Articles | Volume 22, issue 2
https://doi.org/10.5194/nhess-22-395-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-395-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comparative flood damage and risk impact assessment of land use changes
Karen Gabriels
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, KU Leuven, Leuven,
3001, Belgium
Patrick Willems
Department of Earth and Environmental Sciences, KU Leuven, Leuven,
3001, Belgium
Jos Van Orshoven
Department of Civil Engineering, KU Leuven, Leuven, 3001, Belgium
Related authors
No articles found.
Jayson Gabriel Pinza, Ona-Abeni Devos Stoffels, Robrecht Debbaut, Jan Staes, Jan Vanderborght, Patrick Willems, and Sarah Garré
EGUsphere, https://doi.org/10.5194/egusphere-2025-1166, https://doi.org/10.5194/egusphere-2025-1166, 2025
Short summary
Short summary
We can use hydrological models to estimate how water is allocated in soils with compaction. However, compaction can also affect how much plants can grow in the field. Here, we show that when we consider this affected plant growth in our sandy soil compaction model, the resulting water allocation can change a lot. Thus, to get more reliable model results, we should know the plant growth (above and below the ground) in the field and include them in the models.
Łukasz Gruss, Patrick Willems, Paweł Tomczyk, Jaroslav Pollert Jr., Jaroslav Pollert Sr., Christoph Märtner, Stanisław Czaban, and Mirosław Wiatkowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-860, https://doi.org/10.5194/egusphere-2025-860, 2025
Short summary
Short summary
A new extension of the generalized extreme value distribution, namely the dual gamma generalized extreme value distribution developed by Nascimento, Bourguignony, and Leão (2016), displays superior performance in fitting most samples and is sensitive to trends, especially under non-stationary conditions such as climate change.
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828, https://doi.org/10.5194/egusphere-2025-828, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
In July 2021, the Netherlands, Luxembourg, Germany, and Belgium were hit by an extreme flood event with over 200 fatalities. Our study provides, for the first time, critical insights into the operational flood early-warning systems in this entire region. Based on 13 expert interviews, we conclude that the systems strongly improved in all countries. Interviewees stressed the need for operational impact-based forecasts, but emphasized that its operational implementation is challenging.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Hossein Tabari, Santiago Mendoza Paz, Daan Buekenhout, and Patrick Willems
Hydrol. Earth Syst. Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021, https://doi.org/10.5194/hess-25-3493-2021, 2021
Bertold Mariën, Inge Dox, Hans J. De Boeck, Patrick Willems, Sebastien Leys, Dimitri Papadimitriou, and Matteo Campioli
Biogeosciences, 18, 3309–3330, https://doi.org/10.5194/bg-18-3309-2021, https://doi.org/10.5194/bg-18-3309-2021, 2021
Short summary
Short summary
The drivers of the onset of autumn leaf senescence for several deciduous tree species are still unclear. Therefore, we addressed (i) if drought impacts the timing of autumn leaf senescence and (ii) if the relationship between drought and autumn leaf senescence depends on the tree species. Our study suggests that the timing of autumn leaf senescence is conservative across years and species and even independent of drought stress.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Cited articles
AGIV: Bodembedekkingskaart (BBK), 5m resolutie, opname 2012, AGIV [data set],
available at:
http://www.geopunt.be/catalogus/datasetfolder/cbd76a37-027a-48ed-a5fe-012d5f6db55b (last access: 26 October 2020),
2016.
AGIV: Grootschalig Referentiebestand (GRBgis), AGIV [data set], available at:
http://www.geopunt.be/catalogus/datasetfolder/7c823055-7bbf-4d62-b55e-f85c30d53162 (last access: 26 October 2020),
2020.
AGIV and NGI: Wegenregister, 17/09/2020, AGIV [data set], available at:
http://www.geopunt.be/catalogus/datasetfolder/b8007407-21ea-46f7-ab2c-3736e9f7fb27 (last access: 26 October 2020),
2020.
AGIV and VMM: Recent overstroomde gebieden, AGIV [data set], available at:
http://www.geopunt.be/catalogus/datasetfolder/6BC263EB-F4DF-4B16-963B-840CD2EFAACF (last access: 26 October 2020),
2017.
