Articles | Volume 22, issue 3
https://doi.org/10.5194/nhess-22-831-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-831-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geo-historical database of flood impacts in Alpine catchments (HIFAVa database, Arve River, France, 1850–2015)
Eva Boisson
CORRESPONDING AUTHOR
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Bruno Wilhelm
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Emmanuel Garnier
Université Franche-Comté, CNRS, LCE, 25000 Besançon, France
Alain Mélo
AXALP, Annecy, France
Univ. Savoie Mont-Blanc, CNRS, EDYTEM – UMR 5204, 73370 Le Bourget du Lac, France
Sandrine Anquetin
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Isabelle Ruin
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, 38000 Grenoble,
France
Related authors
No articles found.
Carlo Destouches, Arona Diedhiou, Sandrine Anquetin, Benoit Hingray, Armand Pierre, Dominique Boisson, and Adermus Joseph
Earth Syst. Dynam., 16, 497–512, https://doi.org/10.5194/esd-16-497-2025, https://doi.org/10.5194/esd-16-497-2025, 2025
Short summary
Short summary
This work provides a relevant analysis of changes in extreme precipitation over the Caribbean and their link with warming in different ocean basins. It also improves our understanding of the impact of warming on extreme precipitation events, which can cause devastating damage to economic sectors such as agriculture, biodiversity, health, and energy.
Akshay Singhal, Louise Crochemore, Isabelle Ruin, and Sanjeev K. Jha
Hydrol. Earth Syst. Sci., 29, 947–967, https://doi.org/10.5194/hess-29-947-2025, https://doi.org/10.5194/hess-29-947-2025, 2025
Short summary
Short summary
A serious game experiment is presented which assesses the interplay between hazard, exposure, and vulnerability in a flash flood event. The results show that participants' use of information to make decisions was based on the severity of the situation. Participants used precipitation forecast and exposure to make correct decisions in the first round, while they used precipitation forecast and vulnerability information in the second round.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
Atmos. Chem. Phys., 25, 997–1021, https://doi.org/10.5194/acp-25-997-2025, https://doi.org/10.5194/acp-25-997-2025, 2025
Short summary
Short summary
Solar energy production in West Africa is set to rise and needs accurate solar radiation estimates which are affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cuts errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Camille Crapart, Sandrine Anquetin, Juliette Blanchet, and Arona Diedhiou
EGUsphere, https://doi.org/10.5194/egusphere-2024-3710, https://doi.org/10.5194/egusphere-2024-3710, 2025
Short summary
Short summary
Our study investigates global dryland dynamics and aridification under future climate scenarios. By employing the FAO Aridity Index and an ensemble of 13 CMIP6 models, we provide projections for dryland distribution and aridity index across three socio-economic pathways (SSP2-4.5, SSP3-7.0, and SSP5-8.5), for the near-term (2030–2060) and for the long-term (2070–2100) future. Our findings give insights on the future distribution of the world water resources and climatic conditions.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 711–730, https://doi.org/10.5194/hess-26-711-2022, https://doi.org/10.5194/hess-26-711-2022, 2022
Short summary
Short summary
The impact of initial soil moisture anomalies can persist for up to 3–4 months and is greater on temperature than on precipitation over West Africa. The strongest homogeneous impact on temperature is located over the Central Sahel, with a peak change of −1.5 and 0.5 °C in the wet and dry experiments, respectively. The strongest impact on precipitation in the wet and dry experiments is found over the West and Central Sahel, with a peak change of about 40 % and −8 %, respectively.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 731–754, https://doi.org/10.5194/hess-26-731-2022, https://doi.org/10.5194/hess-26-731-2022, 2022
Short summary
Short summary
The impact of initial soil moisture is more significant on temperature extremes than on precipitation extremes. A stronger impact is found on maximum temperature than on minimum temperature. The impact on extreme precipitation indices is homogeneous, especially over the Central Sahel, and dry (wet) experiments tend to decrease (increase) the number of precipitation extreme events but not their intensity.
Derrick K. Danso, Sandrine Anquetin, Arona Diedhiou, Kouakou Kouadio, and Arsène T. Kobea
Earth Syst. Dynam., 11, 1133–1152, https://doi.org/10.5194/esd-11-1133-2020, https://doi.org/10.5194/esd-11-1133-2020, 2020
Short summary
Short summary
The atmospheric and surface conditions that exist during the occurrence of daytime low-level clouds (LLCs) and their influence on solar radiation were investigated in West Africa. During the monsoon season, these LLCs are linked to high moisture flux driven by strong southwesterly winds from the Gulf of Guinea and significant background moisture levels. Their occurrence leads to a strong reduction in the incoming solar radiation and has large impacts on the surface energy budget.
