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Abstract. In order to aid feature selection in thunderstorm
nowcasting, we present an analysis of the utility of vari-
ous sources of data for machine-learning-based nowcasting
of hazards related to thunderstorms. We considered ground-
based radar data, satellite-based imagery and lightning ob-
servations, forecast data from numerical weather predic-
tion (NWP) and the topography from a digital elevation
model (DEM), ending up with 106 different predictive vari-
ables. We evaluated machine-learning models to nowcast
storm track radar reflectivity (representing precipitation),
lightning occurrence, and the 45 dBZ radar echo top height
that can be used as an indicator of hail, producing predictions
for lead times of up to 60 min. The study was carried out in an
area in the Northeastern United States for which observations
from the Geostationary Operational Environmental Satellite-
16 are available and can be used as a proxy for the upcoming
Meteosat Third Generation capabilities in Europe. The ben-
efits of the data sources were evaluated using two comple-
mentary approaches: using feature importance reported by
the machine learning model based on gradient-boosted trees,
and by repeating the analysis using all possible combinations
of the data sources. The two approaches sometimes yielded
seemingly contradictory results, as the feature importance re-
ported by the gradient-boosting algorithm sometimes disre-
gards certain features that are still useful in the absence of
more powerful predictors, while, at times, it overstates the
importance of other features. We found that the radar data
is the most important predictor overall. The satellite imagery
is beneficial for all of the studied predictands, and therefore
offers a viable alternative in regions where radar data are un-
available, such as over the oceans and in less-developed ares.
The lightning data are very useful for nowcasting lightning

but are of limited use for the other hazards. While the feature
importance ranks NWP data as an important input, the omis-
sion of NWP data can be well compensated for by using in-
formation in the observational data over the nowcast period.
Finally, we did not find evidence that the nowcast benefits
from the DEM data.

1 Introduction

Thunderstorms regularly cause a significant risk to human
life and damage to property through lightning, heavy precip-
itation, hail and strong winds. These hazards are highly local-
ized and develop within timescales ranging from tens of min-
utes to a few hours, which makes them difficult to forecast
precisely using numerical weather prediction (NWP) mod-
els. NWP models can typically forecast a general tendency
for thunderstorms in a given region, but not exactly where
and when the most severe impacts will occur. Thus, it is bet-
ter to issue localized short-term warnings of impacts based
on nowcasting, the statistical prediction of near-term (0-1 h)
developments based on the latest available data, in particular
observations.

Various tracking and nowcasting systems for thunder-
storms have been developed since the 1960s; these usu-
ally primarily use radar but sometimes also combine other
information such as lightning detection and location data.
One particularly widely used radar-based system is Thun-
derstorm Identification, Tracking and Nowcasting (TITAN;
Dixon and Wiener, 1993), which tracks thunderstorms as ob-
jects defined as continuous regions of high radar reflectiv-
ity. A review of other methods developed before 1998 was
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given by Wilson et al. (1998). More recent radar-based ap-
proaches include Cell Model Output Statistics (CellMOS;
Hoffmann, 2008), TRACE3D (Handwerker, 2002), Thunder-
storm Radar Tracking (TRT; Hering et al., 2004, 2005, 2006)
and NowCastMIX (James et al., 2018), while Steinacker
et al. (2000) used radar and lightning data in combination.
Other algorithms are designed to utilize satellite data instead;
prominent examples of these include GOES-R Convective
Initiation (Mecikalski and Bedka, 2006; Mecikalski et al.,
2015), the Rapid Developing Thunderstorm (RDT; Autones
and Claudon, 2012) algorithm of the Nowcasting Satellite
Application Facility (NWCSAF), Cb-TRAM (Zinner et al.,
2008; Kober and Tafferner, 2009) and the work of Bedka and
Khlopenkov (2016) and Bedka et al. (2018).

Like many other statistical data analysis and predic-
tion tasks, nowcasting of thunderstorms and related hazards
has benefited from the rapid advances in machine learn-
ing (ML) techniques in the last decade. ML has been a pop-
ular technique for nowcasting precipitation (e.g., Shi et al.,
2015, 2017; Foresti et al., 2019; Ayzel et al., 2020; Ku-
mar et al., 2020; Franch et al., 2020), and has also been
used to develop nowcasting methods for lightning (Mosta-
jabi et al., 2019; Zhou et al., 2020), hail (Czernecki et al.,
2019; Huang et al., 2019) and windstorms (Sprenger et al.,
2017; Lagerquist et al., 2017, 2020). However, studies have
so far typically used only one data source, though several
have been utilized in some cases. Furthermore, most stud-
ies have concentrated on predicting only one variable. The
variety of adopted methodologies complicates comparisons
between the results from different studies.

In this study, our objective is to provide a systematic as-
sessment of the value of various data sources for nowcasting
hazards caused by thunderstorms using a ML approach. As a
particular goal, we seek to understand the impact on thun-
derstorm nowcasting of the new generation of geostation-
ary satellites, which, compared to the previous generation,
provide higher-resolution imagery, additional image chan-
nels and lightning data. Of these satellites, Geostationary
Operational Environmental Satellite (GOES)-16 and -17 are
currently operational, while the first of the Meteosat Third
Generation (MTG) satellites is expected to launch in 2022.
Therefore, we conduct our study in the Northeastern US,
where the climate is similar to Central Europe (the primary
focus of research at MeteoSwiss), and where GOES-16 has
a clear field of view. We include a variety of ground-based,
satellite-based and model-derived data sources that are avail-
able for that region, and examine their value for nowcast-
ing thunderstorms. We base our study on interpretable ML
using gradient-boosting methods. With our results, we aim
to provide guidelines for further research and development
such that investigators can acquire and process the most rele-
vant data sources and variables for their particular applica-
tions. Our approach is similar to that of Mecikalski et al.
(2021), but we complement that study with a larger num-
ber of samples (approximately 88 000 vs. 2000), the use of
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Figure 1. The study area in eastern North America. The blue rectan-
gle indicates the area (720 km x 490 km), while the orange circles
mark the locations of the NEXRAD radars.

gradient boosting rather than random forests, the inclusion
of NWP and digital elevation model (DEM) data, and a more
detailed analysis achieved by excluding combinations of dif-
ferent data sources.

This article is organized as follows: Sect. 2 describes the
study region and the data sources; Sect. 3 explains the data
processing and ML methods used; and Sect. 4 presents the
results along with a discussion of their meaning. Finally,
Sect. 5 concludes the article by summarizing and synthesiz-
ing the results and their implications for future studies.

2 Data
2.1 Study area and period

Considering the objectives of the research, we chose to fo-
cus on a study area in the northeast of the US, shown in
Fig. 1. The study region is a rectangle in azimuthal equidis-
tant projection (Snyder, 1987), centered at 76° W, 42° N and
extending 720 km in the west—east direction and 490 km in
the north—south direction. The resolution of the grid is 1 km
per pixel.