AGIV, VMM, and Watlab: DHM-Vlaanderen, raster, 5 m, AGIV [data set], available at:
http://www.geopunt.be/catalogus/datasetfolder/B5C62D89-A0C4-4228-B359-6FCAB7020C50
(last access: 13 February 2020), 2006.
Attems, M., Thaler, T., Genovese, E., and Fuchs, S.: Implementation of
property-level flood risk adaptation (PLFRA) measures: Choices and
decisions, WIREs Water, 7, 1–19, https://doi.org/10.1002/wat2.1404, 2020.
Barredo, J. I.: Normalised flood losses in Europe: 1970–2006, Nat. Hazards Earth Syst. Sci., 9, 97–104, https://doi.org/10.5194/nhess-9-97-2009, 2009.
Beullens, J., Broidioi, S., De Sutter, R., De Maeyer, P., Verwaest, T., and
Mostaert, F.: Ontwikkeling LATIS 4 Deelrapport bis: Actualisatie
basiskaarten en schadewaarden, Versie 3.0, WL Rapporten, 13_159_7, 2017.
Bingner, R. L., Theurer, F. D., Yuan, Y., and Taguas, E. V.: AnnAGNPS
Technical Process, Version 5.5, available at:
https://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/AGNPS/downloads/AnnAGNPS_Technical_Documentation.pdf (last access: 5 February 2022), 2018.
Bouwer, L. M.: Have disaster losses increased due to anthropogenic climate
change?, B. Am. Meteorol. Soc., 92, 39–46, https://doi.org/10.1175/2010BAMS3092.1,
2011.
Bronstert, A., Niehoff, D., and Bürger, G.: Effects of climate and
land-use change on storm runoff generation: Present knowledge and modelling
capabilities, Hydrol. Process., 16, 509–529, https://doi.org/10.1002/hyp.326, 2002.
Bubeck, P., de Moel, H., Bouwer, L. M., and Aerts, J. C. J. H.: How reliable are projections of future flood damage?, Nat. Hazards Earth Syst. Sci., 11, 3293–3306, https://doi.org/10.5194/nhess-11-3293-2011, 2011.
Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied Hydrology, edited by:
Clark, B. J. and Morriss, J., McGraw-Hill, 539 pp., ISBN 0-07-010810-2, 1988.
Dalemans, F., Jacxsens, P., Van Orshoven, J., Kint, V., Moonen, P., and Muys,
B.: Assisting sustainable forest management and forest policy planning with
the sim4tree decision support system, Forests, 6, 859–878,
https://doi.org/10.3390/f6040859, 2015.
Davids, P. R. and Thaler, T.: Flood-resilient communities: How we can
encourage adaptive behaviour through smart tools in public–private
interaction, Urban Plan., 6, 272–282, https://doi.org/10.17645/up.v6i3.4246, 2021.
Deckers, P., Kellens, W., Reyns, J., Vanneuville, W., and De Maeyer, P.: A
GIS for Flood Risk Management in Flanders, in: Geospatial Techniques in Urban
Hazard and Disaster Analysis, edited by: Showalter, P. and Lu, Y., Springer, 51–69, https://doi.org/10.1007/978-90-481-2238-7,
2009.
de Moel, H. and Aerts, J. C. J. H.: Effect of uncertainty in land use,
damage models and inundation depth on flood damage estimates, Nat. Hazards,
58, 407–425, https://doi.org/10.1007/s11069-010-9675-6, 2011.
de Moel, H., van Alphen, J., and Aerts, J. C. J. H.: Flood maps in Europe – methods, availability and use, Nat. Hazards Earth Syst. Sci., 9, 289–301, https://doi.org/10.5194/nhess-9-289-2009, 2009.
de Moel, H., van Vliet, M., and Aerts, J. C. J. H.: Evaluating the effect of
flood damage-reducing measures: A case study of the unembanked area of
Rotterdam, the Netherlands, Reg. Environ. Chang., 14, 895–908,
https://doi.org/10.1007/s10113-013-0420-z, 2014.
de Moel, H., Jongman, B., Kreibich, H., Merz, B., Penning-Rowsell, E., and
Ward, P. J.: Flood risk assessments at different spatial scales, Mitig.