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Short summary
The study investigates precipitation changes in the Alps, using observations and a 7 km resolution climate simulation over 1900–2010. An increase in mean precipitation is found in winter over the Alps, whereas a drying occurred in summer in the surrounding plains. A general increase in the daily annual maximum of precipitation is evidenced (20 to 40 % per century), suggesting an increase in extreme events that is significant only when considering long time series, typically 50 to 80 years.
Cited articles
ACTHYS-Diffusion: Etude pour la restauration des systèmes d'endiguement
de l'Arve et du Borne, Fiches d'information historique (FIH) par système
d'endiguement, report, 304 pp., 2017.
Antoine, J.-M.: Vulnérabilité et adaptation des sociétés
montagnardes à la torrentialité au cours du Petit Âge Glaciaire
dans les Pyrénées, Journal is Sud-Ouest Européen (SOE), 32, 53–66, https://doi.org/10.4000/soe.685,
2011.
Barriendos, M., Coeur, D., Lang, M., Llasat, M. C., Naulet, R., Lemaitre, F., and Barrera, A.: Stationarity analysis of historical flood series in France and Spain (14th–20th centuries), Nat. Hazards Earth Syst. Sci., 3, 583–592, https://doi.org/10.5194/nhess-3-583-2003, 2003.
Barriendos, M., Ruiz-Bellet, J. L., Tuset, J., Mazón, J., Balasch, J. C., Pino, D., and Ayala, J. L.: The “Prediflood” database of historical floods in Catalonia (NE Iberian Peninsula) AD 1035–2013, and its potential applications in flood analysis, Hydrol. Earth Syst. Sci., 18, 4807–4823, https://doi.org/10.5194/hess-18-4807-2014, 2014.
Barriendos, M., Gil-Guirado, S., Pino, D., Tuset, J., Pérez-Morales, A.,
Alberola, A., Costa, J., Balasch, J. C., Castelltort, X., Mazón, J., and
Ruiz-Bellet, J. L.: Climatic and social factors behind the Spanish
Mediterranean flood event chronologies from documentary sources (14th–20th
centuries), Global Planet. Change, 182, 102997,
https://doi.org/10.1016/j.gloplacha.2019.102997, 2019.
Beck, U.: Risk Society: Towards a New Modernity, Sage, London, 272 pp., ISBN 9780803983465, 1992.
Bernard, C.: Restauration et conservation des terrains en montagne: les
terrains et les paysages torrentiels (Haute-Savoie), Impr. nationale
(Paris), 70 pp., https://gallica.bnf.fr/ark:/12148/bpt6k6439249q/f1.item.r=arve inondation (last access: 8 March 2022), 1900.
Black, A. R. and Law, F. M.: Development and utilization of a national
web-based chronology of hydrological events/Développement et utilisation
sur internet d'une chronologie nationale d'événements hydrologiques,
Hydrolog. Sci. J., 49, 237–246,
https://doi.org/10.1623/hysj.49.2.237.34835, 2004.
Blöschl, G., Kiss, A., Viglione, A., Barriendos, M., Böhm, O.,
Brázdil, R., Coeur, D., Demarée, G., Llasat, M. C., Macdonald, N.,
Retsö, D., Roald, L., Schmocker-Fackel, P., Amorim, I.,
Bělínová, M., Benito, G., Bertolin, C., Camuffo, D., Cornel,
D., Doktor, R., Elleder, L., Enzi, S., Garcia, J. C., Glaser, R., Hall, J.,
Haslinger, K., Hofstätter, M., Komma, J., Limanówka, D., Lun, D.,
Panin, A., Parajka, J., Petrić, H., Rodrigo, F. S., Rohr, C.,
Schönbein, J., Schulte, L., Silva, L. P., Toonen, W. H. J., Valent, P.,
Waser, J., and Wetter, O.: Current European flood-rich period exceptional
compared with past 500 years, Nature, 583, 560–566,
https://doi.org/10.1038/s41586-020-2478-3, 2020.
Boudou, M.: Approche multidisciplinaire pour la caractérisation
d'inondations remarquables: enseignements tirés de neuf
évènements en France (1910–2010), thesis manuscript, Geography, Université Paul
Valéry -Montpellier I, Lyon, 462 pp., 2015.
