Articles | Volume 22, issue 11
https://doi.org/10.5194/nhess-22-3543-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-3543-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Building-scale flood loss estimation through vulnerability pattern characterization: application to an urban flood in Milan, Italy
Andrea Taramelli
Istituto Universitario di Studi Superiori di Pavia (IUSS), Pavia,
27100, Italy
Institute for Environmental Protection and Research (ISPRA), Rome,
00144, Italy
Margherita Righini
CORRESPONDING AUTHOR
Istituto Universitario di Studi Superiori di Pavia (IUSS), Pavia,
27100, Italy
Emiliana Valentini
Institute of Polar Sciences of the Italian National Research Council (ISP CNR), Rome, 00015, Italy
Lorenzo Alfieri
CIMA Research Foundation, Savona, 17100, Italy
Ignacio Gatti
Istituto Universitario di Studi Superiori di Pavia (IUSS), Pavia,
27100, Italy
Simone Gabellani
CIMA Research Foundation, Savona, 17100, Italy
Related authors
No articles found.
Giulia Blandini, Francesco Avanzi, Lorenzo Campo, Simone Gabellani, Kristoffer Aalstad, Manuela Girotto, Satoru Yamaguchi, Hiroyuki Hirashima, and Luca Ferraris
EGUsphere, https://doi.org/10.5194/egusphere-2025-423, https://doi.org/10.5194/egusphere-2025-423, 2025
Short summary
Short summary
Reliable SWE and snow depth estimates are key for water management in snow regions. To tackle computational challenges in data assimilation, we suggest a Long Short-Term Memory neural network for operational data assimilation in snow hydrology. Once trained, it cuts computation by 70 % versus an EnKF, with a slight RMSE increase (+6 mm SWE, +6 cm snow depth). This work advances deep learning in snow hydrology, offering an efficient, scalable, and low-cost modeling framework.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Lorenzo Alfieri, Andrea Libertino, Lorenzo Campo, Francesco Dottori, Simone Gabellani, Tatiana Ghizzoni, Alessandro Masoero, Lauro Rossi, Roberto Rudari, Nicola Testa, Eva Trasforini, Ahmed Amdihun, Jully Ouma, Luca Rossi, Yves Tramblay, Huan Wu, and Marco Massabò
Nat. Hazards Earth Syst. Sci., 24, 199–224, https://doi.org/10.5194/nhess-24-199-2024, https://doi.org/10.5194/nhess-24-199-2024, 2024
Short summary
Short summary
This work describes Flood-PROOFS East Africa, an impact-based flood forecasting system for the Greater Horn of Africa. It is based on hydrological simulations, inundation mapping, and estimation of population and assets exposed to upcoming river floods. The system supports duty officers in African institutions in the daily monitoring of hydro-meteorological disasters. A first evaluation shows the system performance for the catastrophic floods in the Nile River basin in summer 2020.
Francesca Munerol, Francesco Avanzi, Eleonora Panizza, Marco Altamura, Simone Gabellani, Lara Polo, Marina Mantini, Barbara Alessandri, and Luca Ferraris
Geosci. Commun., 7, 1–15, https://doi.org/10.5194/gc-7-1-2024, https://doi.org/10.5194/gc-7-1-2024, 2024
Short summary
Short summary
To contribute to advancing education in a warming climate and prepare the next generations to play their role in future societies, we designed “Water and Us”, a three-module initiative focusing on the natural and anthropogenic water cycle, climate change, and conflicts. This study aims to introduce the initiative's educational objectives, methods, and early results.