The area is centered on the states of New York and Penn-
sylvania and also covers parts of the states of Connecti-
cut, Massachusetts, New Hampshire, New Jersey, Rhode Is-
land and Vermont, as well as a region of the Atlantic Ocean
and a part of the Canadian province of Ontario. Although
this region is not as convectively active as, for example, the
US Great Plains or the Southeastern US, we chose it because
it still experiences considerable thunderstorm activity and the
hazard profile of these storms is similar to those in Central
Europe: tornadoes are relatively uncommon, and the hazards
consist mostly of hail, lightning, wind gusts and heavy pre-
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cipitation (Kelly et al., 1985; Changnon, 1993; Yeung et al.,
2015). The latitude of the region is also similar to that of Cen-
tral and Southern Europe, and consequently the solar radia-
tion profiles and the viewing angles of satellite instruments in
geostationary orbit are similar. The main difference between
this region and Central Europe is the topography: much of
Central Europe is characterized by the Alps, while our study
area is generally smoother and most of the variation in el-
evation is due to the less-prominent Appalachian mountain
range.

We collected data from data archives for the period rang-
ing from April to September 2020, with a time resolution of
up to 5 min, depending on the source. The length of the study
period and the size of the area were determined as a com-
promise between gathering an extensive dataset with a large
number of samples and keeping the amount of data (already
around 7 TB of raw data) that needed to be downloaded and
processed manageable.

2.2 Data sources

Since the objective of the study was to investigate the util-
ity of different types of data for nowcasting severe thun-
derstorms, we selected multiple qualitatively different data
sources for analysis. In order to constrain the complexity of
the study, we tried to avoid unnecessary overlap between the
sources; thus, for example, we did not attempt to use similar
data from multiple satellites, nor did we obtain ground-based
lightning data, as they were already available from a satel-
lite source. Moreover, in order to avoid the complications
of data intermittency, we preferred to focus on data sources
that are regularly available and avoid sources such as low-
Earth-orbiting satellites that typically pass over a given area
only 1-2 times per day. The final dataset includes data from
a ground-based operational radar network, multispectral im-
agery and lightning data from a geostationary satellite, and
NWP and DEM data. The details needed to obtain the data
can be found under “Code and data availability” at the end of
the article. The data sources are described in more detail in
the following sections.

2.2.1 Radar data: NEXRAD

The Next-Generation Radar (NEXRAD; Heiss et al., 1990)
network is the US operational radar network operated by
the National Weather Service (NWS). It consists of S-band
Doppler weather radars that cover most of the continental US
as well as many other regions of the country. NEXRAD ob-
servations from multiple radars are processed by the National
Severe Storms Laboratory (NSSL) into composite products
using the Multi-Radar/Multi-Sensor System (MRMS; Zhang
et al., 2016; Smith et al., 2016). Unfortunately, the MRMS
data are currently only available in near-real time and are not
publicly archived for more than 24 h. Therefore, we needed
to process the data from individual radars — whose data are
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publicly archived in the long term — into a composite our-
selves; the PyART library (Helmus and Collis, 2016) was
used for this purpose. Although this solution has the draw-
back that we cannot expect to match the quality of a well-
developed composite product within this study, it has an ad-
vantage in that using the full three-dimensional measured
radar observations allows us to calculate any radar variable
rather than just those available from the MRMS. In this work,
we derived the column maximum reflectivity (MAXZ), the
echo top heights at threshold reflectivities of 25, 35 and
45 dBZ, as well as the vertically integrated liquid (VIL), cal-
culated as

VIL =3.44 x 107247, (1)

6 3

where Z is the radar reflectivity given in mm™°m™
(i.e., Z=10%8/10 for Z4s in dBZ units) and VIL is in
units kg m~2 (Greene and Clark, 1972). The radar data have
a time resolution of 5 min.

Radars were selected such that good data coverage was
achieved throughout the study area. The parts of the area
that are over ocean and in Canada are within the range of
the selected radars, and the entire region is covered with a
minimum beam altitude of at most 6000 ft (1800 m), and less
than 3000 ft (900 m) across most of the region. NEXRAD
radars operate using rather shallow scan elevation angles of
0.5-19.5°, and consequently each individual radar is blind to
the region of the atmosphere directly above it. This gap must
be filled with nearby radars, and therefore we also selected
some radars outside the study area in order to ensure ade-
quate 3D data availability within the area. The radars used
for the study are listed in Table B1, and their locations are
also shown as orange circles in Fig. 1.

2.2.2 Satellite imagery: GOES ABI

GOES-16 is a new-generation geostationary satellite with
advanced instruments for weather observations (Sullivan,
2020). The primary GOES-16 instrument used in this study
is the Advanced Baseline Imager (ABI), which includes
16 bands with wavelengths ranging from 470nm (visible)
to 13.3 um (thermal infrared) and resolutions ranging from
0.5 to 2km per pixel in optimal viewing conditions. GOES-
16 is located over the Equator at 75.2° W, a longitude near the
middle of our study area. The ABI provides a full-disk scan,
a variable region of interest (used for hurricanes, for exam-
ple), and a scan covering only the contiguous US (CONUS)
region. For this study, we use the CONUS scan, which is
available with a time resolution of 5 min.

We downloaded the level 1 (L1) data (given as the
reflectance or brightness temperature) for the GOES-16
ABI channels (Schmit and Gunshor, 2020) as well as the
level 2 (L2) cloud products of cloud top height, cloud top
pressure and cloud optical depth (Heidinger et al., 2020) and
the derived stability indices (DSI) product (Li et al., 2020),
which includes retrievals of variables such as the convec-
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tive available potential energy (CAPE). We would have pre-
ferred to use the cloud-top temperature product as well, but
it is available only as a full-disk product, not separately for
the CONUS region. Consequently, we omitted the cloud-top
temperature because the inferior time resolution (10 min) of
the full-disk product would have caused compatibility prob-
lems. We also computed the differences of various L1 chan-
nels (listed in Table B3) in order to provide better features;
see, for example, Mecikalski et al. (2010) for interpretations
of the channel differences from geostationary visible/infrared
imagers. The data were projected to our study grid with the
PyTroll libraries (Raspaud et al., 2018) and corrected for par-
allax shift using the L2 cloud top height product to determine
the appropriate correction.

2.2.3 Lightning data: GOES GLM

The GOES-16 satellite is also equipped with the Geosta-
tionary Lightning Mapper (GLM), which detects lightning
strikes (Rudlosky et al., 2020). The GLM L2 data consists of
the coordinates and properties, such as energy, of individual
strikes. Each strike consists of multiple lightning “events,”
which are pixel-level detections of lightning; a set of adja-
cent and simultaneous events is interpreted as a strike. The
coordinates and properties of the events are also provided,
thus providing information about the spatial extent of each
lightning strike.

