Articles | Volume 22, issue 2
https://doi.org/10.5194/nhess-22-577-2022
https://doi.org/10.5194/nhess-22-577-2022
Research article
 | 
25 Feb 2022
Research article |  | 25 Feb 2022

Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance

Jussi Leinonen, Ulrich Hamann, Urs Germann, and John R. Mecikalski

Related authors

Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024,https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary
Reconstruction of the mass and geometry of snowfall particles from multi-angle snowflake camera (MASC) images
Jussi Leinonen, Jacopo Grazioli, and Alexis Berne
Atmos. Meas. Tech., 14, 6851–6866, https://doi.org/10.5194/amt-14-6851-2021,https://doi.org/10.5194/amt-14-6851-2021, 2021
Short summary
Unsupervised classification of snowflake images using a generative adversarial network and K-medoids classification
Jussi Leinonen and Alexis Berne
Atmos. Meas. Tech., 13, 2949–2964, https://doi.org/10.5194/amt-13-2949-2020,https://doi.org/10.5194/amt-13-2949-2020, 2020
Short summary
Marine liquid cloud geometric thickness retrieved from OCO-2's oxygen A-band spectrometer
Mark Richardson, Jussi Leinonen, Heather Q. Cronk, James McDuffie, Matthew D. Lebsock, and Graeme L. Stephens
Atmos. Meas. Tech., 12, 1717–1737, https://doi.org/10.5194/amt-12-1717-2019,https://doi.org/10.5194/amt-12-1717-2019, 2019
Short summary
Retrieval of snowflake microphysical properties from multifrequency radar observations
Jussi Leinonen, Matthew D. Lebsock, Simone Tanelli, Ousmane O. Sy, Brenda Dolan, Randy J. Chase, Joseph A. Finlon, Annakaisa von Lerber, and Dmitri Moisseev
Atmos. Meas. Tech., 11, 5471–5488, https://doi.org/10.5194/amt-11-5471-2018,https://doi.org/10.5194/amt-11-5471-2018, 2018
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Compound winter low-wind and cold events impacting the French electricity system: observed evolution and role of large-scale circulation
François Collet, Margot Bador, Julien Boé, Laurent Dubus, and Bénédicte Jourdier
Nat. Hazards Earth Syst. Sci., 25, 843–856, https://doi.org/10.5194/nhess-25-843-2025,https://doi.org/10.5194/nhess-25-843-2025, 2025
Short summary
Probabilistic hazard analysis of the gas emission of Mefite d'Ansanto, southern Italy
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025,https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Are heavy-rainfall events a major trigger of associated natural hazards along the German rail network?
Sonja Szymczak, Frederick Bott, Vigile Marie Fabella, and Katharina Fricke
Nat. Hazards Earth Syst. Sci., 25, 683–707, https://doi.org/10.5194/nhess-25-683-2025,https://doi.org/10.5194/nhess-25-683-2025, 2025
Short summary
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 25, 675–682, https://doi.org/10.5194/nhess-25-675-2025,https://doi.org/10.5194/nhess-25-675-2025, 2025
Short summary
The record-breaking precipitation event of December 2022 in Portugal
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci., 25, 609–623, https://doi.org/10.5194/nhess-25-609-2025,https://doi.org/10.5194/nhess-25-609-2025, 2025
Short summary

Cited articles

Abrams, M., Crippen, R., and Fujisada, H.: ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD), Remote Sens., 12, 1156, https://doi.org/10.3390/rs12071156, 2020. a
Autonès, F. and Claudon, M.: Algorithm Theoretical Basis Document for the Convection Product Processors of the NWC/GEO, Tech. Rep. SAF/NWC/CDOP/MFT/SCI/ATBD/11, Meteo-France, Toulouse, https://www.nwcsaf.org/Downloads/GEO/2018.1/Documents/Scientific_Docs/NWC-CDOP2-GEO-MFT-SCI-ATBD-Convection_v2.2.pdf (last access: 21 February 2022), 2012. a
Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. a
Barras, H., Hering, A., Martynov, A., Noti, P.-A., Germann, U., and Martius, O.: Experiences with >50,000 Crowdsourced Hail Reports in Switzerland, B. Am. Meteorol. Soc., 100, 1429–1440, https://doi.org/10.1175/BAMS-D-18-0090.1, 2019. a
Bedka, K., Murillo, E. M., Homeyer, C. R., Scarino, B., and Mersiovsky, H.: The Above-Anvil Cirrus Plume: An Important Severe Weather Indicator in Visible and Infrared Satellite Imagery, Weather Forecast., 33, 1159–1181, https://doi.org/10.1175/WAF-D-18-0040.1, 2018. a
Download
Short summary
We evaluate the usefulness of different data sources and variables to the short-term prediction...
Share
Altmetrics
Final-revised paper
Preprint