Adapt. Strateg. Glob. Chang., 20, 865–890,
https://doi.org/10.1007/s11027-015-9654-z, 2015.
Departement Ruimte Vlaanderen: Witboek Beleidsplan Ruimte Vlaanderen,
Brussel, available at: https://publicaties.vlaanderen.be/view-file/23474 (last access: 5 February 2022), 2017.
Directive 2007/60/EC: The assessment and management of flood risks, available at: http://data.europa.eu/eli/dir/2007/60/oj (last access: 18 April 2021), 2007.
EEA: EEA Technical report 12/2015: Exploring nature-based solutions: The
role of green infrastructure in mitigating the impacts of weather- and
climate change-related natural hazards, European Environment Agency,
Copenhagen, 2015.
EEA: EEA Report 15/2017: Climate change adaptation and disaster risk
reduction in Europe: Enhancing coherence of the knowledge base, policies and
practices, European Environment Agency, Copenhagen, 2017.
EEA: Economic losses from climate-related extremes in Europe, available at:
https://www.eea.europa.eu/ims/economic-losses-from-climate-related (last access:
22 December 2021), 2021.
Federatie van het Notariaat: Notarisbarometer: Landbouwgronden, available at: https://www.notaris.be/nieuws-pers/detail/hoeveel-kost-een-landbouwgrond-in-ons-land-ontdek-onze-notarisbarometer (last access: 5 February 2022), 2019.
Gabriels, K., Willems, P., and Van Orshoven, J.: Performance evaluation of
spatially distributed, CN-based rainfall-runoff model configurations for
implementation in spatial land use optimization analyses, J. Hydrol., 602,
126872, https://doi.org/10.1016/j.jhydrol.2021.126872, 2021.
Gabriels, K., Willems, P., and Van Orshoven, J.: An iterative runoff
propagation approach to identify priority locations for land cover change
minimizing downstream river flood hazard, Landsc. Urban Plan., 218, 104262,
https://doi.org/10.1016/j.landurbplan.2021.104262, 2022.
Gerl, T., Kreibich, H., Franco, G., Marechal, D., and Schröter, K.: A
review of flood loss models as basis for harmonization and benchmarking,
PLoS One, 11, 1–22, https://doi.org/10.1371/journal.pone.0159791, 2016.
Grommen, S.: Akkoord over betonstop krijgt forse kritiek van oppositie en
experten: “Onbetaalbaar en dus onuitvoerbaar,” VRT NWS, 16 December,
available at:
https://www.vrt.be/vrtnws/nl/2020/12/16/debat-bouwshift-betonstop/ (last access: 22 December 2020), 2020.
Grossi, P. and Kunreuther, H.: Catastrophe modeling: A new approach to
managing risk, Springer, Boston, MA, 256 pp., o eBook ISBN 0-387-23129-3, 2005.
Hall, J. W., Sayers, P. B., and Dawson, R. J.: National-scale assessment of
current and future flood risk in England and Wales, Nat. Hazards, 36,
147–164, https://doi.org/10.1007/s11069-004-4546-7, 2005.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and
Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp.,
ISBN 978-92-9169-143-2, 2014.
Joseph, R., Proverbs, D., and Lamond, J.: Homeowners' perceptions of
property-level flood risk adaptation (PLFRA) measures: The case of the
summer 2007 flood event in England, Int. J. Saf. Secur. Eng., 5,
251–265, https://doi.org/10.2495/SAFE-V5-N3-251-265, 2015.
Kellens, W., Vanneuville, W., Verfaillie, E., Meire, E., Deckers, P., and De
Maeyer, P.: Flood Risk Management in Flanders: Past Developments and Future
Challenges, Water Resour. Manag., 27, 3585–3606,
https://doi.org/10.1007/s11269-013-0366-4, 2013.
Klijn, F., Baan, P., de Bruijn, K., and Kwadijk, J.: Overstromingsrisico's in
Nederland in een veranderend klimaat: Verwachtingen, schattingen en
berekeningen voor het project Nederland Later, Report number Q4290, 165,
2007.
Koks, E. E., de Moel, H., Aerts, J. C. J. H., and Bouwer, L. M.: Effect of
spatial adaptation measures on flood risk: Study of coastal floods in
Belgium, Reg. Environ. Chang., 14, 413–425, https://doi.org/10.1007/s10113-013-0514-7,
2014.