We projected the data on the lightning strikes and events,
as well as their energies, to the common grid. The original
GLM files contain 20 s of data each, but the files were aggre-
gated such that we created derived products with 5 min time
resolution. The GLM L2 data are provided with parallax cor-
rection already performed, obviating the need for this step.

2.2.4 Numerical weather prediction: ECMWF

We provide the nowcasting system with information about
the state of the atmosphere in the study area using the
NWP products from the integrated forecast system (IFS) of
the European Center for Medium-Range Weather Forecast-
ing (ECMWF). We chose to use the global IFS rather than a
local-area modeling system as our NWP data source because,
unlike the satellite and radar data, it is not limited to a partic-
ular region, and we expected this to facilitate the adaptation
of our methodology and results to Europe and other regions
beyond the current study area later. We obtained a collection
of 59 different variables provided by ECMWF; the variables
are listed in Table B5.

We use the ECMWF archived forecast product rather than
the analysis product in order to only use data that would be
available to an operational nowcasting system. We down-
loaded the ECMWF forecasts at intervals of 12h in fore-
cast time, and the data in the forecasts have a resolution of
1 h. To each 5 min time step in our common spatiotemporal
framework, we assigned the closest 1h time step from the
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most recently issued forecast. ECMWEF provides the data on
a latitude—longitude grid; we used the PyTroll tools to project
them onto our study grid.

2.2.5 Digital elevation model: ASTER

Orography can affect the development of convective storms.
In order to enable the nowcasting system to exploit infor-
mation about the elevation and morphology of the terrain,
we obtained the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) global DEM version 3
(Abrams et al., 2020). The resolution of the ASTER DEM is
30 m (the data are provided at a resolution of 1 arcsec), much
finer than our grid pixel size of 1km. This allows the com-
putation of subpixel properties of the elevation for each grid
point. We computed the mean elevation, the elevation gra-
dients and the surface roughness, defined as the root-mean-
square (RMS) deviation from the mean, for each pixel in our
grid. As a combined variable, we also computed the upslope
flow s, defined as the dot product of the elevation gradient
and the flow velocity:

s=Vh-v, 2

where & is the elevation and v is the flow velocity, which in
this case is derived from the radar motion vectors. A posi-
tive s indicates that the air flows predominantly uphill, while
a negative s corresponds to downhill flow. When we discuss
the importance of data sources later, in Sect. 4.2 and 4.3, we
consider the information content of the upslope flow to be
one of the DEM variables.

3 Methods
3.1 Data processing

In order to keep the conclusions of the study general and ap-
plicable to different operational environments, general and
widely available methods, rather than a particular operational
nowcasting system, were used in the data processing work-
flow applied in this study. This starts with the identification
of thunderstorm centers in the MAXZ field. The motion of
these centers is then tracked backward and forward in time
in a Lagrangian framework by integrating the velocity field
obtained with the optical flow method. Once the motion of
the center has been estimated, features from different data
sources and variables are extracted from the neighborhood
of the center at each time step. These features are collected
in the ML dataset used to train a gradient-boosting model.
Below, we describe each step of the workflow in more detail.

3.1.1 Extraction of storm centers and tracks

After processing the data into a single grid as described in
Sect. 2.2, we identified regions of active thunderstorms in
the data, based on the observed radar reflectivity. For each
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5 min time step in the data, we located centers of convective
activity using the following procedure:

1. Start with an empty list of storm centers.
2. Find the pixel with the highest MAXZ, denoted ppaxz.
3. If the MAXZ at pmaxz is at least 37 dBZ:

— Add pmaxz to the list of storm centers.

— Identify the 25 km diameter circular area surround-
ing pmaxz and exclude the pixels in it from the rest
of the search.

— Restart the search from step 2.
Otherwise, end the search.

Thus, storms were identified as regions of high radar reflec-
tivity. We chose the 37 dBZ threshold, which corresponds to
a convective precipitation rate of approximately 8 mmh~!,
following several previous studies in which thunderstorms
were identified using radar reflectivity thresholds of 30-
40 dBZ (Marshall and Radhakant, 1978; Wilson and Mueller,
1993; Roberts and Rutledge, 2003; Mueller et al., 2003; Her-
ing et al., 2004; Kober and Tafferner, 2009). To prevent radar
artifacts from being identified as storms, we discarded cen-
ters that had a valid MAXZ in fewer than one-third of the
pixels in the surrounding 25 km circle.

Once the centers had been identified, we tracked their
movement in the domain so that the temporal evolution of the
storm was separated from its movement. To estimate the mo-
tion, we computed the motion vectors of the reflectivity using
the autocorrelation-based optical flow method implemented
in the PySteps package (Pulkkinen et al., 2019). This method
yields a single motion vector; to allow the motion vector field
to vary spatially, we computed a motion vector in this man-
ner for each point in a square grid with a spacing of 97 pixels,
using the 200 x 200 pixel MAXZ neighborhood of each grid
point to compute the vector using the autocorrelation-based
method. Once computed in this fashion, the motion vectors
were then interpolated to the storm centers. This method pro-
duces motion fields with very smooth gradients and is likely
to fail to produce the correct motion for regions with high
wind shear. Although more advanced methods are available
in PySteps, we found these to be more prone to producing ar-
tifacts. The procedure described above is more robust, so we
found it to be more suitable for the task required in this study:
the automated analysis of tens of thousands of samples.

For each center, we estimated the past location of the cor-
responding air parcel by backward integrating the motion
vectors using Heun’s method (also known as the improved
Euler’s method; Siili and Mayers, 2003). At each time step,
the advected center may be adjusted by up to 2 pixels to
align it at the maximum MAXZ in the neighborhood (we
found that 2 pixels was sufficient, and that larger adjustments
sometimes caused the tracking to drift to the wrong storm
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Figure 2. An example of the extracted centers at time t = 0 (orange
circles) and tracks from # —60 to 460 min (orange lines). MAXZ in
dBZ is shown in the colored map, with coastlines and state borders
shown in the background.

center). For future motion, only the data that would be avail-
able in a real-time nowcasting scenario was used, and there-
fore we computed the future tracks using the last available
motion vectors at the reference time. Both the past and the
future tracks were computed for 60 min from the reference
time. Any tracks that extended out of the study area were
discarded. An example of centers and tracks extracted in this
manner is shown in Fig. 2.

The storm identification and tracking scheme was im-
plemented with the objectives of robustness and suitability
for ML. Therefore, we opted not to use, for instance, the
thunderstorm radar tracking (TRT) cell identification method
(Hering et al., 2004, 2005, 2006), which produces variable-
sized storm cells, thus complicating analysis. Our scheme ap-
proximates the tracking of storm centers but may not always
perfectly correspond to it. Therefore, one can state the ob-
jective of the ML prediction task more precisely as follows:
given the Lagrangian history of a storm centerpoint selected
based on a 37 dBZ reflectivity threshold, predict its future La-
grangian evolution.