Caisse centrale de réassurance (CCR): Les catastrophes naturelles en France, Bilan 1982–2020, 116 pp., https://catastrophes-naturelles.ccr.fr/-/bilan-cat-nat-1982-2020-1 (last access: 8 March 2022), 2021.
Camuffo, D., della Valle, A., and Becherini, F.: A critical analysis of the
definitions of climate and hydrological extreme events, Quatern.
Int., 538, 5–13, https://doi.org/10.1016/j.quaint.2018.10.008,
2020.
Conard, G.: Morphologie de la vallée de Chamonix et de ses abords, Annales de géographie, 40, 226, https://doi.org/10.3406/geo.1931.11179, 1931.
Cutter, S. L.: The Vulnerability of Science and the Science of
Vulnerability, Ann. Assoc. Am. Geogr., 93, 1–12,
https://doi.org/10.1111/1467-8306.93101, 2003.
Diakakis, M., Deligiannakis, G., Antoniadis, Z., Melaki, M., Katsetsiadou,
N. K., Andreadakis, E., Spyrou, N. I., and Gogou, M.: Proposal of a Flash
Flood Impact Severity Scale for the classification and mapping of flash
flood impacts, J. Hydrol., 590, 125452, https://doi.org/10.1016/j.jhydrol.2020.125452, 2020.
Douvinet, J., Defossez, S., Anselle, A., and Denolle, A.-S.: Les maires face
aux plans de prévention du risque inondation (PPRI), L'espace géographique, 40, 31–46,
https://doi.org/10.3917/eg.401.0031, 2011.
Dufour, S. and Piégay, H.: Forêts riveraines des cours d'eau et
ripisylves: spécificités, fonctions et gestion, Rev. For. Fr., 4, 339–350,
https://doi.org/10.4267/2042/6704, 2006.
Ferenczi, T.: L'invention du journalisme en France, Naissance de la presse
moderne à la fin du XIXème siècle, Payot, Paris, 274 pp., ISBN 978-2-228-88998-8, 1996.
Global Administrative Areas GADM: GADM database of Global Administrative Areas, version 2.0, https://gadm.org/ (last access: 8 March 2022), 2018.
Garambois, S., Legchenko, A., Vincent, C., and Thibert, E.:
Ground-penetrating radar and surface nuclear magnetic resonance monitoring
of an englacial water-filled cavity in the polythermal glacier of Tête
Rousse, Geophysics, 81, 131–146,
https://doi.org/10.1190/geo2015-0125.1,
2016.
Garnier, E.: Genève face à la catastrophe 1350–1950. Un retour
d'expérience pour une meilleure résilience urbaine, Slatkine,
Genève, Suisse, 195 pp., ISBN 978-2-8321-0747-8, 2016.
Garnier, E.: Xynthia, February 2010: Autopsy of a Foreseable Catastrophe,
in: Management of the Effects of Coastal Storms: Policy, Scientific and
Historical Perspectives, John Wiley & Sons, Chichester, UK, 111–148, https://doi.org/10.1002/9781119116103.ch3, 2017.
Garnier, E.: Lessons learned from the past for a better resilience to
contemporary risks, Disaster Prev. Manag., 28, 778–794, https://doi.org/10.1108/dpm-09-2019-0303, 2019.
Garnier, E. and Desarthe, J.: Cyclones and Societies in the Mascarene
Islands 17th–20th Centuries, AJCC, 2, 1–13,
https://doi.org/10.4236/ajcc.2013.21001, 2013.
Garnier, E., Ciavola, P., Spencer, T., Ferreira, O., Armaroli, C., and
Mclvor, A.: Historical analysis of storm events: Case studies in France,
England, Portugal and Italy, Coast. Eng., 134, 10–23, 2018.
Gex, F.: La Haute-Savoie aujourd'hui et il y a 100 ans avec un tableau de la
population par commune de 1801 à 1921, Librairie M. Dardel,
Chambéry, 276 pp., https://gallica.bnf.fr/ark:/12148/bpt6k98010284/f1.image.r=arve inondation 1924.
Giacona, F., Eckert, N., and Martin, B.: A 240-year history of avalanche risk in the Vosges Mountains based on non-conventional (re)sources, Nat. Hazards Earth Syst. Sci., 17, 887–904, https://doi.org/10.5194/nhess-17-887-2017, 2017.
