of weaker magnitude, suggesting a higher diversity of processes involved in the generation of e.g. annual flooding. Our results open new perspectives for flood hazard assessments directly based on climate model outputs.
Yasser Hamdi, Emmanuel Garnier, Nathalie Giloy, Claire-Marie Duluc, and Vincent Rebour
Nat. Hazards Earth Syst. Sci., 18, 3383–3402, https://doi.org/10.5194/nhess-18-3383-2018, https://doi.org/10.5194/nhess-18-3383-2018, 2018
Short summary
Short summary
As coastal zones are densely populated, marine flooding represents a hazard threatening populations and facilities (e.g., nuclear plants) along the shore. Using historical data can significantly improve the analysis of extremes. To address this issue, 500 years of historical storms were recovered from archives and used in frequency estimations of marine flooding extremes. The new dataset provides a valuable source of information on storm surges for future characterization of coastal hazards.
Brahima Koné, Arona Diedhiou, N'datchoh Evelyne Touré, Mouhamadou Bamba Sylla, Filippo Giorgi, Sandrine Anquetin, Adama Bamba, Adama Diawara, and Arsene Toka Kobea
Earth Syst. Dynam., 9, 1261–1278, https://doi.org/10.5194/esd-9-1261-2018, https://doi.org/10.5194/esd-9-1261-2018, 2018
Short summary
Short summary
Simulations of regional climate are very sensitive to physical parameterization schemes, particularly over the tropics where convection plays a major role in monsoon dynamics. The latest version of RegCM4 was used to assess the performance and sensitivity of the simulated West African climate system to different convection schemes. The configuration of RegCM4 with CLM4.5 as a land surface model and the Emanuel convective scheme is recommended for the study of the West African climate.
Saif Shabou, Isabelle Ruin, Céline Lutoff, Samuel Debionne, Sandrine Anquetin, Jean-Dominique Creutin, and Xavier Beaufils
Nat. Hazards Earth Syst. Sci., 17, 1631–1651, https://doi.org/10.5194/nhess-17-1631-2017, https://doi.org/10.5194/nhess-17-1631-2017, 2017
Short summary
Short summary
This study describes the development of a model, called MobRISK, for assessing motorists' exposure to road flooding. MobRISK combines sociodemographic, travel-activity and hydrometeorological data in order to simulate the number and the profile of exposed persons to road flooding. The first application of MobRISK in a case study in southern France enabled the identification of the most dangerous road sections based on a spatiotemporal exposure index and the profile of most exposed people.
Bruno Wilhelm, Hendrik Vogel, and Flavio S. Anselmetti
Nat. Hazards Earth Syst. Sci., 17, 613–625, https://doi.org/10.5194/nhess-17-613-2017, https://doi.org/10.5194/nhess-17-613-2017, 2017
Short summary
Short summary
We explored the potential of a sedimentary sequence in Valle d'Aosta (Northern Italy) as a natural archive of hazards. Our results suggest that this sequence is regionally the most sensitive to earthquake shaking with the record of 8 earthquakes over the last ~270 years and that it well represents the regional and (multi-)decennial variability of Mediterranean summer–autumn floods. Hence, this sequence offers a great potential to extend chronicles of regional floods and earthquakes back in time.
B. Wilhelm, H. Vogel, C. Crouzet, D. Etienne, and F. S. Anselmetti
Clim. Past, 12, 299–316, https://doi.org/10.5194/cp-12-299-2016, https://doi.org/10.5194/cp-12-299-2016, 2016
Short summary
Short summary
The long-term response of the flood activity to both Atlantic and Mediterranean climatic influences was explored by reconstructing the Foréant record. Both influences result in a higher flood frequency during past cold periods. Atlantic influences seem to result in more frequent high-intensity flood events during past warm periods, suggesting an increase in flood intensity under the global warming. However, no high-intensity events occurred during the 20th century.
V. Masson-Delmotte, H. C. Steen-Larsen, P. Ortega, D. Swingedouw, T. Popp, B. M. Vinther, H. Oerter, A. E. Sveinbjornsdottir, H. Gudlaugsdottir, J. E. Box, S. Falourd, X. Fettweis, H. Gallée, E. Garnier, V. Gkinis, J. Jouzel, A. Landais, B. Minster, N. Paradis, A. Orsi, C. Risi, M. Werner, and J. W. C. White
The Cryosphere, 9, 1481–1504, https://doi.org/10.5194/tc-9-1481-2015, https://doi.org/10.5194/tc-9-1481-2015, 2015
Short summary
Short summary
The deep NEEM ice core provides the oldest Greenland ice core record, enabling improved understanding of the response of ice core records to local climate. Here, we focus on shallow ice cores providing a stack record of accumulation and water-stable isotopes spanning the past centuries. For the first time, we document the ongoing warming in a Greenland ice core. By combining our data with other Greenland ice cores and model results, we characterise the spatio-temporal patterns of variability.
E. Garnier
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-6541-2015, https://doi.org/10.5194/hessd-12-6541-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
The floods were classified according to a severity scale derived from the contents of the historical sources. It enables an evaluation of these events in spite of the lack of instrumental data for the major part of period. It shows that the chronology and the severity of the floods in this part of England were contradictory from one century to another. We then shows that local societies at the time did not passively suffer the risk of flood.
E. Garnier, J. Desarthe, and D. Moncoulon
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-1519-2015, https://doi.org/10.5194/cpd-11-1519-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
Facing climate change and increasing costs of natural disasters, the exposure analysis requires having a long-term knowledge of the impacts of extreme events. The research based on historical archives made it possible to reconstruct, for the first time, the chronology and severity of hurricanes in the French Antilles since the 17th century. The analysis of a historical period highlights the variability of cyclonic activity and the interest of pluridisciplinary scientific perspectives.
A. F. Van Loon, S. W. Ploum, J. Parajka, A. K. Fleig, E. Garnier, G. Laaha, and H. A. J. Van Lanen
Hydrol. Earth Syst. Sci., 19, 1993–2016, https://doi.org/10.5194/hess-19-1993-2015, https://doi.org/10.5194/hess-19-1993-2015, 2015
Short summary
Short summary
Hydrological drought types in cold climates have complex causing factors and impacts. In Austria and Norway, a lack of snowmelt is mainly related to below-normal winter precipitation, and a lack of glaciermelt is mainly related to below-normal summer temperature. These and other hydrological drought types impacted hydropower production, water supply, and agriculture in Europe and the US in the recent and far past. For selected drought events in Norway impacts could be coupled to causing factors.
I. Braud, P.-A. Ayral, C. Bouvier, F. Branger, G. Delrieu, J. Le Coz, G. Nord, J.-P. Vandervaere, S. Anquetin, M. Adamovic, J. Andrieu, C. Batiot, B. Boudevillain, P. Brunet, J. Carreau, A. Confoland, J.-F. Didon-Lescot, J.-M. Domergue, J. Douvinet, G. Dramais, R. Freydier, S. Gérard, J. Huza, E. Leblois, O. Le Bourgeois, R. Le Boursicaud, P. Marchand, P. Martin, L. Nottale, N. Patris, B. Renard, J.-L. Seidel, J.-D. Taupin, O. Vannier, B. Vincendon, and A. Wijbrans
Hydrol. Earth Syst. Sci., 18, 3733–3761, https://doi.org/10.5194/hess-18-3733-2014, https://doi.org/10.5194/hess-18-3733-2014, 2014
Related subject area
Hydrological Hazards
Drought propagation in high-latitude catchments: insights from a 60-year analysis using standardized indices
Brief communication: Hydrological and hydraulic investigation of the extreme September 2024 flood on the Lamone River in Emilia-Romagna, Italy
Improving pluvial flood simulations with a multi-source digital elevation model super-resolution method
It could have been much worse: spatial counterfactuals of the July 2021 flood in the Ahr Valley, Germany
Rapid high-resolution impact-based flood early warning is possible with RIM2D: a showcase for the 2023 pluvial flood in Braunschweig
The 2018–2023 drought in Berlin: impacts and analysis of the perspective of water resources management
Recent large-inland-lake outbursts on the Tibetan Plateau: processes, causes, and mechanisms
Modelling urban stormwater drainage overflows for assessing flood hazards: application to the urban area of Dakar (Senegal)
Dynamics and impacts of monsoon-induced geological hazards: a 2022 flood study along the Swat River in Pakistan
Monte Carlo-based sensitivity analysis of the RIM2D hydrodynamic model for the 2021 flood event in western Germany
Climate change impacts on floods in West Africa: New insight from two large-scale hydrological models
Mind the gap: misalignment between drought monitoring and community realities
Forecasting agricultural drought: the Australian Agriculture Drought Indicators
Post-wildfire sediment source and transport modeling, empirical observations, and applied mitigation: an Arizona, USA, case study
Causes of the exceptionally high number of fatalities in the Ahr valley, Germany, during the 2021 flood
Groundwater recharge in Brandenburg is declining – but why?