3.1.2 Feature extraction

The evolution of a storm over time is described by the
changes in the variables in the circular neighborhood of the
center. For each variable derived from the data sources de-
scribed in Sect. 2.2, we extracted the neighborhood mean,
the standard deviation and the 10th and 90th percentiles. The
percentiles are intended as a soft minimum and a soft max-
imum and are less sensitive to outliers compared to the ex-
act minimum and maximum. For Boolean variables such as
the occurrence of a lightning event, we also computed binary
features that were 1 if the variable was true at any pixel in the
neighborhood or 0 otherwise.
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3.1.3 Datasets

The final dataset collected from the entire study period and
study area comprises 87 626 samples that describe the his-
tory and future of the detected storm centers. We divided the
samples into a training set that was used to train the ML al-
gorithm, a validation set that was used to evaluate the gener-
alization ability during training and a test set that was used
for final evaluation. We found that simply sampling these sets
randomly from the data made the training prone to overfitting
because storm tracks found at a similar time and location had
similar evolutions and thus were not independent samples. In
order to improve the independence of the training, valida-
tion and testing sets, we determined these sets such that the
data from each day (00:00-24:00 UTC) were assigned en-
tirely to only one of these sets, mostly eliminating the over-
lap between them. We sampled the days randomly until at
least 10 % of the data were in the validation set and at least
another 10 % were in the test set, and assigned the remain-
ing data to the training set. The final datasets were made
up of 69 594 training samples, 9160 validation samples and
8872 testing samples.

3.2 Prediction tasks

The predictands (i.e., the targets of the ML prediction) eval-
uated in this study were selected based on their relevance for
thunderstorm hazard prediction. We examined qualitatively
different predictands in order to assess the differences in the
contributions of various data sources to the prediction perfor-
mance.

The first prediction task we defined was the nowcasting
of the evolution of the column maximum reflectivity on the
storm track. This variable is highly indicative of thunder-
storm development and can function as an indicator of heavy
precipitation and hail. In particular, the radar reflectivity Z
can be approximately related to the rain rate R by a relation
of the form Z = aR”, where a and b are empirically deter-
mined constants. Hereafter, we refer to the task of predicting
the evolution of the column maximum reflectivity as MAXZ.
We examined the prediction performance for lead times of
between 5 and 60 min.

Another important thunderstorm hazard that we were able
to quantify using the available dataset was the occurrence of
lightning. We used the GLM measurements to identify light-
ning, and approached lightning prediction as a binary task
of predicting whether or not lightning will be present in the
25 km diameter neighborhood of the storm center during a
given time period. We refer to this task as LIGHTNING-
OCC.

For hail, we did not have direct observations of its oc-
currence. However, the presence of hail has been found to
be well indicated by the height difference between the radar
45 dBZ echo top and the freezing height (Waldvogel et al.,
1979; Foote et al., 2005; Barras et al., 2019). Since the freez-
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ing level is obtained from NWP data, the principal task is to
predict the echo top height. This, of course, is dependent on
a 45 dBZ reflectivity being present in the vertical column.
Thus, we divided this task into two components: predict-
ing whether a 45dBZ echo top will be present (ECHO45-
OCC) and, in cases where it was present, predicting its
height (ECHO45-HT). In an operational setting, this model
could be used by first evaluating ECHO45-OCC; if it pre-
dicted that a 45 dBZ reflectivity would occur, ECHO45-HT
would then be predicted and the freezing level would be sub-
tracted from it in order to calculate the hail probability.

3.3 Machine learning: gradient tree boosting

For the ML prediction, we used gradient boosting (GB) to
learn the relationship between the features and the prediction
targets. GB is a ML technique that uses decision trees, with
trees trained iteratively such that each successive tree cor-
rects the errors of the previous trees. The decision trees are
regularized using several techniques in order to prevent over-
fitting. A review of GB methods can be found in Natekin and
Knoll (2013).

One particular advantage of GB for our study is that it al-
lows the importance of the various input features to be quan-
tified. Thus, it is well suited to our aim of assessing the value
of different data sources and variables for the prediction of
thunderstorm hazards. The results can later be used to guide
the selection of appropriate features for different ML meth-
ods such as deep learning, where the feature importance is
less straightforward to derive.

We used the open-source LightGBM implementation of
the GB algorithm (Ke et al., 2017) as our ML framework.
LightGBM is designed to be computationally efficient and
has a reduced memory footprint, facilitating the analysis of
large datasets.

3.4 Training

We tuned the GB training for each of the various prediction
tasks. As described in Sect. 3.2, the learning tasks can be
broadly divided into two categories: regression tasks and bi-
nary classification tasks. In regression tasks, the objective is
to predict the future value of a variable that can be any real
number; in binary classification tasks, the objective is to pre-
dict the probability of an event occurring.

After comparing the performance and robustness of the
mean square error (MSE) and mean absolute error (MAE),
we decided to use MAE as the training objective function
for regression tasks, as it tended to give slightly better results
with the validation set, with less overfitting. Indeed, when the
model was trained with MAE loss, it achieved better MSE in
the validation set than an equivalent model trained with MSE
loss. Willmott and Matsuura (2005) and Chai and Draxler
(2014), among others, have discussed the relative merits of
MAE and MSE in the geoscientific context. We also found
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Figure 3. Examples of the prediction of MAXZ. The figure shows the curves of observed and predicted MAXZ (the mean over the 25 km
diameter region of interest) for four different tracked centers. The solid lines show the development of MAXZ, while the dashed lines show

the predictions after t = 0.

that, compared to training the GB model for the target vari-
able directly, we could achieve superior training performance
by first subtracting the bias-corrected persistence prediction
(discussed in more detail in Sect. 4.1) and then training the
GB model to predict the residual. Binary tasks were trained
using the cross entropy as a cost function.

All tasks were trained using early stopping based on the
validation dataset. That is, the training proceeds as long as
the training metric keeps improving not only in the training
set but also in the validation set, which is not used for train-
ing. The early stop limits the overfitting of the GB model.

The performance with the validation dataset was also used
to tune the hyperparameters of the GB model, most im-
portantly the depth of the trees, the number of leaf nodes,
the learning rate and various regularization parameters. Al-
though we were able to achieve some improvements by fine-
tuning these parameters, the performance on the validation
set was not particularly sensitive to changes over a reason-
able range of parameters. As the principal goal of this study
was not to strictly optimize the performance of the predic-
tions but rather to assess the importance of the various data
sources, we considered the hyperparameter tuning to be of
secondary importance in this context and were content to use
hyperparameters that produce reasonable results after an in-
formal manual search of the parameter space.