Giulia Blandini, Francesco Avanzi, Simone Gabellani, Denise Ponziani, Hervé Stevenin, Sara Ratto, Luca Ferraris, and Alberto Viglione
The Cryosphere, 17, 5317–5333, https://doi.org/10.5194/tc-17-5317-2023, https://doi.org/10.5194/tc-17-5317-2023, 2023
Short summary
Short summary
Automatic snow depth data are a valuable source of information for hydrologists, but they also tend to be noisy. To maximize the value of these measurements for real-world applications, we developed an automatic procedure to differentiate snow cover from grass or bare ground data, as well as to detect random errors. This procedure can enhance snow data quality, thus providing more reliable data for snow models.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Flavio Pignone, Giulia Bruno, Luca Pulvirenti, Giuseppe Squicciarino, Elisabetta Fiori, Lauro Rossi, Silvia Puca, Alexander Toniazzo, Pietro Giordano, Marco Falzacappa, Sara Ratto, Hervè Stevenin, Antonio Cardillo, Matteo Fioletti, Orietta Cazzuli, Edoardo Cremonese, Umberto Morra di Cella, and Luca Ferraris
Earth Syst. Sci. Data, 15, 639–660, https://doi.org/10.5194/essd-15-639-2023, https://doi.org/10.5194/essd-15-639-2023, 2023
Short summary
Short summary
Snow cover has profound implications for worldwide water supply and security, but knowledge of its amount and distribution across the landscape is still elusive. We present IT-SNOW, a reanalysis comprising daily maps of snow amount and distribution across Italy for 11 snow seasons from September 2010 to August 2021. The reanalysis was validated using satellite images and snow measurements and will provide highly needed data to manage snow water resources in a warming climate.
Giulia Bruno, Doris Duethmann, Francesco Avanzi, Lorenzo Alfieri, Andrea Libertino, and Simone Gabellani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-416, https://doi.org/10.5194/hess-2022-416, 2022
Manuscript not accepted for further review
Short summary
Short summary
Hydrological models often have issues during droughts. We used the distributed Continuum model over the Po river basin and independent datasets of streamflow (Q), evapotranspiration (ET), and storage. Continuum simulated Q well during wet years and moderate droughts. Performances declined for a severe drought and we explained this drop with an increased uncertainty in ET anomalies in human-affected croplands. These findings provide guidelines for assessments of model robustness during droughts.
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022, https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary
Short summary
Knowing in real time how much snow and glacier ice has accumulated across the landscape has significant implications for water-resource management and flood control. This paper presents a computer model – S3M – allowing scientists and decision makers to predict snow and ice accumulation during winter and the subsequent melt during spring and summer. S3M has been employed for real-world flood forecasting since the early 2000s but is here being made open source for the first time.
Francesco Dottori, Lorenzo Alfieri, Alessandra Bianchi, Jon Skoien, and Peter Salamon
Earth Syst. Sci. Data, 14, 1549–1569, https://doi.org/10.5194/essd-14-1549-2022, https://doi.org/10.5194/essd-14-1549-2022, 2022
Short summary
Short summary
We present a set of hazard maps for river flooding for Europe and the Mediterranean basin. The maps depict inundation extent and depth for flood probabilities for up to 1-in-500-year flood hazards and are based on hydrological and hydrodynamic models driven by observed climatology. The maps can identify two-thirds of the flood extent reported by official flood maps, with increasing skill for higher-magnitude floods. The maps are used for evaluating present and future impacts of river floods.
Christian Massari, Francesco Avanzi, Giulia Bruno, Simone Gabellani, Daniele Penna, and Stefania Camici
Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022, https://doi.org/10.5194/hess-26-1527-2022, 2022
Short summary
Short summary
Droughts are a creeping disaster, meaning that their onset, duration and recovery are challenging to monitor and forecast. Here, we provide further evidence of an additional challenge of droughts, i.e. the fact that the deficit in water supply during droughts is generally much more than expected based on the observed decline in precipitation. At a European scale we explain this with enhanced evapotranspiration, sustained by higher atmospheric demand for moisture during such dry periods.
Francesco Avanzi, Giulia Ercolani, Simone Gabellani, Edoardo Cremonese, Paolo Pogliotti, Gianluca Filippa, Umberto Morra di Cella, Sara Ratto, Hervè Stevenin, Marco Cauduro, and Stefano Juglair
Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021, https://doi.org/10.5194/hess-25-2109-2021, 2021
Short summary
Short summary
Precipitation tends to increase with elevation, but the magnitude and distribution of this enhancement remain poorly understood. By leveraging over 11 000 spatially distributed, manual measurements of snow depth (snow courses) upstream of two reservoirs in the western European Alps, we show that these courses bear a characteristic signature of orographic precipitation. This opens a window of opportunity for improved modeling accuracy and, ultimately, our understanding of the water budget.