Large-scale flood risk assessment in data-scarce areas: an application to Central Asia
Multi-scale hydraulic graph neural networks for flood modelling
The role of antecedent conditions in translating precipitation events into extreme floods at the catchment scale and in a large-basin context
Brief communication: Stay local or go global? On the construction of plausible counterfactual scenarios to assess flash flood hazards
Integrating susceptibility maps of multiple hazards and building exposure distribution: a case study of wildfires and floods for the province of Quang Nam, Vietnam
Tangible and intangible ex post assessment of flood-induced damage to cultural heritage
A multivariate statistical framework for mixed storm types in compound flood analysis
Invited perspectives: safeguarding the usability and credibility of flood hazard and risk assessments
Influence of building collapse on pluvial and fluvial flood inundation of metro stations in central Shanghai
Impact of drought hazards on flow regimes in anthropogenically impacted streams: an isotopic perspective on climate stress
The effect of wildfires on flood risk: a multi-hazard flood risk approach for the Ebro River basin, Spain
Modelling hazards impacting the flow regime in the Hranice Karst due to the proposed Skalička Dam
Spatiotemporal variability of flash floods and their human impacts in the Czech Republic during the 2001–2023 period
Risk of compound flooding substantially increases in the future Mekong River delta
Transferability of machine-learning-based modeling frameworks across flood events for hindcasting maximum river water depths in coastal watersheds
Floods in the Pyrenees: a global view through a regional database
Algorithmically detected rain-on-snow flood events in different climate datasets: a case study of the Susquehanna River basin
Disentangling Atmospheric, Hydrological, and Coupling Uncertainties in Compound Flood Modeling within a Coupled Earth System Model
Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems
Coupling WRF with HEC-HMS and WRF-Hydro for flood forecasting in typical mountainous catchments of northern China
Temporal persistence of postfire flood hazards under present and future climate conditions in southern Arizona, USA
Evaluating Yangtze River Delta Urban Agglomeration flood risk using hybrid method of AutoML and AHP
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Hail events in Germany, rare or frequent natural hazards?
Probabilistic flood inundation mapping through copula Bayesian multi-modeling of precipitation products
Flood occurrence and impact models for socioeconomic applications over Canada and the United States
Model-based assessment of climate change impact on inland flood risk at the German North Sea coast caused by compounding storm tide and precipitation events
An improved dynamic bidirectional coupled hydrologic–hydrodynamic model for efficient flood inundation prediction
Quantifying hazard resilience by modeling infrastructure recovery as a resource-constrained project scheduling problem
Hydrometeorological controls of and social response to the 22 October 2019 catastrophic flash flood in Catalonia, north-eastern Spain
Claudia Teutschbein, Thomas Grabs, Markus Giese, Andrijana Todorović, and Roland Barthel
Nat. Hazards Earth Syst. Sci., 25, 2541–2564, https://doi.org/10.5194/nhess-25-2541-2025, https://doi.org/10.5194/nhess-25-2541-2025, 2025
Short summary
Short summary
This study is an exploration of how droughts develop and spread in high-latitude regions, focusing on the unique conditions found in areas like Scandinavia. It reveals that droughts affect soil, rivers, and groundwater differently, depending on such factors as land cover, water availability, and soil properties. The findings highlight the importance of tailored water management strategies to protect resources and ecosystems in these regions, especially as climate change continues to affect weather patterns.
Alessia Ferrari, Giulia Passadore, Renato Vacondio, Luca Carniello, Mattia Pivato, Elena Crestani, Francesco Carraro, Francesca Aureli, Sara Carta, Francesca Stumpo, and Paolo Mignosa
Nat. Hazards Earth Syst. Sci., 25, 2473–2479, https://doi.org/10.5194/nhess-25-2473-2025, https://doi.org/10.5194/nhess-25-2473-2025, 2025
Short summary
Short summary
Between 17 and 20 September 2024, the Lamone River basin in northern Italy was hit by extreme precipitation. This study adopts the hydrological model Rhyme and the hydrodynamic model PARFLOOD to simulate the hydrological processes in the watershed and the levee-breach-induced inundation affecting the village of Traversara. The close match between the resulting flooded areas and the observed ones shows the capability of these numerical models to support the preparedness for at-risk populations.
Yue Zhu, Paolo Burlando, Puay Yok Tan, Christian Geiß, and Simone Fatichi
Nat. Hazards Earth Syst. Sci., 25, 2271–2286, https://doi.org/10.5194/nhess-25-2271-2025, https://doi.org/10.5194/nhess-25-2271-2025, 2025
Short summary
Short summary
This study addresses the challenge of accurately predicting floods in regions with limited terrain data. By utilising a deep learning model, we developed a method that improves the resolution of digital elevation data by fusing low-resolution elevation data with high-resolution satellite imagery. This approach not only substantially enhances flood prediction accuracy, but also holds potential for broader applications in simulating natural hazards that require terrain information.
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 25, 2007–2029, https://doi.org/10.5194/nhess-25-2007-2025, https://doi.org/10.5194/nhess-25-2007-2025, 2025
Short summary
Short summary
The July 2021 flood in central Europe was one of the deadliest floods in Europe in the recent decades and the most expensive flood in Germany. In this paper, we show that the hydrological impact of this event in the Ahr valley could have been even worse if the rainfall footprint trajectory had been only slightly different. The presented methodology of spatial counterfactuals generates plausible unprecedented events and helps to better prepare for future extreme floods.
Shahin Khosh Bin Ghomash, Heiko Apel, Kai Schröter, and Max Steinhausen
Nat. Hazards Earth Syst. Sci., 25, 1737–1749, https://doi.org/10.5194/nhess-25-1737-2025, https://doi.org/10.5194/nhess-25-1737-2025, 2025
Short summary
Short summary
This work introduces RIM2D (Rapid Inundation Model 2D), a hydrodynamic model for precise and rapid flood predictions that is ideal for early warning systems. We demonstrate RIM2D's ability to deliver detailed and localized flood forecasts using the June 2023 flood in Braunschweig, Germany, as a case study. This research highlights the readiness of RIM2D and the required hardware for integration into operational flood warning and impact-based forecasting systems.
Ina Pohle, Sarah Zeilfelder, Johannes Birner, and Benjamin Creutzfeldt
Nat. Hazards Earth Syst. Sci., 25, 1293–1313, https://doi.org/10.5194/nhess-25-1293-2025, https://doi.org/10.5194/nhess-25-1293-2025, 2025
Short summary
Short summary
Climate change, the lignite mining phase-out and structural changes challenge water resources management of the German capital Berlin. Reduced water availability and rising demand are creating latent water quality problems. The 2018–2023 drought uniquely impacted temperature, precipitation, groundwater and surface water. Analysing the impacts of the 2018–2023 drought helps to address water-related challenges and implement effective measures in Berlin and its surrounding areas.