Using the default hyperparameters, approximately 60 min
were required on a modern computer with 16 central process-
ing unit (CPU) cores to train the all GB models: 12 models
corresponding to different time steps of the MAXZ predic-
tion and two models (0-30 and 30-60 min) for each of the
LIGHTNING-OCC, ECHO45-OCC and ECHO-45. Thus,
one model took approximately 3 min to train. Evaluating all
of the above-mentioned models for the entire testing dataset
of 8872 samples required a total of 6 s on the same hardware;
this is equivalent to 35 ps for one sample and one model.
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4 Results and discussion

The results of the ML experiments are reported and discussed
in the sections below. First, in Sect. 4.1 we give a general
analysis of the prediction performance. Then we assess the
importance of different features and data sources using the
GB feature importance (Sect. 4.2) and data exclusion anal-
ysis (Sect. 4.3). All reported results are for the test dataset
unless otherwise mentioned.

4.1 Prediction performance

Before evaluating the importance of the various data sources,
we quantify the performance of the models in the case where
all data sources described in Sect. 2.2 are available.

Figure 3 shows examples of the real and predicted time
series for MAXZ. We note that, in this figure, the MAXZ
at t = 0 may be less than the 37 dBZ threshold because the
MAXZ shown is the mean over the 25 km diameter region of
interest, while a MAXZ exceeding 37 dBZ in a single pixel is
enough for a case to be selected. Meanwhile, Fig. 4 shows the
error, averaged over all events and data points, of the MAXZ
predictand as a function of the lead time ¢. In order to provide
a more concrete error figure, we also show the correspond-
ing relative error in the rain rate estimated using the relation
Z = 300R!*, where Z is the reflectivity on the linear scale,
derived for convective precipitation and frequently used with
NEXRAD (e.g., Martner et al., 2008). As a baseline pre-
diction, we use the persistence assumption in a Lagrangian
framework; that is, it is assumed that the variable will remain
the same as it was at time t = 0. We found that the persis-
tence assumption is biased: the MAXZ at ¢t > 0 is, on aver-
age, lower than that at r = 0; this can also be seen in most of
the examples in Fig. 3. This reflectivity bias has two sources:
first, sampling bias, which occurs because we select centers
of intensive thunderstorms with MAXZ > 37 dBZ; and sec-
ond, drifting of the thunderstorm track from the actual center
of the storm due to inaccuracies in the tracking procedure.
The bias is small at short lead times and reaches 3.5 dBZ at
t = 60 min.
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Figure 4. Errors (in dBZ) of the prediction of MAXZ as a function
of lead time, obtained using all the available data. The solid lines
show the mean absolute error (MAE), while the dashed lines show
the root-mean-square error (RMSE) as shown on the scale on the
left. The scale on the right shows the logarithmic reflectivity error
converted to the relative error in rain rate R. The blue lines show
the result from the GB tree, the orange lines show the Lagrangian
persistence assumption and the red lines show the bias-corrected
Lagrangian persistence.

We can considerably reduce the error of the persistence as-
sumption by correcting for this bias. In contrast, it is rather
difficult to improve from the bias-corrected persistence as-
sumption using the GB model, even if we train the GB model
on its residual. In Fig. 4, it is apparent that the bias correction
improves the MAE by approximately 1.2dB at = 60 min,
while the GB model only gives a further 0.3dB of im-
provement. Nevertheless, the improvement gained with the
ML prediction is consistent and increases with longer lead
times.

For the lightning prediction, the model has an error rate
of 8.1 % for LIGHTNING-OCC in the 0-30 min time period
and 14.3 % for the 30-60 min period. We can compare these
numbers to the climatological occurrence, which would be
the error rate of a prediction that lightning never occurs — or
conversely, the climatological nonoccurrence would be the
error rate of a prediction that it always occurs. The clima-
tological occurrence of lightning in the data is 40.7 % for
0-30min and 29.2 % for 30—60 min in the test dataset (the
difference between these is likely due to the same bias that
we discussed in the context of MAXZ above). These results
suggest that the nowcasting framework developed here could
potentially be adapted to operational lightning nowcasting.
Full confusion matrices are shown in Fig. 5a and b.

For the presence of the 45dBZ echo (ECHO45-OCC),
we find error rates of 12.7 % for the 0-30 min range and
16.5 % for the 30-60 min range. The corresponding clima-
tological occurrences in the test set are 38.3 % for 0—30 min
and 20.0 % for the 30—60 min range. Thus, we achieve a con-

Nat. Hazards Earth Syst. Sci., 22, 577-597, 2022

J. Leinonen et al.: Data sources in thunderstorm nowcasting

(a) Lightning occ.
0-30 min

(b) Lightning occ.
30-60 min

' 0365  0.039 0.242  0.093
B>
[}
B
5
g
& g 0042 | 0554 0.050 | 0.615
(c) 45 dBZ ET occ. (d) 45 dBZ ET occ.
0-30 min 30-60 min
B 0307  0.052 0.078  0.039
B >
[}
!
5
Q
W (076 | 0.565
=2

Yes No Yes No
Actual Actual

Figure 5. Confusion matrices for (a, b) the LIGHTNING-OCC pre-
diction task and (¢, d) the ECHO45-OCC task.

siderable improvement with the ML approach for the near-
term prediction but a far more marginal one for the longer
term, which implies a more limited ability to predict hail,
and other features associated with the 45 dBZ echo top, us-
ing the approach applied in this study at lead times over
30 min. The confusion matrices for ECHO45-OCC can be
found in Fig. 5c and d. In the subset of the test dataset
where the 45 dBZ echo is present, the height of the 45 dBZ
echo is predicted with a MAE of 693 m for 0-30 min and
841 m for 30-60 min. According to the formula in Foote et al.
(2005) for the probability of hail (POH), these correspond to
roughly 16 and 19 percentage-point errors in POH, respec-
tively. Meanwhile, the standard deviations of ECHO45-HT
in the test set are 1365 m for 0-30 min and 1404 m for 30-
60 min.

4.2 Feature importance

The importances of features to the GB model can be ex-
tracted from the LightGBM library after training. In this sec-
tion, we show the “gain” of various features, i.e., the total
reduction in the training loss function attributable to that fea-
ture. For clarity and brevity of presentation, we sum the con-
tributions from different feature types (e.g., mean, standard
deviation) and different time steps. We also separately con-
sider the total contribution from all features of a given data
source, which can give a clearer impression of the total im-
portance of a source that includes a large number of corre-
lated features.

Figures 6 and 7 show the importances of the various pre-
dictors and data sources (e.g., ABI, NWP model or radar)
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for each of the ML objectives defined in Sect. 3.2. In Fig. 6,
we show the feature and source importances of the MAXZ
and LIGHTNING-OCC objectives, while Fig. 7 displays the
same for ECHO45-OCC and ECHO45-HT.