Shaun Harrigan, Ervin Zsoter, Lorenzo Alfieri, Christel Prudhomme, Peter Salamon, Fredrik Wetterhall, Christopher Barnard, Hannah Cloke, and Florian Pappenberger
Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, https://doi.org/10.5194/essd-12-2043-2020, 2020
Short summary
Short summary
A new river discharge reanalysis dataset is produced operationally by coupling ECMWF's latest global atmospheric reanalysis, ERA5, with the hydrological modelling component of the Global Flood Awareness System (GloFAS). The GloFAS-ERA5 reanalysis is a global gridded dataset with a horizontal resolution of 0.1° at a daily time step and is freely available from 1979 until near real time. The evaluation against observations shows that the GloFAS-ERA5 reanalysis was skilful in 86 % of catchments.
Silvia Terzago, Valentina Andreoli, Gabriele Arduini, Gianpaolo Balsamo, Lorenzo Campo, Claudio Cassardo, Edoardo Cremonese, Daniele Dolia, Simone Gabellani, Jost von Hardenberg, Umberto Morra di Cella, Elisa Palazzi, Gaia Piazzi, Paolo Pogliotti, and Antonello Provenzale
Hydrol. Earth Syst. Sci., 24, 4061–4090, https://doi.org/10.5194/hess-24-4061-2020, https://doi.org/10.5194/hess-24-4061-2020, 2020
Short summary
Short summary
In mountain areas high-quality meteorological data to drive snow models are rarely available, so coarse-resolution data from spatial interpolation of the available in situ measurements or reanalyses are typically employed. We perform 12 experiments using six snow models with different degrees of complexity to show the impact of the accuracy of the forcing on snow depth and snow water equivalent simulations at the Alpine site of Torgnon, discussing the results in relation to the model complexity.
Cited articles
Akbas, S., Blahut, J., and Sterlacchini, S.: Critical assessment of existing physical vulnerability estimation approaches for debris flows, in: International Conference – Landslide processes: from geomorphological mappingto dynamic modelling, edited by: Malet, J., Remaître, A., and Bogaard, T., CERG Editions, Strasbourg, 229–233, 2009.
Amadio, M., Scorzini, A. R., Carisi, F., Essenfelder, A. H., Domeneghetti, A., Mysiak, J., and Castellarin, A.: Testing empirical and synthetic flood damage models: the case of Italy, Nat. Hazards Earth Syst. Sci., 19, 661–678, https://doi.org/10.5194/nhess-19-661-2019, 2019.
Apel, H., Merz, B., and Thieken, A. H.: Quantification of uncertainties in
flood risk assessments, Int. J. River Basin Manag., 6, 149–162,
https://doi.org/10.1080/15715124.2008.9635344, 2008.
Arrighi, C., Mazzanti, B., Pistone, F., and Castelli, F.: Empirical flash
flood vulnerability functions for residential buildings, SN Appl. Sci., 2,
1–12, https://doi.org/10.1007/s42452-020-2696-1, 2020.
Balica, S. F., Douben, N., and Wright, N. G.: Flood vulnerability indices at
varying spatial scales, Water Sci. Technol., 60, 2571–2580,
https://doi.org/10.2166/wst.2009.183, 2009.
Becciu, G., Ghia, M., and Mambretti, S.: A century of works on river seveso:
From unregulated development to basin reclamation, Int. J. Environ. Impacts
Manag. Mitig. Recover., 1, 461–472,
https://doi.org/10.2495/ei-v1-n4-461-472, 2018.
Bocci, M., Puppo, D. D., and Fasolini, D.: Il nuovo modello digitale del terreno della Regione Lombardia; un esempio di utilizzo di dati esistenti, XIX Conferenza Nazionale ASITA, 833–841, http://atti.asita.it/ASITA2015/Autori/56.html (last access: 27 April 2022), 2015.
Bouwer, L. M., Bubeck, P., and Aerts, J. C. J. H.: Changes in future flood
risk due to climate and development in a Dutch polder area, Global Environ.
Change, 20, 463–471, https://doi.org/10.1016/j.gloenvcha.2010.04.002, 2010.
Cammerer, H. and Thieken, A. H.: Historical development and future outlook
of the flood damage potential of residential areas in the Alpine Lech Valley
(Austria) between 1971 and 2030, Reg. Environ. Change, 13, 999–1012,
https://doi.org/10.1007/s10113-013-0407-9, 2013.