Fenglin Xu, Yong Liu, Guoqing Zhang, Ping Zhao, R. Iestyn Woolway, Yani Zhu, Jianting Ju, Tao Zhou, Xue Wang, and Wenfeng Chen
Nat. Hazards Earth Syst. Sci., 25, 1187–1206, https://doi.org/10.5194/nhess-25-1187-2025, https://doi.org/10.5194/nhess-25-1187-2025, 2025
Short summary
Short summary
Glacial lake outbursts have been widely studied, but large-inland-lake outbursts have received less attention. Recently, with the rapid expansion of inland lakes, signs of potential outbursts have increased. However, their processes, causes, and mechanisms are still not well understood. Here, the outburst processes of two inland lakes were investigated using a combination of field surveys, remote sensing mapping, and hydrodynamic modeling. Their causes and mechanisms were also investigated.
Laurent Pascal Malang Diémé, Christophe Bouvier, Ansoumana Bodian, and Alpha Sidibé
Nat. Hazards Earth Syst. Sci., 25, 1095–1112, https://doi.org/10.5194/nhess-25-1095-2025, https://doi.org/10.5194/nhess-25-1095-2025, 2025
Short summary
Short summary
We propose a decision support tool that detect the occurrence of flooding by drainage overflow, with sufficiently short calculation times. The simulations are based on a drainage topology on 5 m grids, incorporating changes to surface flows induced by urbanization. The method can be used for flood mapping in project mode and in real time. It applies to the present situation as well as to any scenario involving climate change or urban growth.
Nazir Ahmed Bazai, Mehtab Alam, Peng Cui, Wang Hao, Adil Poshad Khan, Muhammad Waseem, Yao Shunyu, Muhammad Ramzan, Li Wanhong, and Tashfain Ahmed
Nat. Hazards Earth Syst. Sci., 25, 1071–1093, https://doi.org/10.5194/nhess-25-1071-2025, https://doi.org/10.5194/nhess-25-1071-2025, 2025
Short summary
Short summary
The 2022 monsoon in Pakistan's Swat River basin brought record rainfall, exceeding averages by 7–8%, triggering catastrophic debris flows and floods. Key factors include extreme rainfall, deforestation, and steep slopes. Fieldwork, remote sensing, and simulations highlight land degradation's role in intensifying floods. Recommendations include reforestation, early warning systems, and land use reforms to protect communities and reduce future risks
Shahin Khosh Bin Ghomash, Patricio Yeste, Heiko Apel, and Viet Dung Nguyen
Nat. Hazards Earth Syst. Sci., 25, 975–990, https://doi.org/10.5194/nhess-25-975-2025, https://doi.org/10.5194/nhess-25-975-2025, 2025
Short summary
Short summary
Hydrodynamic models are vital for predicting floods, like those in Germany's Ahr region in July 2021. We refine the RIM2D model for the Ahr region, analyzing the impact of various factors using Monte Carlo simulations. Accurate parameter assignment is crucial, with channel roughness and resolution playing key roles. Coarser resolutions are suitable for flood extent predictions, aiding early-warning systems. Our work provides guidelines for optimizing hydrodynamic models in the Ahr region.
Serigne Bassirou Diop, Job Ekolu, Yves Tramblay, Bastien Dieppois, Stefania Grimaldi, Ansoumana Bodian, Juliette Blanchet, Ponnambalam Rameshwaran, Peter Salamon, and Benjamin Sultan
EGUsphere, https://doi.org/10.5194/egusphere-2025-130, https://doi.org/10.5194/egusphere-2025-130, 2025
Short summary
Short summary
West Africa is very vulnerable to rivers floods. Current flood hazards are poorly understood due to limited data. This study is filling this knowledge gap using recent databases and two regional hydrological models to analyze changes in flood risk under two climate scenarios. Results show that most areas will see more frequent and severe floods, with some increasing by over 45 %. These findings stress the urgent need for climate-resilient strategies to protect communities and infrastructure.
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 893–912, https://doi.org/10.5194/nhess-25-893-2025, https://doi.org/10.5194/nhess-25-893-2025, 2025
Short summary
Short summary
Droughts impact water and people, yet monitoring often overlooks impacts on people. In northeastern Brazil, we compare official data to local experiences, finding data mismatches and blind spots. Mismatches occur due to the data's broad scope missing finer details. Blind spots arise from ignoring diverse community responses and vulnerabilities to droughts. We suggest enhanced monitoring by technical extension officers for both severe and mild droughts.
Andrew Schepen, Andrew Bolt, Dorine Bruget, John Carter, Donald Gaydon, Mihir Gupta, Zvi Hochman, Neal Hughes, Chris Sharman, Peter Tan, and Peter Taylor
EGUsphere, https://doi.org/10.5194/egusphere-2024-4129, https://doi.org/10.5194/egusphere-2024-4129, 2025
Short summary
Short summary
The success of agricultural enterprises is affected by climate variability and other important factors like soil conditions and market prices. We have developed an agricultural drought forecasting system to help drought analysts and policymakers more accurately identify communities that are enduring financial stress. By coupling climate forecasts and agricultural models, we can skillfully predict crop yields and farm profits for the coming seasons, which will support proactive responses.
Edward R. Schenk, Alex Wood, Allen Haden, Gabriel Baca, Jake Fleishman, and Joe Loverich
Nat. Hazards Earth Syst. Sci., 25, 727–745, https://doi.org/10.5194/nhess-25-727-2025, https://doi.org/10.5194/nhess-25-727-2025, 2025
Short summary
Short summary
Post-wildfire flooding and debris are dangerous and damaging. This study used three different sediment models to predict post-wildfire sediment sources and transport amounts downstream of the 2019 Museum Fire in northern Arizona, USA. The predictions were compared with real-world measurements of sediment that was cleaned out of the city of Flagstaff after four large floods in 2021. Results provide avenues for continued model refinement and an example of potential mitigation strategies.
Belinda Rhein and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 581–589, https://doi.org/10.5194/nhess-25-581-2025, https://doi.org/10.5194/nhess-25-581-2025, 2025
Short summary
Short summary
In July 2021, flooding killed 190 people in Germany, 134 of them in the Ahr valley, making it the deadliest flood in recent German history. The flash flood was extreme in terms of water levels, flow velocities and flood extent, and early warning and evacuation were inadequate. Many died on the ground floor or in the street, with older and impaired individuals especially vulnerable. Clear warnings should urge people to seek safety rather than save belongings, and timely evacuations are essential.
Till Francke and Maik Heistermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-222, https://doi.org/10.5194/egusphere-2025-222, 2025
Short summary
Short summary
Brandenburg is among the driest federal states in Germany. The low ground water recharge (GWR) is fundamental to both water supply and the support of natural ecosystems. In this study, we show that the decline of observed discharge and groundwater tables since 1980 can be explained by climate change in combination with an increasing leaf area index. Still, simulated GWR rates remain highly uncertain due to the uncertainty of precipitation trends.
Paola Ceresa, Gianbattista Bussi, Simona Denaro, Gabriele Coccia, Paolo Bazzurro, Mario Martina, Ettore Fagà, Carlos Avelar, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Zhanar Raimbekova, Kanatbek Abdrakhmatov, Sitora Mirzokhonova, Vakhitkhan Ismailov, and Vladimir Belikov
Nat. Hazards Earth Syst. Sci., 25, 403–428, https://doi.org/10.5194/nhess-25-403-2025, https://doi.org/10.5194/nhess-25-403-2025, 2025
Short summary
Short summary
A fully probabilistic flood risk assessment was carried out for five Central Asian countries to support regional and national risk financing and insurance applications. The paper presents the first high-resolution regional-scale transboundary flood risk assessment study in the area aiming to provide tools for decision-making.