The statistics of feature importance for nowcasting
MAXZ, as shown in Fig. 6a, demonstrate that the most im-
portant features for predicting this target variable come from
the NEXRAD radar data. The most significant feature is the
column maximum reflectivity — the same variable that is be-
ing predicted — but the other radar variables also seem to be
utilized. The importances grouped by data source, as dis-
played in Fig. 6b, show a slightly different view, as in this
case the NWP data are of similar importance to the radar.
The reason for the apparent discrepancy between the impor-
tances of individual features and the total source importance
is that contribution of the NWP data is divided over a large
number of variables that are correlated to varying degrees.
Because of the correlations, the contributions from individ-
ual variables appear small, as the GB model splits the gain
between the correlated variables, but the contributions com-
bine to give an importance comparable to the radar variables
when summed together. Figure 6b shows some variation in
the relative importances of the radar and NWP data between
time steps, which we consider to be most likely mere random
noise; as the different time steps are predicted by different,
independently trained models, they may end up with slightly
different values for the feature importance. In general, the
importance of the NWP data tends to increase slightly with
longer lead times, as was also found in earlier nowcasting
studies (e.g., Kober et al., 2012). The GOES-16 ABI data
are also utilized to a significant degree, while the GLM and
ASTER data contribute to a lesser extent.

The feature and source importances for LIGHTNING-
OCC, as shown in Fig. 6¢ and d, are dominated by contri-
butions of the GLM lightning data. This is largely because
a region that is already producing lightning is likely to con-
tinue to do so in the future, thus providing a reliable predic-
tor, but past occurrence can also indicate temporal tendencies
in lightning activity. The NEXRAD, ABI and ECMWF data
are considered to be approximately equally important, with
their total importance (Fig. 6d) relative to GLM increasing
with longer lead times.

Figure 7 shows the feature importances for ECHO45-OCC
and ECHO45-HT. Similar to the nowcasting of MAXZ, the
most important features are from the NEXRAD radar data.
Again, this is not unexpected given that the target variables
are defined using the radar. The ECMWF and ABI data con-
tribute less to the prediction of the echo top than to the pre-
diction of MAXZ. According to this analysis, the GLM data
are hardly used, while the ASTER DEM data seem to pro-
vide a small contribution to the prediction of echo top height.
However, as we shall discuss in Sect. 4.3, GLM actually pro-
vides useful data in the absence of other predictors, while the
importance of the DEM may be due to overfitting.
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4.3 Exclusion studies

An alternative way to assess the importance of various data
sources is to remove one or more data sources from the train-
ing data, retrain the model, and evaluate the change in pre-
diction performance. This approach may give later studies a
clearer picture of the value of various data sources in thun-
derstorm nowcasting applications. Unlike the feature impor-
tance, such an exclusion study also allows the use of the test-
ing set for evaluation, showing which variables are important
in practice and allowing us to better distinguish generalizing
learning ability from overfitting. The results of the exclusion
experiments are shown in Fig. § (MAXZ and LIGHTNING-
OCC) and Fig. 9 (ECHO45-OCC and ECHOA45-HT). We
also show the equivalent results for the training and valida-
tion datasets in Figs. A1-A4.

The results for the MAXZ predictand at 60 min lead time
can be found in Fig. 8a and b. There is some noise in the re-
sults, so small differences in the metrics should not be over-
interpreted, but certain general patterns are apparent. Most
noticeably, the two leftmost columns, which correspond to
models that have the NEXRAD radar data available, show
consistently lower errors than the two columns on the right.
The ABI data also have a positive effect, as can be seen by
comparing the first column to the second, or the third to the
fourth. Examining the differences between the rows, GLM
data have a slight positive effect, especially when few other
data sources are available, while it is difficult to discern any
consistent effect from including the ECMWF data, and in-
cluding the ASTER data sometimes even appears to make
the metrics slightly worse. The latter result may be caused
by the GB training process overfitting to the DEM features
during training, degrading the results obtained during testing.
Among the predictions obtained using only one data source,
the one with NEXRAD data yields the best results and is
almost as good as using all data sources together, the ABI
and GLM data provide slight improvements over the base-
line case (shown in the bottom right corner), while the model
using only the NWP data from ECMWF yields results ap-
proximately equal to the persistence baseline. The latter re-
sult is quite surprising considering the large weight assigned
to the ECMWF features in the feature importance analysis
(Fig. 6a and b). For unclear reasons, the single best combi-
nation seems to be that which uses all data sources except
GLM; we suspect that this result is merely coincidental and
due to random variation because the results in Fig. 8a and b
do not suggest that the GLM data are detrimental to predic-
tion performance. The results for the training and validation
sets (Appendix Figs. Ala, b and A3a, b) support this interpre-
tation, since the best combination in the validation dataset is
that of NEXRAD and GLM. More generally, the results for
the training and validation datasets exhibit patterns similar
to those in the test set, which suggests that while individual
differences may be attributable to noise, the broader conclu-
sions of the analysis are robust.
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Figure 6. The importances of the various features and data sources for the MAXZ (a, b) and LIGHTNING-OCC (¢, d) predictands according
to LightGBM. The top panels show the 20 most important source variables for each predictand. The importances have been summed from
all features and time steps and normalized such that the most important variable is scaled to 1. The bottom panels show the total importances
of the various data sources as a function of lead time (in panel b) or the prediction time range (in panel d).

The metrics for LIGHTNING-OCC, shown in Fig. 8c
and d for the 30-60 min time interval, also show a clear pat-
tern. Here, the first, second, fourth and sixth rows, which cor-
respond to the GLM data being available, show better metrics
than the other rows. Indeed, prediction using only the GLM
data performs very well, achieving an error rate of 15.5 %.
However, it is interesting to note that good results can be ob-
tained without the direct lightning data as well; for example,
the error rate obtained using only the ABI and NEXRAD
(15.3 %) data is better than the GLM-only error rate and only
1.2 percentage points worse than the best result (14.1 %).
This shows that the feature importance analysis shown in
Sect. 4.2 is only valid for a specific combination of predic-
tors. When one data source is removed, the missing informa-
tion can often be substituted by other data sources that were
much less used in the case in which everything was available.
In general, both the ABI and NEXRAD data improve the pre-
diction results for LIGHTNING-OCC: the first column (with
both ABI and NEXRAD available) has the best results over-
all, the comparison between the second (NEXRAD only) and
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the third (ABI only) is mixed, and the fourth (neither ABI nor
NEXRAD available) has the worst results. The results ob-
tained with the ECMWF data are rather odd. First, in contrast
to the MAXZ prediction, the ECMWF data have some skill at
predicting lightning on their own, as the ECMWF-only pre-
diction has an error rate that is 2.7 percentage points better
than the climatological average of 29.2 %. Second, prediction
with both ECMWF and ABI performs 4.6 percentage points
better than ABI-only prediction, but adding the ECMWF
data to NEXRAD does not offer an improvement over the
NEXRAD-only scores. This result may be simply noise, as
in the validation dataset (Fig. A3d) the addition of ECMWF
data also improves the results obtained with NEXRAD. The
ASTER data do not add much information, and the ASTER-
only prediction, with its 38.7 % error rate, actually performs
worse than the climatology. This happens because the clima-
tological occurrence in the training dataset, at 42.5 %, is co-
incidentally significantly higher than in the test dataset. The
ASTER-only model is unable to generalize with the scarce
data available to it, and only learns to roughly reproduce the
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Figure 7. As Fig. 6, but for the ECHO45-OCC (a, b) and ECHO45-HT (¢, d) predictands.

climatological error rate in the training dataset, which leads
to the overestimation of occurrence in the test set. Indeed, the
degradation of the metrics with the addition of ASTER does
not occur in the training and validation datasets.