Giacona, F., Martin, B., Furst, B., Glaser, R., Eckert, N., Himmelsbach, I., and Edelblutte, C.: Improving the understanding of flood risk in the Alsatian region by knowledge capitalization: the ORRION participative observatory, Nat. Hazards Earth Syst. Sci., 19, 1653–1683, https://doi.org/10.5194/nhess-19-1653-2019, 2019.
Gil-Guirado, S., Espín-Sánchez, J.-A., and Del Rosario Prieto, M.:
Can we learn from the past? Four hundred years of changes in adaptation to
floods and droughts. Measuring the vulnerability in two Hispanic cities,
Climatic Change, 139, 183–200, https://doi.org/10.1007/s10584-016-1768-0,
2016.
Gil-Guirado, S., Pérez-Morales, A., and Lopez-Martinez, F.: SMC-Flood database: a high-resolution press database on flood cases for the Spanish Mediterranean coast (1960–2015), Nat. Hazards Earth Syst. Sci., 19, 1955–1971, https://doi.org/10.5194/nhess-19-1955-2019, 2019.
Giorgi, F., Zsolt Torma, C., Coppola, E., and Ban, N.: Enhanced summer
convective rainfall at Alpine high elevations in response to climate
warming, Nat. Geosci.,
9, 584–589, https://doi.org/10.1038/ngeo2761, 2016.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and
Stoffel, M.: 21st century climate change in the European Alps – A review,
Sci. Total Environ., 493, 1138–1151,
https://doi.org/10.1016/j.scitotenv.2013.07.050, 2014.
Goy, J.: Autour de la catastrophe de l'établissement thermal de
Saint-Gervais-les-Bains en 1892: problèmes d'histoire des catastrophes
naturelles., Les pouvoirs publics face aux risques naturels dans
l'histoire, MSH-Alpes, Grenoble, 39–49, ISBN 2-914242-08-5, 2002.
Higuchi, K.: KH Coder, https://khcoder.net/en/ (last access: 28 February 2022), 2015.
Institut national de la statistique et des études économiques (INSEE): Historique des populations légales. Recensements de la population 1968–2019,
https://www.insee.fr/fr/statistiques/2522602
(last access: 28 February 2022), 2019.
Institut national de la statistique et des études économiques (INSEE): Haute-Savoie : la plus forte croissance démographique de métropole, https://www.insee.fr/fr/statistiques/3689656, last access: 1 August 2020.
Institut National de l'information Géographique (IGN): GEOFLA,
IGN [data set], https://geoservices.ign.fr/geofla,
2015.
Institut National de l'Information géographique et forestière (IGN): BDCarthage,
IGN [data set], http://services.sandre.eaufrance.fr/telechargement/geo/ETH/BDCarthage/FXX/2014/
2017.
IPCC: Managing the risks of extreme events and disasters to advance climate
change adaptation, A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change, Intergovernmental Panel on
Climate Change, 582 pp., https://doi.org/10.13140/2.1.3117.9529, 2012.
IPCC: The Ocean and Cryosphere in a Changing Climate, Intergovernmental
Panel on Climate Change, Genève, Suisse, 765 pp., in press, 2019.
Jonkman, S. N. and Kelman, I.: An Analysis of the Causes and Circumstances
of Flood Disaster Deaths: An Analysis of the Causes and Circumstances of
Flood Disaster Deaths, Disasters, 29, 75–97,
https://doi.org/10.1111/j.0361-3666.2005.00275.x, 2005.
Lastoria, B., Simonetti, M. R., Casaioli, M., Mariani, S., and Monacelli, G.: Socio-economic impacts of major floods in Italy from 1951 to 2003, Adv. Geosci., 7, 223–229, https://doi.org/10.5194/adgeo-7-223-2006, 2006.
Leone, F. and Vinet, F.: La vulnérabilité, un concept fondamental au
cœur des méthodes d'évaluation des risques naturels, in: La
vulnérabilité des sociétés et des territoiresface aux
menaces naturelles, GESTER, 9–27, ISBN 2-84269-727-8, 2006.
Llasat, M. C., Llasat-Botija, M., and López, L.: A press database on natural risks and its application in the study of floods in Northeastern Spain, Nat. Hazards Earth Syst. Sci., 9, 2049–2061, https://doi.org/10.5194/nhess-9-2049-2009, 2009.
Macdonald, N. and Sangster, H.: High-magnitude flooding across Britain since AD 1750, Hydrol. Earth Syst. Sci., 21, 1631–1650, https://doi.org/10.5194/hess-21-1631-2017, 2017.