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025, https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
Short summary
Deep learning methods are increasingly used as surrogates for spatio-temporal flood models but struggle with generalization and speed. Here, we propose a multi-resolution approach using graph neural networks that predicts dike breach floods across different meshes, topographies, and boundary conditions with high accuracy and up to 1000× speed-ups. The model also generalizes to larger more complex case studies with just one additional simulation for fine-tuning.
Maria Staudinger, Martina Kauzlaric, Alexandre Mas, Guillaume Evin, Benoit Hingray, and Daniel Viviroli
Nat. Hazards Earth Syst. Sci., 25, 247–265, https://doi.org/10.5194/nhess-25-247-2025, https://doi.org/10.5194/nhess-25-247-2025, 2025
Short summary
Short summary
Various combinations of antecedent conditions and precipitation result in floods of varying degrees. Antecedent conditions played a crucial role in generating even large ones. The key predictors and spatial patterns of antecedent conditions leading to flooding at the basin's outlet were distinct. Precipitation and soil moisture from almost all sub-catchments were important for more frequent floods. For rarer events, only the predictors of specific sub-catchments were important.
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 4609–4615, https://doi.org/10.5194/nhess-24-4609-2024, https://doi.org/10.5194/nhess-24-4609-2024, 2024
Short summary
Short summary
Floods have caused significant damage in the past. To prepare for such events, we rely on historical data but face issues due to rare rainfall events, lack of data and climate change. Counterfactuals, or
what ifscenarios, simulate historical rainfall in different locations to estimate flood levels. Our new study refines this by deriving more-plausible local scenarios, using the June 2024 Bavaria flood as a case study. This method could improve preparedness for future floods.
Chinh Luu, Giuseppe Forino, Lynda Yorke, Hang Ha, Quynh Duy Bui, Hanh Hong Tran, Dinh Quoc Nguyen, Hieu Cong Duong, and Matthieu Kervyn
Nat. Hazards Earth Syst. Sci., 24, 4385–4408, https://doi.org/10.5194/nhess-24-4385-2024, https://doi.org/10.5194/nhess-24-4385-2024, 2024
Short summary
Short summary
This study presents a novel and integrated approach to assessing the climate hazards of floods and wildfires. We explore multi-hazard assessment and risk through a machine learning modeling approach. The process includes collecting a database of topography, climate, geology, environment, and building data; developing models for multi-hazard assessment and coding in the Google Earth Engine; and producing credible multi-hazard susceptibility and building exposure maps.
Claudia De Lucia, Michele Amaddii, and Chiara Arrighi
Nat. Hazards Earth Syst. Sci., 24, 4317–4339, https://doi.org/10.5194/nhess-24-4317-2024, https://doi.org/10.5194/nhess-24-4317-2024, 2024
Short summary
Short summary
This work describes the flood damage to cultural heritage (CH) that occurred in September 2022 in central Italy. Datasets related to flood impacts on cultural heritage are rare, and this work aims at highlighting both tangible and intangible aspects and their correlation with physical characteristics of flood (i.e. water depth and flow velocity). The results show that current knowledge and datasets are inadequate for risk assessment of CH.
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
Nat. Hazards Earth Syst. Sci., 24, 4091–4107, https://doi.org/10.5194/nhess-24-4091-2024, https://doi.org/10.5194/nhess-24-4091-2024, 2024
Short summary
Short summary
When assessing the likelihood of compound flooding, most studies ignore that it can arise from different storm types with distinct statistical characteristics. Here, we present a new statistical framework that accounts for these differences and shows how neglecting these can impact the likelihood of compound flood potential.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
Zhi Li, Hanqi Li, Zhibo Zhang, Chaomeng Dai, and Simin Jiang
Nat. Hazards Earth Syst. Sci., 24, 3977–3990, https://doi.org/10.5194/nhess-24-3977-2024, https://doi.org/10.5194/nhess-24-3977-2024, 2024
Short summary
Short summary
This study used advanced computer simulations to investigate how earthquake-induced building collapse affects flooding of the metro stations in Shanghai. Results show that the influences of building collapse on rainfall-driven and river-driven floods are different because these two types of floods have different origination and propagation mechanisms.
Maria Magdalena Warter, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby
Nat. Hazards Earth Syst. Sci., 24, 3907–3924, https://doi.org/10.5194/nhess-24-3907-2024, https://doi.org/10.5194/nhess-24-3907-2024, 2024
Short summary
Short summary
Streams are increasingly impacted by droughts and floods. Still, the amount of water needed for sustainable flows remains unclear and contested. A comparison of two streams in the Berlin–Brandenburg region of northeast Germany, using stable water isotopes, shows strong groundwater dependence with seasonal rainfall contributing to high/low flows. Understanding streamflow variability can help us assess the impacts of climate change on future water resource management.
Samuel Jonson Sutanto, Matthijs Janssen, Mariana Madruga de Brito, and Maria del Pozo Garcia
Nat. Hazards Earth Syst. Sci., 24, 3703–3721, https://doi.org/10.5194/nhess-24-3703-2024, https://doi.org/10.5194/nhess-24-3703-2024, 2024
Short summary
Short summary
A conventional flood risk assessment only evaluates flood hazard in isolation without considering wildfires. This study, therefore, evaluates the effect of wildfires on flood risk, considering both current and future conditions for the Ebro River basin in Spain. Results show that extreme climate change increases the risk of flooding, especially when considering the effect of wildfires, highlighting the importance of adopting a multi-hazard risk management approach.
Miroslav Spano and Jaromir Riha
Nat. Hazards Earth Syst. Sci., 24, 3683–3701, https://doi.org/10.5194/nhess-24-3683-2024, https://doi.org/10.5194/nhess-24-3683-2024, 2024
Short summary
Short summary
The study examines the effects of hydrogeological hazard due to construction of the Skalička Dam near the Hranice Karst on groundwater discharges and water levels in the local karst formations downstream. A simplified pipe model was used to analyze the impact of two dam layouts: lateral and through-flow reservoirs. Results show that the through-flow scheme more significantly influences water levels and the discharge of mineral water, while the lateral layout has only negligible impact.
Rudolf Brázdil, Dominika Faturová, Monika Šulc Michalková, Jan Řehoř, Martin Caletka, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 3663–3682, https://doi.org/10.5194/nhess-24-3663-2024, https://doi.org/10.5194/nhess-24-3663-2024, 2024
Short summary
Short summary
Flash floods belong to natural hazards that can be enhanced in frequency, intensity, and impact during recent climate change. This paper presents a complex analysis of spatiotemporal variability and human impacts (including material damage and fatalities) of flash floods in the Czech Republic for the 2001–2023 period. The analysis generally shows no statistically significant trends in the characteristics analyzed.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024, https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Short summary
We look at how compound flooding from the combination of river flooding and storm tides (storm surge and astronomical tide) may be changing over time due to climate change, with a case study of the Mekong River delta. We found that future compound flooding has the potential to flood the region more extensively and be longer lasting than compound floods today. This is useful to know because it means managers of deltas such as the Mekong can assess options for improving existing flood defences.
Maryam Pakdehi, Ebrahim Ahmadisharaf, Behzad Nazari, and Eunsaem Cho
Nat. Hazards Earth Syst. Sci., 24, 3537–3559, https://doi.org/10.5194/nhess-24-3537-2024, https://doi.org/10.5194/nhess-24-3537-2024, 2024
Short summary
Short summary
Machine learning (ML) algorithms have increasingly received attention for modeling flood events. However, there are concerns about the transferability of these models (their capability in predicting out-of-sample and unseen events). Here, we show that ML models can be transferable for hindcasting maximum river flood depths across extreme events (four hurricanes) in a large coastal watershed (HUC6) when informed by the spatial distribution of pertinent features and underlying physical processes.
