Articles | Volume 22, issue 3
https://doi.org/10.5194/nhess-22-713-2022
https://doi.org/10.5194/nhess-22-713-2022
Research article
 | 
07 Mar 2022
Research article |  | 07 Mar 2022

The role of morphodynamics in predicting coastal flooding from storms on a dissipative beach with sea level rise conditions

Jairo E. Cueto, Luis J. Otero Díaz, Silvio R. Ospino-Ortiz, and Alec Torres-Freyermuth

Related authors

Field-scale modelling reveals dynamic groundwater flow and transport patterns in a high-energy subterranean estuary
Janek Greskowiak, Rena Meyer, Jairo Cueto, Nico Skibbe, Anja Reckhardt, Thomas Günther, Stephan L. Seibert, Kai Schwalfenberg, Dietmar Pommerin, Mike Müller-Petke, and Gudrun Massmann
Hydrol. Earth Syst. Sci., 29, 7127–7147, https://doi.org/10.5194/hess-29-7127-2025,https://doi.org/10.5194/hess-29-7127-2025, 2025
Short summary

Cited articles

Aagaard, T. and Greenwood, B.: Suspended sediment transport and the role of infragravity waves in a barred surf zone, Mar. Geol., 118, 23–48, https://doi.org/10.1016/0025-3227(94)90111-2, 1994. 
Andrade, C. A., Thomas, Y. F., Lerma, A. N., Durand, P., and Anselme, B.: Coastal Flooding Hazard Related to Swell Events in Cartagena de Indias, Colombia, J. Coastal Res., 290, 1126–1136, https://doi.org/10.2112/JCOASTRES-D-12-00028.1, 2013. 
Appendini, C. M., Torres-Freyermuth, A., Salles, P., López-González, P., and Mendoza, E. T.: Wave climate and trends for the Gulf of Mexico and Caribbean Sea: A 30-Yr wave hindcast, J. Climate, 27, 1619–1632, https://doi.org/10.1175/JCLI-D-13-00206.1, 2014. 
Beach, R. A. and Sternberg, R. W.: Infragravity Driven Suspended Sediment Transport in the Swash, Inner and Outer-Surf Zone, Proceedings Coastal Sediments, ASCE, New York, USA, 114–128, 1991. 
Bernal, G., Osorio, A. F., Urrego, L., Peláez, D., Molina, E., Zea, S., Montoya, R. D., and Villegas, N.: Occurrence of energetic extreme oceanic events in the Colombian Caribbean coasts and some approaches to assess their impact on ecosystems, J. Marine Syst., 164, 85–100, https://doi.org/10.1016/j.jmarsys.2016.08.007, 2016. 
Download
Short summary
We investigate the importance of morphodynamics on flooding estimation during storms with sea level rise conditions on a microtidal beach. XBeach and SWAN were the numerical models used to test several case studies. The results indicate that numerical modeling of flooding should be approached by considering morphodynamics; ignoring them can underestimate flooding by ~ 15 %. Moreover, beach erosion and flooding are intensified by sea level rise and high tides in ~ 69 % and ~ 65 %, respectively.
Share
Altmetrics
Final-revised paper
Preprint