Lin, Y. P., Hong, N. M., Wu, P. J., Wu, C. F., and Verburg, P. H.: Impacts of
land use change scenarios on hydrology and land use patterns in the Wu-Tu
watershed in Northern Taiwan, Landsc. Urban Plan., 80, 111–126,
https://doi.org/10.1016/j.landurbplan.2006.06.007, 2007.
Mediero, L., Jiménez-Álvarez, A., and Garrote, L.: Design flood hydrographs from the relationship between flood peak and volume, Hydrol. Earth Syst. Sci., 14, 2495–2505, https://doi.org/10.5194/hess-14-2495-2010, 2010.
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article “Assessment of economic flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.
Messner, F. and Meyer, V.: Flood Damage, Vulnerability and Risk Perception –
Challenges for Flood Damage Research, in: Flood Risk Management: Hazards,
Vulnerability and Mitigation Measures, edited by: Schanze, J., Zeman, E., and
Marsalek, J., pp. 149–167, Springer, ISBN 13 978-1-4020-4598-1 (e-book), ISBN 10 1-4020-4598-0 (e-book), 2006.
Miller, J. D., Kim, H., Kjeldsen, T. R., Packman, J., Grebby, S., and
Dearden, R.: Assessing the impact of urbanization on storm runoff in a
peri-urban catchment using historical change in impervious cover, J.
Hydrol., 515, 59–70, https://doi.org/10.1016/j.jhydrol.2014.04.011, 2014.
Mohor, G. S., Thieken, A. H., and Korup, O.: Residential flood loss estimated from Bayesian multilevel models, Nat. Hazards Earth Syst. Sci., 21, 1599–1614, https://doi.org/10.5194/nhess-21-1599-2021, 2021.
Morris, J. and Brewin, P.: The impact of seasonal flooding on agriculture:
the spring 2012 floods in Somerset, England, J. Flood Risk Manag., 7,
128–140, https://doi.org/10.1111/jfr3.12041, 2014.
Nash, J. E. and Sutcliffe, J. V: River Flow Forecasting Through Conceptual
Models: Part I – A discussion of principles, J. Hydrol., 10, 282–290, 1970.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and
Water Assessment Tool: Theoretical Documentation, Version 2009, 647, 2011.
Peel, M. C.: Hydrology: Catchment vegetation and runoff, Prog. Phys. Geogr.,
33, 837–844, https://doi.org/10.1177/0309133309350122, 2009.
Penning-rowsell, E., Johnson, C., Tunstall, S., Tapsell, S., Morris, J.,
Chatterton, J., and Green, C.: The Benefits of Flood and Coastal Risk
Management: A Handbook of Assessment Techniques, Middlesex University
Press, 89 pp., ISBN 1-904750-51-6, 2005.
Poelmans, L., Rompaey, A. Van, Ntegeka, V., and Willems, P.: The relative
impact of climate change and urban expansion on peak flows: a case study in
central Belgium, Hydrol. Process., 25, 2846–2858, https://doi.org/10.1002/hyp.8047,
2011.
Sayers, P., Galloway, G., Penning-rowsell, E., Yuanyuan, L., Yiwei, C.,
Kang, W., Quesne, T. Le, Wang, L., Guan, Y., Sayers, P., Galloway, G.,
Penning-rowsell, E., and Yuanyuan, L.: Strategic flood management: ten
`golden rules' to guide a sound approach, Int. J. River Basin Manag., 13,
137–151, https://doi.org/10.1080/15715124.2014.902378, 2015.
SEPA: Natural Flood Management Handbook, edited by: Forbes, H., Ball, K., and McLay, F., Scottish Environment Protection Agency (SEPA), ISBN 978-0-85759-024-4, 2016.
Statbel: Statistiek van de verkopen van gebouwen: aantal en verkoopprijs per
datum, oppervlakte en type gebouw, available at:
https://bestat.statbel.fgov.be/bestat/crosstable.xhtml?view=0859950c-50e4-4e39-acde-bc48f47215a5 (last access: 26 October 2020),
2019.