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024, https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Short summary
This paper shows the first public and systematic dataset of flood episodes referring to the entire Pyrenees massif, at municipal scale, named PIRAGUA_flood. Of the 181 flood events (1981–2015) that produced 154 fatalities, 36 were transnational, with the eastern part of the massif most affected. Dominant weather types show a southern component flow, with a talweg on the Iberian Peninsula and a depression in the vicinity. A positive and significant trend was found in Nouvelle-Aquitaine.
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
Nat. Hazards Earth Syst. Sci., 24, 3315–3335, https://doi.org/10.5194/nhess-24-3315-2024, https://doi.org/10.5194/nhess-24-3315-2024, 2024
Short summary
Short summary
We developed an automated workflow to detect rain-on-snow events, which cause flooding in the northeastern United States, in climate data. Analyzing the Susquehanna River basin, this technique identified known events affecting river flow. Comparing four gridded datasets revealed variations in event frequency and severity, driven by different snowmelt and runoff estimates. This highlights the need for accurate climate data in flood management and risk prediction for these compound extremes.
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2785, https://doi.org/10.5194/egusphere-2024-2785, 2024
Short summary
Short summary
Our study explores how riverine and coastal flooding during hurricanes is influenced by the interaction of atmosphere, land, river and ocean conditions. Using an advanced Earth system model, we simulate Hurricane Irene to evaluate how meteorological and hydrological uncertainties affect flood modeling. Our findings reveal the importance of a multi-component modeling system, how hydrological conditions play critical roles in flood modeling, and greater flood risks if multiple factors are present.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Sheik Umar Jam-Jalloh, Jia Liu, Yicheng Wang, and Yuchen Liu
Nat. Hazards Earth Syst. Sci., 24, 3155–3172, https://doi.org/10.5194/nhess-24-3155-2024, https://doi.org/10.5194/nhess-24-3155-2024, 2024
Short summary
Short summary
Our paper explores improving flood forecasting using advanced weather and hydrological models. By coupling the WRF model with WRF-Hydro and HEC-HMS, we achieved more accurate forecasts. WRF–WRF-Hydro excels for short, intense storms, while WRF–HEC-HMS is better for longer, evenly distributed storms. Our research shows how these models provide insights for adaptive atmospheric–hydrologic systems and aims to boost flood preparedness and response with more reliable, timely predictions.
Tao Liu, Luke A. McGuire, Ann M. Youberg, Charles J. Abolt, and Adam L. Atchley
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-151, https://doi.org/10.5194/nhess-2024-151, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
After a fire, soil infiltration decreases, increasing flash flood risks, worsened by intense rainfall from climate change. Using data from a burned watershed in Arizona and a hydrological model, we examined postfire soil changes under medium and high emissions scenarios. Results showed soil infiltration increased sixfold from the first to third postfire year. Both scenarios suggest that rainfall intensification will extend high flood risks after fires by late century.
Yu Gao, Haipeng Lu, Yaru Zhang, Hengxu Jin, Shuai Wu, Yixuan Gao, and Shuliang Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-144, https://doi.org/10.5194/nhess-2024-144, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study focuses on the Yangtze River Delta Urban Agglomeration (YRDUA), where we determined flood risk assessment indices across different dimensions, including hazard, exposure, vulnerability, and resilience. We constructed a flood risk assessment model using AutoML and AHP to examine the spatial and temporal changes in flood risk in the region over the past 30 years (1990 to 2020), aiming to provide a scientific basis for flood prevention and resilience strategies in the YRDUA.
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024, https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Short summary
Extreme rainfall is the leading weather-related source of damages in Europe, but it is still difficult to predict on long timescales. A recent example of this was the devastating floods in the Italian region of Emiglia Romagna in May 2023. We present perspectives based on large-scale dynamical information that allows us to better understand and predict such events.
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024, https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Short summary
Hydrological hazards affect people and ecosystems, but extremes are not fully understood due to limited observations. A large climate ensemble and simple hydrological model are used to assess unprecedented but plausible floods and droughts. The chain gives extreme flows outside the observed range: summer 2022 ~ 28 % lower and autumn 2023 ~ 42 % higher. Spatial dependence and temporal persistence are analysed. Planning for such events could help water supply resilience and flood risk management.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024, https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Short summary
Early warning is essential to minimise the impact of flash floods. We explore the use of highly detailed flood models to simulate the 2021 flood event in the lower Ahr valley (Germany). Using very high-resolution models resolving individual streets and buildings, we produce detailed, quantitative, and actionable information for early flood warning systems. Using state-of-the-art computational technology, these models can guarantee very fast forecasts which allow for sufficient time to respond.
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024, https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary
Short summary
The study proposes a new framework, named FLEXTH, to estimate flood water depth and improve satellite-based flood monitoring using topographical data. FLEXTH is readily available as a computer code, offering a practical and scalable solution for estimating flood depth quickly and systematically over large areas. The methodology can reduce the impacts of floods and enhance emergency response efforts, particularly where resources are limited.
Tabea Wilke, Katharina Lengfeld, and Markus Schultze
EGUsphere, https://doi.org/10.5194/egusphere-2024-2507, https://doi.org/10.5194/egusphere-2024-2507, 2024
Short summary
Short summary
Hail in Germany is a natural hazard that is not in everyone's focus, even though it can cause great damage. In this study we focus on hail frequency, sizes and spatial distribution in Germany based on crowd sourcing and weather radar data. We compare different algorithms based on weather radar data with crowd sourced data and show the annual and diurnal cycle of hail in Germany.
Francisco Javier Gomez, Keighobad Jafarzadegan, Hamed Moftakhari, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 24, 2647–2665, https://doi.org/10.5194/nhess-24-2647-2024, https://doi.org/10.5194/nhess-24-2647-2024, 2024
Short summary
Short summary
This study utilizes the global copula Bayesian model averaging technique for accurate and reliable flood modeling, especially in coastal regions. By integrating multiple precipitation datasets within this framework, we can effectively address sources of error in each dataset, leading to the generation of probabilistic flood maps. The creation of these probabilistic maps is essential for disaster preparedness and mitigation in densely populated areas susceptible to extreme weather events.
Manuel Grenier, Mathieu Boudreault, David A. Carozza, Jérémie Boudreault, and Sébastien Raymond
Nat. Hazards Earth Syst. Sci., 24, 2577–2595, https://doi.org/10.5194/nhess-24-2577-2024, https://doi.org/10.5194/nhess-24-2577-2024, 2024
Short summary
Short summary
Modelling floods at the street level for large countries like Canada and the United States is difficult and very costly. However, many applications do not necessarily require that level of detail. As a result, we present a flood modelling framework built with artificial intelligence for socioeconomic studies like trend and scenarios analyses. We find for example that an increase of 10 % in average precipitation yields an increase in displaced population of 18 % in Canada and 14 % in the US.
Helge Bormann, Jenny Kebschull, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 2559–2576, https://doi.org/10.5194/nhess-24-2559-2024, https://doi.org/10.5194/nhess-24-2559-2024, 2024
Short summary
Short summary
Inland flooding is threatening coastal lowlands. If rainfall and storm surges coincide, the risk of inland flooding increases. We examine how such compound events are influenced by climate change. Data analysis and model-based scenario analysis show that climate change induces an increasing frequency and intensity of compounding precipitation and storm tide events along the North Sea coast. Overload of inland drainage systems will also increase if no timely adaptation measures are taken.