Cammerer, H., Thieken, A. H., and Verburg, P. H.: Spatio-temporal dynamics
in the flood exposure due to land use changes in the Alpine Lech Valley in
Tyrol (Austria), Nat. Hazards, 68, 1243–1270,
https://doi.org/10.1007/s11069-012-0280-8, 2013.
Cardona, O. D.: The need for rethinking the concepts of vulnerability and risk from a holistic perspective: A necessary review and criticism for effective risk management, in: Mapping Vulnerability Disasters, Development and People, edited by: Bankoff, G. Frerks, G., and Hilhorst, D., 1st ed., Routledge, London, UK, 37–51, https://doi.org/10.4324/9781849771924, 2004.
Carrera, L., Standardi, G., Bosello, F., and Mysiak, J.: Assessing direct and indirect economic impacts of a flood event through the integration of spatial and computable general equilibrium modelling, Environ. Model. Softw., 63, 109–122, https://doi.org/10.1016/j.envsoft.2014.09.016, 2015.
Cohen, S., Raney, A., Munasinghe, D., Loftis, J. D., Molthan, A., Bell, J., Rogers, L., Galantowicz, J., Brakenridge, G. R., Kettner, A. J., Huang, Y.-F., and Tsang, Y.-P.: The Floodwater Depth Estimation Tool (FwDET v2.0) for improved remote sensing analysis of coastal flooding, Nat. Hazards Earth Syst. Sci., 19, 2053–2065, https://doi.org/10.5194/nhess-19-2053-2019, 2019.
Copernicus Programme: Mapping Guide v6.1 for an European Urban Atlas, 42 pp., https://land.copernicus.eu/user-corner/technical-library/urban_atlas_2012_2018_mapping_guide_v6-1.pdf (last access: 21 May 2021), 2018.
Corradi, J., Salvucci, G., and Vitale, V.: Analisi della vulnerabilità sismica dell’edificato italiano: tra demografia e “domografia” una proposta metodologica innovativa, Ingenio, 1–22, https://www.ingenio-web.it/4518-tra-demografia-e-domografia-una-propostametodologica-innovativa-per-valutare-la-vulnerabilita-sismica-delledificato-italiano (last access: 21 May 2021), 2015.
Crigg, N. S. and Helweg, O. J.: State-of-the-Art of Estimating Flood Damage
in Urban Areas, Am. Wat. Res., 11, 379–390, 1975.
Davies, R.: Seveso River Floods Milan, http://floodlist.com/europe/seveso-river-floods-milan (last access: 17 December 2020), 2014.
Department Of The Army and U.S. Army Corps of Engineers (USACE): ER
1105-2-101_Risk Assessment for Flood Risk Management,
https://www.publications.usace.army.mil/Portals/76/Users/182/86/2486/ER 1105-2-101_Clean.pdf (last access: 27 April 2022), 2019.
Dietrich, W. E. and Perron, J. T.: The search for a topographic signature of
life, Nature, 439, 411–418, https://doi.org/10.1038/nature04452, 2006.
Dodov, B. A. and Foufoula-Georgiou, E.: Floodplain morphometry extraction
from a high-resolution digital elevation model: a simple algorithm for
regional analysis studies, IEEE Geosci. Remote S., 3, 410–413,
https://doi.org/10.1109/LGRS.2006.874161, 2006.
Dottori, F., Figueiredo, R., Martina, M. L. V., Molinari, D., and Scorzini, A. R.: INSYDE: a synthetic, probabilistic flood damage model based on explicit cost analysis, Nat. Hazards Earth Syst. Sci., 16, 2577–2591, https://doi.org/10.5194/nhess-16-2577-2016, 2016a.
Dottori, F., Figueiredo, R., Martina, M. L. V., Molinari, D., and Scorzini, A. R.: INSYDE, a synthetic, probabilistic flood damage model based on explicit cost analysis, GitHub [code], https://github.com/ruipcfig/insyde (last access: 17 May 2022), 2016b.
Elmer, F., Thieken, A. H., Pech, I., and Kreibich, H.: Influence of flood frequency on residential building losses, Nat. Hazards Earth Syst. Sci., 10, 2145–2159, https://doi.org/10.5194/nhess-10-2145-2010, 2010.