Magnan, A., Duvat, V., and Garnier, E.: Reconstituer les “trajectoires de
vulnérabilité” pour penser différemment l'adaptation au
changement climatique, Nat. Sci. Soc., 20, 82–91,
https://doi.org/10.1051/nss/2012008, 2012.
Mélo, A., Wilhelm, B., Giguet-Covex, C., and Arnaud, F.: Construire une
chronique d'inondations: évènements hydrologiques et histoire
climatique dans le bassin de l'Arve (Alpes du Nord, France) entre les XVIIIe
et XXIe siècles, Revue archéologique de l'est, 40, 411–419, 2015.
Ménégoz, M., Valla, E., Jourdain, N. C., Blanchet, J., Beaumet, J., Wilhelm, B., Gallée, H., Fettweis, X., Morin, S., and Anquetin, S.: Contrasting seasonal changes in total and intense precipitation in the European Alps from 1903 to 2010, Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, 2020.
Merz, R. and Blöschl, G.: Regional flood risk – what are the driving
processes?, in: Water Resources Systems – Hydrological Risk, Management and Development, International Association of Hydrological Sciences, 40–58, ISBN 1-901502-32-5, 2003.
Mestrallet, M.: Des torrents et des hommes, Trois siècles d'histoire à Samoëns, Imprim'off7, Marignier, 150 pp., ISBN 9782950146700, 1986.
Meunier, M.: La catastrophe du Grand Bornand: crue torrentielle du Borne le
14 juillet 1987, Rev. Géogr. Alp., 78, 103–114, 1990.
Min, S.-K., Zhang, X., Zwiers, F. W., and Hegerl, G. C.: Human contribution
to more-intense precipitation extremes, Nature, 470, 378–381,
https://doi.org/10.1038/nature09763, 2011.
Ministère de la Transition écologique: Prévention des risques
naturels, https://www.ecologique-solidaire.gouv.fr/prevention-des-risques-naturels (last access: 8 March /2022), 2020.
Ministère de la Transition Ecologique: Base de Données Historiques
sur les Inondations,
https://www.ecologique-solidaire.gouv.fr/prevention-des-risques-naturels (last access: 8 March 2022), 2015.
Mougin, P.: Les torrents de la Savoie, Société d'histoire de la
Savoie, Grenoble, 1251 pp., ISBN 9782842061746, 1914.
Papagiannaki, K., Lagouvardos, K., and Kotroni, V.: A database of high-impact weather events in Greece: a descriptive impact analysis for the period 2001–2011, Nat. Hazards Earth Syst. Sci., 13, 727–736, https://doi.org/10.5194/nhess-13-727-2013, 2013.
Pardé, M.: Les crues de l'Arve en octobre 1930, Rev. Géogr. Alp., 19, 495–497,
https://doi.org/10.3406/rga.1931.4782, 1931.
Payot, P.: Au royaume du Mont-Blanc, Imprimerie Plancher, Bonneville, 305 pp., 1951.
Peiry, J. L. and Bravard, J. P.: Evolution naturelle d'un remplissage
sédimentaire intramontagnard et impacts des aménagements
contemporains: L'exemple de la vallée de l'Arve (74), Houille
Blanche, 3–4, 221–225, https://doi.org/10.1051/lhb/1989018, 1989.
Petrucci, O., Aceto, L., Bianchi, C., Bigot, V., Brázdil, R., Pereira,
S., Kahraman, A., Kılıç, Ö., Kotroni, V., Llasat, M. C.,
Llasat-Botija, M., Papagiannaki, K., Pasqua, A. A., Řehoř, J.,
Rossello Geli, J., Salvati, P., Vinet, F., and Zêzere, J. L.: Flood
Fatalities in Europe, 1980–2018: Variability, Features, and Lessons to
Learn, Water, 11, 1682, https://doi.org/10.3390/w11081682, 2019.
Préfecture de la Haute-Savoie: Données communales: plans de
prévention des risques naturels (PPRN), Les services de l'Etat en
Haute-Savoie, http://www.haute-savoie.gouv.fr/Politiques-publiques/Environnement-risques-naturels-et-technologiques/Prevention-des-risques-naturels/Donnees-communales-plans-de-prevention-des-risques-naturels (last access: 8 March 2022), 2021.
Rannaud, M.: Histoire de Sixt, edited by: Abry, J., Annecy, France, 672 pp., 1916.