Yanxia Shen, Zhenduo Zhu, Qi Zhou, and Chunbo Jiang
Nat. Hazards Earth Syst. Sci., 24, 2315–2330, https://doi.org/10.5194/nhess-24-2315-2024, https://doi.org/10.5194/nhess-24-2315-2024, 2024
Short summary
Short summary
We present an improved Multigrid Dynamical Bidirectional Coupled hydrologic–hydrodynamic Model (IM-DBCM) with two major improvements: (1) automated non-uniform mesh generation based on the D-infinity algorithm was implemented to identify flood-prone areas where high-resolution inundation conditions are needed, and (2) ghost cells and bilinear interpolation were implemented to improve numerical accuracy in interpolating variables between the coarse and fine grids. The improved model was reliable.
Taylor Glen Johnson, Jorge Leandro, and Divine Kwaku Ahadzie
Nat. Hazards Earth Syst. Sci., 24, 2285–2302, https://doi.org/10.5194/nhess-24-2285-2024, https://doi.org/10.5194/nhess-24-2285-2024, 2024
Short summary
Short summary
Reliance on infrastructure creates vulnerabilities to disruptions caused by natural hazards. To assess the impacts of natural hazards on the performance of infrastructure, we present a framework for quantifying resilience and develop a model of recovery based upon an application of project scheduling under resource constraints. The resilience framework and recovery model were applied in a case study to assess the resilience of building infrastructure to flooding hazards in Accra, Ghana.
Arnau Amengual, Romu Romero, María Carmen Llasat, Alejandro Hermoso, and Montserrat Llasat-Botija
Nat. Hazards Earth Syst. Sci., 24, 2215–2242, https://doi.org/10.5194/nhess-24-2215-2024, https://doi.org/10.5194/nhess-24-2215-2024, 2024
Short summary
Short summary
On 22 October 2019, the Francolí River basin experienced a heavy precipitation event, resulting in a catastrophic flash flood. Few studies comprehensively address both the physical and human dimensions and their interrelations during extreme flash flooding. This research takes a step forward towards filling this gap in knowledge by examining the alignment among all these factors.
Cited articles
ACTHYS-Diffusion: Etude pour la restauration des systèmes d'endiguement
de l'Arve et du Borne, Fiches d'information historique (FIH) par système
d'endiguement, report, 304 pp., 2017.
Antoine, J.-M.: Vulnérabilité et adaptation des sociétés
montagnardes à la torrentialité au cours du Petit Âge Glaciaire
dans les Pyrénées, Journal is Sud-Ouest Européen (SOE), 32, 53–66, https://doi.org/10.4000/soe.685,
2011.
Barriendos, M., Coeur, D., Lang, M., Llasat, M. C., Naulet, R., Lemaitre, F., and Barrera, A.: Stationarity analysis of historical flood series in France and Spain (14th–20th centuries), Nat. Hazards Earth Syst. Sci., 3, 583–592, https://doi.org/10.5194/nhess-3-583-2003, 2003.
Barriendos, M., Ruiz-Bellet, J. L., Tuset, J., Mazón, J., Balasch, J. C., Pino, D., and Ayala, J. L.: The “Prediflood” database of historical floods in Catalonia (NE Iberian Peninsula) AD 1035–2013, and its potential applications in flood analysis, Hydrol. Earth Syst. Sci., 18, 4807–4823, https://doi.org/10.5194/hess-18-4807-2014, 2014.
Barriendos, M., Gil-Guirado, S., Pino, D., Tuset, J., Pérez-Morales, A.,
Alberola, A., Costa, J., Balasch, J. C., Castelltort, X., Mazón, J., and
Ruiz-Bellet, J. L.: Climatic and social factors behind the Spanish
Mediterranean flood event chronologies from documentary sources (14th–20th
centuries), Global Planet. Change, 182, 102997,
https://doi.org/10.1016/j.gloplacha.2019.102997, 2019.
Beck, U.: Risk Society: Towards a New Modernity, Sage, London, 272 pp., ISBN 9780803983465, 1992.
Bernard, C.: Restauration et conservation des terrains en montagne: les
terrains et les paysages torrentiels (Haute-Savoie), Impr. nationale
(Paris), 70 pp., https://gallica.bnf.fr/ark:/12148/bpt6k6439249q/f1.item.r=arve inondation (last access: 8 March 2022), 1900.
Black, A. R. and Law, F. M.: Development and utilization of a national
web-based chronology of hydrological events/Développement et utilisation
sur internet d'une chronologie nationale d'événements hydrologiques,
Hydrolog. Sci. J., 49, 237–246,
https://doi.org/10.1623/hysj.49.2.237.34835, 2004.
Blöschl, G., Kiss, A., Viglione, A., Barriendos, M., Böhm, O.,
Brázdil, R., Coeur, D., Demarée, G., Llasat, M. C., Macdonald, N.,
Retsö, D., Roald, L., Schmocker-Fackel, P., Amorim, I.,
Bělínová, M., Benito, G., Bertolin, C., Camuffo, D., Cornel,
D., Doktor, R., Elleder, L., Enzi, S., Garcia, J. C., Glaser, R., Hall, J.,
Haslinger, K., Hofstätter, M., Komma, J., Limanówka, D., Lun, D.,
Panin, A., Parajka, J., Petrić, H., Rodrigo, F. S., Rohr, C.,
Schönbein, J., Schulte, L., Silva, L. P., Toonen, W. H. J., Valent, P.,
Waser, J., and Wetter, O.: Current European flood-rich period exceptional
compared with past 500 years, Nature, 583, 560–566,
https://doi.org/10.1038/s41586-020-2478-3, 2020.
Boudou, M.: Approche multidisciplinaire pour la caractérisation
d'inondations remarquables: enseignements tirés de neuf
évènements en France (1910–2010), thesis manuscript, Geography, Université Paul
Valéry -Montpellier I, Lyon, 462 pp., 2015.
Caisse centrale de réassurance (CCR): Les catastrophes naturelles en France, Bilan 1982–2020, 116 pp., https://catastrophes-naturelles.ccr.fr/-/bilan-cat-nat-1982-2020-1 (last access: 8 March 2022), 2021.
Camuffo, D., della Valle, A., and Becherini, F.: A critical analysis of the
definitions of climate and hydrological extreme events, Quatern.
Int., 538, 5–13, https://doi.org/10.1016/j.quaint.2018.10.008,
2020.
Conard, G.: Morphologie de la vallée de Chamonix et de ses abords, Annales de géographie, 40, 226, https://doi.org/10.3406/geo.1931.11179, 1931.
Cutter, S. L.: The Vulnerability of Science and the Science of
Vulnerability, Ann. Assoc. Am. Geogr., 93, 1–12,
https://doi.org/10.1111/1467-8306.93101, 2003.
Diakakis, M., Deligiannakis, G., Antoniadis, Z., Melaki, M., Katsetsiadou,
N. K., Andreadakis, E., Spyrou, N. I., and Gogou, M.: Proposal of a Flash
Flood Impact Severity Scale for the classification and mapping of flash
flood impacts, J. Hydrol., 590, 125452, https://doi.org/10.1016/j.jhydrol.2020.125452, 2020.
Douvinet, J., Defossez, S., Anselle, A., and Denolle, A.-S.: Les maires face
aux plans de prévention du risque inondation (PPRI), L'espace géographique, 40, 31–46,
https://doi.org/10.3917/eg.401.0031, 2011.
Dufour, S. and Piégay, H.: Forêts riveraines des cours d'eau et
ripisylves: spécificités, fonctions et gestion, Rev. For. Fr., 4, 339–350,
https://doi.org/10.4267/2042/6704, 2006.
Ferenczi, T.: L'invention du journalisme en France, Naissance de la presse
moderne à la fin du XIXème siècle, Payot, Paris, 274 pp., ISBN 978-2-228-88998-8, 1996.
Global Administrative Areas GADM: GADM database of Global Administrative Areas, version 2.0, https://gadm.org/ (last access: 8 March 2022), 2018.