For both ECHO45-OCC and ECHO45-HT (Fig. 9, shown
for the 0-30 min interval), the clearest pattern is the impor-
tance of the radar data for prediction, which is consistent
with the feature importance analysis. Indeed, as long as the
NEXRAD data are available, the benefit of adding further
data sources is negligible compared to the NEXRAD-only
case (error rate of 12.5 %). However, without the NEXRAD
data (e.g., in oceanic regions without radar coverage), the
other data sources still provide meaningful improvements in
ECHO45-OCC over the climatological occurrence of 38.3 %.
For example, ABI alone achieves an error rate of 25.3 %,
ECMWF alone yields 27.8 %, and GLM alone achieves
21.4 %, while these three sources together reach 20.0 %. Sim-
ilar patterns are found in ECHO45-HT. These results further
demonstrate that the benefits of features and data sources
cannot be evaluated in isolation and depend on the other data
sources used.
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5 Conclusions

For machine-learning methods to be utilized effectively for
thunderstorm nowecasting, it is necessary for the benefits
of the various available data sources to be well under-
stood and quantified. Large amounts of data that are po-
tentially related to convective processes can be obtained
from numerous sources, yet it is not always obvious how
much benefit one should expect from adding an addi-
tional data source, and therefore additional complexity,
to a ML model. This study provides guidance for future
work to better select data sources for nowcasting particu-
lar thunderstorm hazards along predicted storm tracks. We
obtained data from ground-based radar (NEXRAD), satel-
lite spectrographic imagery (GOES-16 ABI), satellite-based
lightning detection (GOES-16 GLM), a numerical weather
prediction model (ECMWF IFS) and a digital elevation
model (ASTER), for a total of over 100 input variables. We
applied this data to nowcast variables related to precipitation,
lightning and hail formation.

We have based our evaluation of the importance of vari-
ous features on two complementary approaches: first, using
the feature importance provided by the gradient-boosted tree
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Figure 8. The results of exclusion experiments on the MAXZ and LIGHTNING-OCC predictands. Each square in panels (a)—(d) corresponds
to a combination of data sources, which can be found by combining the sources listed for the row and the column. For example, the top left
square of each panel shows the error metric obtained using all five data sources, while the second column of the second row shows the metric
for ECMWEF, GLM and NEXRAD data. The predictand and the error are shown on top of each panel; RMSE indicates the root-mean-square
error and MAE the mean absolute error. In panels (a) and (b), the bottom right corner shows the result obtained with the bias-corrected
persistence assumption (see Sect. 4.1), while in panel (d), the bottom right corner shows the baseline climatological occurrence. The results
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Figure 9. As Fig. 8, but for the ECHO45-OCC and ECHO45-HT predictands. In panel (b), the bottom right corner shows the climatological
occurrence (unlike with MAXZ, we do not use the persistence assumption as a baseline for ECHO45-HT, and therefore nothing is shown in
the bottom right corner of panels (c¢) and (d), in contrast to Fig. 8a and b). The results are shown for the 0—30 min time interval.

algorithm, and second, retraining the GB algorithm repeat-
edly using different subsets of the input variables. Testing all
possible combinations of input features would have quickly
become implausible as the number of features increased, but
grouping the features by data source allowed us to cover

the most realistic situations of missing data, where an entire
data source is unavailable due to either geographical limi-
tations (for example, operational weather radar networks do
not cover the oceans) or irregular data outages.
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Each of the investigated data sources proved to be use-
ful for predicting at least some of the target variables, ex-
cept for the DEM, which provides no detectable benefit for
any of the predictands. The radar variables are strong pre-
dictors for all predictands and are particularly dominant for
the targets defined using the radar data. The satellite imagery
from ABI provides moderate performance improvements to
all predictands, though it is generally less significant than the
radar data in this application. The GLM lightning data are
highly useful for lightning prediction; for other targets, they
provide more modest benefits, although they can still pro-
vide improvements to nowcasting performance, particularly
when radar data are not available. More generally, the results
confirm that satellite data can be used to provide ML-based
nowcasts in areas without radar coverage, such as over the
oceans and in less-developed regions lacking ground-based
radar networks. Meanwhile, the ECMWF forecast data, de-
spite being considered of some importance by the ML al-
gorithm, do not benefit the nowcast according to the data
exclusion analysis, as, for the lead times investigated here,
the necessary information content is already contained in the
other observations.

The results show that the feature importance from the
GB algorithms may provide seemingly contradictory results
compared to the more comprehensive analysis achieved by
testing different combinations of features and evaluating the
results. Although the two evaluation methods largely agreed
on which data sources are the most important, some im-
portant differences emerged on closer inspection. This high-
lights the pitfalls of analyzing the importance of features and
data sources in an ML setting when the data sources are par-
tially redundant. A given feature may be beneficial when
used alone, but virtually useless when used in conjunction
with another, more powerful predictor. For instance, when
trained for lightning prediction, the ML algorithm only gains
a modest improvement (approximately 10 %) in the error rate
from auxiliary data sources when direct lightning data are
available, but when trained without lightning data, good pre-
diction performance can still be achieved utilizing the other
data sources. This has important implications for real-time
nowcasting in time-critical applications such as aviation, as
it indicates that ML-based nowcasting can be performed ro-
bustly when some input data are missing or delayed.
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Based on the results, we conclude that investigators should
be cautious with applying the brute-force strategy of provid-
ing ML algorithms with all the available data and letting the
training process decide which data are useful. While this may
sometimes reveal unexpectedly useful input variables, using
data sources that contain little or no generalizable informa-
tion may also expose the training process to the problem of
overfitting, thus actually degrading the results. This can be
mitigated by early stopping and by using hyperparameters
designed to prevent overfitting, but it is better for both accu-
racy and training time to simply drop the counterproductive
data sources.