Sutmöller, J., Hentschel, S., Hansen, J., and Meesenburg, H.: Coupled forest growth-hydrology modelling as an instrument for the assessment of effects of forest management on hydrology in forested catchments, Adv. Geosci., 27, 149–154, https://doi.org/10.5194/adgeo-27-149-2011, 2011.
Teng, J., Vaze, J., Dutta, D., and Marvanek, S.: Rapid Inundation Modelling
in Large Floodplains Using LiDAR DEM, Water Resour. Manag., 29, 2619–2636,
https://doi.org/10.1007/s11269-015-0960-8, 2015.
Van Den Broeck, S.: Een bos aanplanten. Hoeveel moet dat kosten?, available at:
https://www.gemeentevoordetoekomst.be/artikel/een-bos-aanplanten-hoeveel-moet-dat-kosten (last access: 16 November 2020),
2019.
Vanneuville, W., De Maeyer, P., Maeghe, K., and Mostaert, F.: Model of the
effects of a flood in the dender catchment, based on a risk methodology, in
Bulletin of the Society of Cartographers, vol. 37, pp. 59–64, 2003.
Vanneuville, W., Maddens, R., Collard, C., Bogaert, P., De Maeyer, P., and
Antrop, M.: Impact op mens en economie t.g.v. overstromingen bekeken in het
licht van wijzigende hydraulische condities, omgevingsfactoren en
klimatologische omstandigheden, 120, 2006.
Van Opstal, M., Tits, M., Beckers, V., Elsen, A., Van Overtveld, K.,
Batelaan, O., Van Orshoven, J., Bries, J., Vandendriessche, H., and Diels,
J.: Vernieuwde kwantificering van de verliezen van N en P vanuit de landbouw
naar het oppervlaktewater, Eindrapport, mei 2014, 2014.
Van Orshoven, J.: Van nature overstroombare en recent overstroomde gebieden
in Vlaanderen., in Proceedings of the Study Day on “Space for Water, The
Best Insurance Against Flooding”, pp. 1–22, AMINAL and KBC-Insurance,
Brussels, Belgium, 2001.
VLAIO and AGIV: Bedrijventerreinen, Toestand 30/09/2020, VLAIO and AGIV [data set], available at: https://www.geopunt.be/catalogus/datasetfolder/05ae7c3d-0abc-4a45-a35a-d937747b445d (last access: 5 February 2022), 2020.
VMM: De voorlopige OverstromingsRisicoBeoordeling in Vlaanderen, report, Vlaamse Milieumaatschappij (VMM), available at: https://www.vmm.be/publicaties/de-voorlopige-overstromingsrisicobeoordeling-in-vlaanderen (last access: 5 February 2022), 2018.
VMM: Actieplan Droogte en Wateroverlast 2019–2021, 69, report, Vlaamse Milieumaatschappij (VMM), available at: https://www.vmm.be/water/droogte/actieplan-droogte-en-wateroverlast (last access: 5 February 2022), 2019.
VMM Waterbouwkundig Laboratorium, Agentschap MDK, and De Vlaamse Waterweg
nv: Waterinfo.be, available at: https://www.waterinfo.be/ (last access: 26 October 2021), 2020.
Ward, P. J., de Moel, H., and Aerts, J. C. J. H.: How are flood risk estimates affected by the choice of return-periods?, Nat. Hazards Earth Syst. Sci., 11, 3181–3195, https://doi.org/10.5194/nhess-11-3181-2011, 2011.
Yeo, I.-Y. and Guldmann, J.-M.: Global spatial optimization with hydrological systems simulation: application to land-use allocation and peak runoff minimization, Hydrol. Earth Syst. Sci., 14, 325–338, https://doi.org/10.5194/hess-14-325-2010, 2010.
Short summary
As land use influences hydrological processes (e.g., forests have a high water retention and infiltration capacity), it also impacts floods downstream in the river system. This paper demonstrates an approach quantifying the impact of land use changes on economic flood damages: damages in an initial situation are quantified and compared to damages of simulated floods associated with a land use change scenario. This approach can be used as an explorative tool in sustainable flood risk management.
As land use influences hydrological processes (e.g., forests have a high water retention and...
Altmetrics
Final-revised paper
Preprint