Garambois, S., Legchenko, A., Vincent, C., and Thibert, E.:
Ground-penetrating radar and surface nuclear magnetic resonance monitoring
of an englacial water-filled cavity in the polythermal glacier of Tête
Rousse, Geophysics, 81, 131–146,
https://doi.org/10.1190/geo2015-0125.1,
2016.
Garnier, E.: Genève face à la catastrophe 1350–1950. Un retour
d'expérience pour une meilleure résilience urbaine, Slatkine,
Genève, Suisse, 195 pp., ISBN 978-2-8321-0747-8, 2016.
Garnier, E.: Xynthia, February 2010: Autopsy of a Foreseable Catastrophe,
in: Management of the Effects of Coastal Storms: Policy, Scientific and
Historical Perspectives, John Wiley & Sons, Chichester, UK, 111–148, https://doi.org/10.1002/9781119116103.ch3, 2017.
Garnier, E.: Lessons learned from the past for a better resilience to
contemporary risks, Disaster Prev. Manag., 28, 778–794, https://doi.org/10.1108/dpm-09-2019-0303, 2019.
Garnier, E. and Desarthe, J.: Cyclones and Societies in the Mascarene
Islands 17th–20th Centuries, AJCC, 2, 1–13,
https://doi.org/10.4236/ajcc.2013.21001, 2013.
Garnier, E., Ciavola, P., Spencer, T., Ferreira, O., Armaroli, C., and
Mclvor, A.: Historical analysis of storm events: Case studies in France,
England, Portugal and Italy, Coast. Eng., 134, 10–23, 2018.
Gex, F.: La Haute-Savoie aujourd'hui et il y a 100 ans avec un tableau de la
population par commune de 1801 à 1921, Librairie M. Dardel,
Chambéry, 276 pp., https://gallica.bnf.fr/ark:/12148/bpt6k98010284/f1.image.r=arve inondation 1924.
Giacona, F., Eckert, N., and Martin, B.: A 240-year history of avalanche risk in the Vosges Mountains based on non-conventional (re)sources, Nat. Hazards Earth Syst. Sci., 17, 887–904, https://doi.org/10.5194/nhess-17-887-2017, 2017.
Giacona, F., Martin, B., Furst, B., Glaser, R., Eckert, N., Himmelsbach, I., and Edelblutte, C.: Improving the understanding of flood risk in the Alsatian region by knowledge capitalization: the ORRION participative observatory, Nat. Hazards Earth Syst. Sci., 19, 1653–1683, https://doi.org/10.5194/nhess-19-1653-2019, 2019.
Gil-Guirado, S., Espín-Sánchez, J.-A., and Del Rosario Prieto, M.:
Can we learn from the past? Four hundred years of changes in adaptation to
floods and droughts. Measuring the vulnerability in two Hispanic cities,
Climatic Change, 139, 183–200, https://doi.org/10.1007/s10584-016-1768-0,
2016.
Gil-Guirado, S., Pérez-Morales, A., and Lopez-Martinez, F.: SMC-Flood database: a high-resolution press database on flood cases for the Spanish Mediterranean coast (1960–2015), Nat. Hazards Earth Syst. Sci., 19, 1955–1971, https://doi.org/10.5194/nhess-19-1955-2019, 2019.
Giorgi, F., Zsolt Torma, C., Coppola, E., and Ban, N.: Enhanced summer
convective rainfall at Alpine high elevations in response to climate
warming, Nat. Geosci.,
9, 584–589, https://doi.org/10.1038/ngeo2761, 2016.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and
Stoffel, M.: 21st century climate change in the European Alps – A review,
Sci. Total Environ., 493, 1138–1151,
https://doi.org/10.1016/j.scitotenv.2013.07.050, 2014.
Goy, J.: Autour de la catastrophe de l'établissement thermal de
Saint-Gervais-les-Bains en 1892: problèmes d'histoire des catastrophes
naturelles., Les pouvoirs publics face aux risques naturels dans
l'histoire, MSH-Alpes, Grenoble, 39–49, ISBN 2-914242-08-5, 2002.
Higuchi, K.: KH Coder, https://khcoder.net/en/ (last access: 28 February 2022), 2015.
Institut national de la statistique et des études économiques (INSEE): Historique des populations légales. Recensements de la population 1968–2019,
https://www.insee.fr/fr/statistiques/2522602
(last access: 28 February 2022), 2019.
Institut national de la statistique et des études économiques (INSEE): Haute-Savoie : la plus forte croissance démographique de métropole, https://www.insee.fr/fr/statistiques/3689656, last access: 1 August 2020.
Institut National de l'information Géographique (IGN): GEOFLA,
IGN [data set], https://geoservices.ign.fr/geofla,
2015.
Institut National de l'Information géographique et forestière (IGN): BDCarthage,
IGN [data set], http://services.sandre.eaufrance.fr/telechargement/geo/ETH/BDCarthage/FXX/2014/
2017.
IPCC: Managing the risks of extreme events and disasters to advance climate
change adaptation, A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change, Intergovernmental Panel on
Climate Change, 582 pp., https://doi.org/10.13140/2.1.3117.9529, 2012.
IPCC: The Ocean and Cryosphere in a Changing Climate, Intergovernmental
Panel on Climate Change, Genève, Suisse, 765 pp., in press, 2019.
Jonkman, S. N. and Kelman, I.: An Analysis of the Causes and Circumstances
of Flood Disaster Deaths: An Analysis of the Causes and Circumstances of
Flood Disaster Deaths, Disasters, 29, 75–97,
https://doi.org/10.1111/j.0361-3666.2005.00275.x, 2005.
Lastoria, B., Simonetti, M. R., Casaioli, M., Mariani, S., and Monacelli, G.: Socio-economic impacts of major floods in Italy from 1951 to 2003, Adv. Geosci., 7, 223–229, https://doi.org/10.5194/adgeo-7-223-2006, 2006.
Leone, F. and Vinet, F.: La vulnérabilité, un concept fondamental au
cœur des méthodes d'évaluation des risques naturels, in: La
vulnérabilité des sociétés et des territoiresface aux
menaces naturelles, GESTER, 9–27, ISBN 2-84269-727-8, 2006.
Llasat, M. C., Llasat-Botija, M., and López, L.: A press database on natural risks and its application in the study of floods in Northeastern Spain, Nat. Hazards Earth Syst. Sci., 9, 2049–2061, https://doi.org/10.5194/nhess-9-2049-2009, 2009.
Macdonald, N. and Sangster, H.: High-magnitude flooding across Britain since AD 1750, Hydrol. Earth Syst. Sci., 21, 1631–1650, https://doi.org/10.5194/hess-21-1631-2017, 2017.
Magnan, A., Duvat, V., and Garnier, E.: Reconstituer les “trajectoires de
vulnérabilité” pour penser différemment l'adaptation au
changement climatique, Nat. Sci. Soc., 20, 82–91,
https://doi.org/10.1051/nss/2012008, 2012.
Mélo, A., Wilhelm, B., Giguet-Covex, C., and Arnaud, F.: Construire une
chronique d'inondations: évènements hydrologiques et histoire
climatique dans le bassin de l'Arve (Alpes du Nord, France) entre les XVIIIe
et XXIe siècles, Revue archéologique de l'est, 40, 411–419, 2015.
Ménégoz, M., Valla, E., Jourdain, N. C., Blanchet, J., Beaumet, J., Wilhelm, B., Gallée, H., Fettweis, X., Morin, S., and Anquetin, S.: Contrasting seasonal changes in total and intense precipitation in the European Alps from 1903 to 2010, Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, 2020.
Merz, R. and Blöschl, G.: Regional flood risk – what are the driving
processes?, in: Water Resources Systems – Hydrological Risk, Management and Development, International Association of Hydrological Sciences, 40–58, ISBN 1-901502-32-5, 2003.