Rougier, H.: Les inondations du 24 juillet dans la haute vallée de
l'Arve: faits et conséquences à tirer pour l'aménagement du
territoire., Les pouvoirs publics face aux risques naturels dans
l'histoire, MSH-Alpes, Grenoble, 51–64, ISBN 978-2-914242-08-0, 2002.
RTM and ONF: La catastrophe du Grand-Bornand, movie, 1990.
RTM and ONF: Base de Données RTM, https://rtm-onf.ign.fr/ (last access: 8 March 2022), 2012.
Ruin, I., Creutin, J.-D., Anquetin, S., and Lutoff, C.: Human exposure to
flash floods – Relation between flood parameters and human vulnerability
during a storm of September 2002 in Southern France, J. Hydrol.,
361, 199–213, https://doi.org/10.1016/j.jhydrol.2008.07.044, 2008.
Schlögl, M., Fuchs, S., Scheidl, C., and Heiser, M.: Trends in
torrential flooding in the Austrian Alps: A combination of climate change,
exposure dynamics, and mitigation measures, Climate Risk Management, 32, 100294,
https://doi.org/10.1016/j.crm.2021.100294, 2021.
SITG: GEOMOL-GEOPOTENTIELS, https://ge.ch/sitg/actualites/geomol-donnees-de-base-potentiels-unites-geologiques (last access: 8 March 2022), 2020.
Soanes, C. and Stevenson, A.: Catastrophe, Concise Oxford English
Dictionary, 11 (revised), Oxford University Press, ISBN 9780199558452, 2009.
Terti, G., Ruin, I., Anquetin, S., and Gourley, J. J.: Dynamic vulnerability
factors for impact-based flash flood prediction, Nat. Hazards, 79,
1481–1497, https://doi.org/10.1007/s11069-015-1910-8, 2015.
Thoumas, P.: Histoire des crues du Roubion (Drôme, France) depuis 1501
AD, une approche hydrologique des fluctuations climatiques sur cinq
siècles, physio-geo, 14, 87–111,
https://doi.org/10.4000/physio-geo.8984, 2019.
Viani, A., Condom, T., Sicart, J.-E., Rabatel, A., Gascoin, S., Ranzi, R.,
and Wimez, M.: Impact of the glacier retreat and snow melt on the seasonal
cycle of streamflow of the Arve catchment since the 1960s (Northern French
Alps), EGU General Assembly, Vienna, Austria, April 2018, 1, 13288 pp., https://meetingorganizer.copernicus.org/EGU2018/EGU2018-13288.pdf (last access: 9 March 2022), 2018.
Vincent, C., Descloitres, M., Garambois, S., Legchenko, A., Guyard, H., and
Gilbert, A.: Detection of a subglacial lake in Glacier de Tête Rousse
(Mont Blanc area, France), J. Glaciol., 58, 866–878,
https://doi.org/10.3189/2012JoG11J179, 2012.
Wetter, O.: The potential of historical hydrology in Switzerland, Hydrol. Earth Syst. Sci., 21, 5781–5803, https://doi.org/10.5194/hess-21-5781-2017, 2017.
Wilhelm, B., Ballesteros Canovas, J. A., Macdonald, N., Toonen, W., Baker,
V., Barriendos, M., Benito, G., Brauer, A., Corella, J. P., Denniston, R.,
Glaser, R., Ionita, M., Kahle, M., Liu, T., Luetscher, M., Macklin, M.,
Mudelsee, M., Munoz, S., Schulte, L., St. George, S., Stoffel, M., and
Wetter, O.: Interpreting historical, botanical, and geological evidence to
aid preparations for future floods, Wires Water,
6, e1318,
https://doi.org/10.1002/wat2.1318,
2019.
Zgheib, T., Giacona, F., Granet-Abisset, A.-M., Morin, S., and Eckert, N.:
One and a half century of avalanche risk to settlements in the upper
Maurienne valley inferred from land cover and socio-environmental changes,
Global Environ. Change, 65, 102149,
https://doi.org/10.1016/j.gloenvcha.2020.102149, 2020.
Short summary
We present the database of Historical Impacts of Floods in the Arve Valley (HIFAVa). It reports flood occurrences and impacts (1850–2015) in a French Alpine catchment. Our results show an increasing occurrence of impacts from 1920 onwards, which is more likely related to indirect source effects and/or increasing exposure rather than hydrological changes. The analysis reveals that small mountain streams caused more impacts (67 %) than the main river.
We present the database of Historical Impacts of Floods in the Arve Valley (HIFAVa). It reports...
Altmetrics
Final-revised paper
Preprint