Future work can take advantage of the results achieved in
this study to build more accurate and efficient ML models
for the nowcasting of the thunderstorm hazards of heavy pre-
cipitation, lightning and hail. It also allows the estimation
of the degradation of the result if one observation system is
missing. Nevertheless, this work is constrained to a partic-
ular set of data sources, a single study area and a specific
ML method: the gradient-boosted tree. Although we have se-
lected five commonly utilized data sources, all qualitatively
different from each other, later work should extend the anal-
ysis to other data sources such as polar-orbiting satellites
and ground-based lightning networks. Given suitable data
sources, the methodology could also be extended to other
hazards such as wind damage and tornado events. It may fur-
thermore be interesting to investigate additional regions; for
instance, the DEM data may be more significant in regions
with higher mountains. With regard to alternative ML meth-
ods, the performance of neural networks should be evalu-
ated in a future study, preferably using the same dataset to
facilitate comparisons, as convolutional neural networks are
expected to be able to better utilize spatial features such as
the high-resolution imagery from the ABI instrument. Neu-
ral networks may also be able to utilize large numbers of
samples and input variables better.

Appendix A: Exclusion studies on training and
validation datasets

The exclusion analyses shown in Sect. 4.3 for the test dataset
were also performed with the training and validation datasets.
The results are shown in Figs. Al and A2 for the training set
and in Figs. A3 and A4 for the validation set.
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Figure A2. As Fig. 9, but for the training dataset.
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Figure A4. As Fig. 9, but for the validation dataset.
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Appendix B: Further information on the datasets

Table B1 lists the radars used to compile the NEXRAD
dataset we used. Tables B2-B6 list the predictors from the
various data sources that were used in this study.

Table B1. NEXRAD radars used to produce the dataset used in this study.

Location Code
Albany, New York KENX
Binghamton, New York KBGM
Buffalo, New York KBUF
Burlington, Vermont KCXX
Boston, Massachusetts KBOX
Fort Drum, New York KTYX
New York City, New York KOXZ
Philadelphia, Pennsylvania ~ KDIX
Portland, Maine KGYX
Pittsburgh, Pennsylvania KPBZ
State College, Pennsylvania KCCX

Table B2. Variables from the NEXRAD radar adopted in this study.

25 dBZ echo top height

35 dBZ echo top height

45 dBZ echo top height

Maximum reflectivity

Vertically integrated liquid

U/V motion components from optical flow

Table B3. Variables from the GOES-16 ABI instrument adopted in this study.

Level 1 Level 2
ABI band 01 (0.47um) ABI band 09 (6.9 um) Difference 07-08 | Cloud top height
ABI band 02 (0.64um) ABIband 10 (7.3 um) Difterence 07-09 | Cloud top pressure
ABI band 03 (0.86um) ABIband 11 (8.4 um) Difference 07-10 | Cloud optical depth
ABI band 04 (1.37um) ABIband 12 (9.6 um) Difference 08—09 | CAPE
ABI band 05 (1.6 um) ABI band 13 (10.3um) Difference 08-10 | K-index
ABI band 06 (2.2 pym) ABIband 14 (11.2um) Difference 11-13 | Lifted index
ABI band 07 (3.9 um) ABIband 15 (12.3um) Difference 12-13 | Showalter index
ABI band 08 (6.2 um) ABI band 16 (13.3 um) Total totals index

Table B4. Variables from the GOES-16 GLM instrument adopted in this study.

Flash density

Flash energy density

Event density

Event energy density

Nat. Hazards Earth Syst. Sci., 22, 577-597, 2022
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Table BS. Variables from the ECMWF model output adopted in this study.

0°C isothermal level

10m U/V wind components

100m U/V wind components

200m U/V wind components

2 m dewpoint temperature

2 m temperature

Boundary layer dissipation

Boundary layer height

Cloud base height

Convective available potential energy
Convective available potential energy shear
Convective inhibition

Convective precipitation

Convective rain rate

Convective snowfall rate water equivalent
Evaporation

Friction velocity

Geopotential

Height of convective cloud top

Height of 1 °C wet-bulb temperature
Height of 0 °C wet-bulb temperature
High cloud cover

K -index

Large-scale precipitation

Large-scale precipitation fraction
Large-scale rain rate

Large-scale snowfall rate water equivalent
Low cloud cover

Mean sea level pressure

Medium cloud cover

Potential evaporation

Precipitation type

Skin reservoir content

Skin temperature

Snowfall

Surface latent heat flux

Surface pressure

Surface net solar radiation

Surface net solar radiation, clear sky
Surface net thermal radiation

Surface net thermal radiation, clear sky
Surface sensible heat flux

Total cloud cover

Total column cloud ice water

Total column cloud liquid water

Total column rain water

Total column snow water

Total column supercooled liquid water
Total column water

Total column water vapor

Total precipitation

Total precipitation rate

Total totals index

Vertically integrated moisture divergence
Vertical integral of eastward water vapor flux
Vertical integral of northward water vapor flux

Table B6. Variables from the ASTER DEM adopted in this study.

Mean elevation
Roughness
Surface gradient
Upslope flow

Code and data availability. The ML code used to produce the re-
sults and the feature dataset used to train the ML models can be
found at https://doi.org/10.5281/zenodo.6206919 (Leinonen et al.,
2021).

The original datasets are described, with instructions for down-
loading and reading, in the following sources in the References:

— NEXRAD radar data: https://doi.org/10.7289/V5SW9574V
(NOAA National Weather Service , NWS)

— GOES ABI LI1b data: https://doi.org/10.7289/V5W9574V
(GOES-R Calibration Working Group and GOES-R Series
Program, 2017)

— GOES ABI L2 products:

— Cloud top height: https://doi.org/10.7289/V5HX19ZQ
(GOES-R Algorithm Working Group and GOES-R Series
Program Office, 2018a)

https://doi.org/10.5194/nhess-22-577-2022

— Cloud optical depth: https://doi.org/10.7289/V58G8J02
(GOES-R Algorithm Working Group and GOES-R Series
Program Office, 2018b)

— Cloud top pressure: https://doi.org/10.7289/V5D50K85
(GOES-R Algorithm Working Group and GOES-R Series
Program Office, 2018c)

— Derived stability indices:
https://doi.org/10.7289/V50Z71KF ~ (GOES-R  Algo-
rithm Working Group and GOES-R Series Program
Office, 2018d)

- ASTER GDEM Version 3:
https://doi.org/10.5067/ASTER/ASTGTM.003
(NASA/METI/AIST/Japan ~ Spacesystems and US/Japan
ASTER Science Team, 2019).

The ECMWEF forecast archive is available only to licensed users and
participating national meteorological services; these can obtain the
data through the ECMWF Meteorological Archival and Retrieval
System (MARS).
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cept of the study, which was refined by JL and UH. With the support
of UH, JL obtained the data, processed them, trained the ML mod-
els and analyzed the results. JL led the writing of the paper, with
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