Mestrallet, M.: Des torrents et des hommes, Trois siècles d'histoire à Samoëns, Imprim'off7, Marignier, 150 pp., ISBN 9782950146700, 1986.
Meunier, M.: La catastrophe du Grand Bornand: crue torrentielle du Borne le
14 juillet 1987, Rev. Géogr. Alp., 78, 103–114, 1990.
Min, S.-K., Zhang, X., Zwiers, F. W., and Hegerl, G. C.: Human contribution
to more-intense precipitation extremes, Nature, 470, 378–381,
https://doi.org/10.1038/nature09763, 2011.
Ministère de la Transition écologique: Prévention des risques
naturels, https://www.ecologique-solidaire.gouv.fr/prevention-des-risques-naturels (last access: 8 March /2022), 2020.
Ministère de la Transition Ecologique: Base de Données Historiques
sur les Inondations,
https://www.ecologique-solidaire.gouv.fr/prevention-des-risques-naturels (last access: 8 March 2022), 2015.
Mougin, P.: Les torrents de la Savoie, Société d'histoire de la
Savoie, Grenoble, 1251 pp., ISBN 9782842061746, 1914.
Papagiannaki, K., Lagouvardos, K., and Kotroni, V.: A database of high-impact weather events in Greece: a descriptive impact analysis for the period 2001–2011, Nat. Hazards Earth Syst. Sci., 13, 727–736, https://doi.org/10.5194/nhess-13-727-2013, 2013.
Pardé, M.: Les crues de l'Arve en octobre 1930, Rev. Géogr. Alp., 19, 495–497,
https://doi.org/10.3406/rga.1931.4782, 1931.
Payot, P.: Au royaume du Mont-Blanc, Imprimerie Plancher, Bonneville, 305 pp., 1951.
Peiry, J. L. and Bravard, J. P.: Evolution naturelle d'un remplissage
sédimentaire intramontagnard et impacts des aménagements
contemporains: L'exemple de la vallée de l'Arve (74), Houille
Blanche, 3–4, 221–225, https://doi.org/10.1051/lhb/1989018, 1989.
Petrucci, O., Aceto, L., Bianchi, C., Bigot, V., Brázdil, R., Pereira,
S., Kahraman, A., Kılıç, Ö., Kotroni, V., Llasat, M. C.,
Llasat-Botija, M., Papagiannaki, K., Pasqua, A. A., Řehoř, J.,
Rossello Geli, J., Salvati, P., Vinet, F., and Zêzere, J. L.: Flood
Fatalities in Europe, 1980–2018: Variability, Features, and Lessons to
Learn, Water, 11, 1682, https://doi.org/10.3390/w11081682, 2019.
Préfecture de la Haute-Savoie: Données communales: plans de
prévention des risques naturels (PPRN), Les services de l'Etat en
Haute-Savoie, http://www.haute-savoie.gouv.fr/Politiques-publiques/Environnement-risques-naturels-et-technologiques/Prevention-des-risques-naturels/Donnees-communales-plans-de-prevention-des-risques-naturels (last access: 8 March 2022), 2021.
Rannaud, M.: Histoire de Sixt, edited by: Abry, J., Annecy, France, 672 pp., 1916.
Rougier, H.: Les inondations du 24 juillet dans la haute vallée de
l'Arve: faits et conséquences à tirer pour l'aménagement du
territoire., Les pouvoirs publics face aux risques naturels dans
l'histoire, MSH-Alpes, Grenoble, 51–64, ISBN 978-2-914242-08-0, 2002.
RTM and ONF: La catastrophe du Grand-Bornand, movie, 1990.
RTM and ONF: Base de Données RTM, https://rtm-onf.ign.fr/ (last access: 8 March 2022), 2012.
Ruin, I., Creutin, J.-D., Anquetin, S., and Lutoff, C.: Human exposure to
flash floods – Relation between flood parameters and human vulnerability
during a storm of September 2002 in Southern France, J. Hydrol.,
361, 199–213, https://doi.org/10.1016/j.jhydrol.2008.07.044, 2008.
Schlögl, M., Fuchs, S., Scheidl, C., and Heiser, M.: Trends in
torrential flooding in the Austrian Alps: A combination of climate change,
exposure dynamics, and mitigation measures, Climate Risk Management, 32, 100294,
https://doi.org/10.1016/j.crm.2021.100294, 2021.
SITG: GEOMOL-GEOPOTENTIELS, https://ge.ch/sitg/actualites/geomol-donnees-de-base-potentiels-unites-geologiques (last access: 8 March 2022), 2020.
Soanes, C. and Stevenson, A.: Catastrophe, Concise Oxford English
Dictionary, 11 (revised), Oxford University Press, ISBN 9780199558452, 2009.
Terti, G., Ruin, I., Anquetin, S., and Gourley, J. J.: Dynamic vulnerability
factors for impact-based flash flood prediction, Nat. Hazards, 79,
1481–1497, https://doi.org/10.1007/s11069-015-1910-8, 2015.
Thoumas, P.: Histoire des crues du Roubion (Drôme, France) depuis 1501
AD, une approche hydrologique des fluctuations climatiques sur cinq
siècles, physio-geo, 14, 87–111,
https://doi.org/10.4000/physio-geo.8984, 2019.
Viani, A., Condom, T., Sicart, J.-E., Rabatel, A., Gascoin, S., Ranzi, R.,
and Wimez, M.: Impact of the glacier retreat and snow melt on the seasonal
cycle of streamflow of the Arve catchment since the 1960s (Northern French
Alps), EGU General Assembly, Vienna, Austria, April 2018, 1, 13288 pp., https://meetingorganizer.copernicus.org/EGU2018/EGU2018-13288.pdf (last access: 9 March 2022), 2018.
Vincent, C., Descloitres, M., Garambois, S., Legchenko, A., Guyard, H., and
Gilbert, A.: Detection of a subglacial lake in Glacier de Tête Rousse
(Mont Blanc area, France), J. Glaciol., 58, 866–878,
https://doi.org/10.3189/2012JoG11J179, 2012.
Wetter, O.: The potential of historical hydrology in Switzerland, Hydrol. Earth Syst. Sci., 21, 5781–5803, https://doi.org/10.5194/hess-21-5781-2017, 2017.
Wilhelm, B., Ballesteros Canovas, J. A., Macdonald, N., Toonen, W., Baker,
V., Barriendos, M., Benito, G., Brauer, A., Corella, J. P., Denniston, R.,
Glaser, R., Ionita, M., Kahle, M., Liu, T., Luetscher, M., Macklin, M.,
Mudelsee, M., Munoz, S., Schulte, L., St. George, S., Stoffel, M., and
Wetter, O.: Interpreting historical, botanical, and geological evidence to
aid preparations for future floods, Wires Water,
6, e1318,
https://doi.org/10.1002/wat2.1318,
2019.
Zgheib, T., Giacona, F., Granet-Abisset, A.-M., Morin, S., and Eckert, N.:
One and a half century of avalanche risk to settlements in the upper
Maurienne valley inferred from land cover and socio-environmental changes,
Global Environ. Change, 65, 102149,
https://doi.org/10.1016/j.gloenvcha.2020.102149, 2020.
Short summary
We present the database of Historical Impacts of Floods in the Arve Valley (HIFAVa). It reports flood occurrences and impacts (1850–2015) in a French Alpine catchment. Our results show an increasing occurrence of impacts from 1920 onwards, which is more likely related to indirect source effects and/or increasing exposure rather than hydrological changes. The analysis reveals that small mountain streams caused more impacts (67 %) than the main river.
We present the database of Historical Impacts of Floods in the Arve Valley (HIFAVa). It reports...
Altmetrics
Final-revised paper
Preprint