Englhardt, J., de Moel, H., Huyck, C. K., de Ruiter, M. C., Aerts, J. C. J. H., and Ward, P. J.: Enhancement of large-scale flood risk assessments using building-material-based vulnerability curves for an object-based approach in urban and rural areas, Nat. Hazards Earth Syst. Sci., 19, 1703–1722, https://doi.org/10.5194/nhess-19-1703-2019, 2019.
European Union, Copernicus Land Monitoring Service, European Environment Agency: Urban Atlas 2018, European Union, Copernicus Land Monitoring Service, European Environment Agency (EEA) [data set], https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018?tab=download (last access: 27 April 2022), 2018a.
European Union, Copernicus Land Monitoring Service, European Environment Agency: Imperviousness Density 2018, European Union, Copernicus Land Monitoring Service, European Environment Agency (EEA) [data set], https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps/imperviousness-density-2018?tab=download (last access: 27 April 2022), 2018b.
Faella, C. and Nigro, E.: Dynamic impact of the debris flows on the constructions during the hydrogeological disaster in Campania-1998: Failure mechanical models and evaluation of the impact velocity, in: Proceedings of the international conference on FSM, Naples, Italy, 179–186, 2003.
Fekete, A., Damm, M., and Birkmann, J.: Scales as a challenge for
vulnerability assessment, Nat. Hazards, 55, 729–747,
https://doi.org/10.1007/s11069-009-9445-5, 2010.
Figueiredo, R. and Martina, M.: Using open building data in the development of exposure data sets for catastrophe risk modelling, Nat. Hazards Earth Syst. Sci., 16, 417–429, https://doi.org/10.5194/nhess-16-417-2016, 2016.
Fleming, G.: Learning to live with rivers—the ICE's report to government,
Proc. Inst. Civ. Eng.-Civ. Eng., 150, 15–21,
https://doi.org/10.1680/cien.2002.150.5.15, 2002.
Fuchs, S., Keiler, M., Ortlepp, R., Schinke, R., and Papathoma-Köhle,
M.: Recent advances in vulnerability assessment for the built environment
exposed to torrential hazards: Challenges and the way forward, J. Hydrol.,
575, 587–595, https://doi.org/10.1016/j.jhydrol.2019.05.067, 2019.
Gabriels, K., Willems, P., and Van Orshoven, J.: A comparative flood damage and risk impact assessment of land use changes, Nat. Hazards Earth Syst. Sci., 22, 395–410, https://doi.org/10.5194/nhess-22-395-2022, 2022.
Gizzi, F. T., Potenza, M. R., and Zotta, C.: The Insurance Market of Natural
Hazards for Residential Properties in Italy, Open J. Earthq. Res., 5,
35–61, https://doi.org/10.4236/ojer.2016.51004, 2016.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future
flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806,
https://doi.org/10.1038/nclimate1979, 2013.
Hufschmidt, G., Crozier, M., and Glade, T.: Evolution of natural risk: research framework and perspectives, Nat. Hazards Earth Syst. Sci., 5, 375–387, https://doi.org/10.5194/nhess-5-375-2005, 2005.
Huizinga, J., De Moel, H., and Szewczyk, W.: Global flood depth-damage functions: Methodology and the database with guidelines, EUR 28552 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-79-67781-6, https://doi.org/10.2760/16510, 2017.
Italian Ministry of Environment’s Geoportale Nazionale: Edificato dei capoluoghi di provincia, Italian Ministry of Environment’s Geoportale Nazionale [data set], http://www.pcn.minambiente.it/mattm/servizio-wms/ (last access: 21 May 2021), 2003.
Italian National Institute for Statistics: 2011 census, Italian National Institute for Statistics [data set], http://www.istat.it/ (last access: 27 April 2022), 2011.
Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D., Feyen, L., Gericke, A., Neal, J., Aerts, J. C. J. H., and Ward, P. J.: Comparative flood damage model assessment: towards a European approach, Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, 2012.
Kappes, M. S., Papathoma-Köhle, M., and Keiler, M.: Assessing physical
vulnerability for multi-hazards using an indicator-based methodology, Appl.
Geogr., 32, 577–590, https://doi.org/10.1016/j.apgeog.2011.07.002, 2012.
Kumar, D. and Bhattacharjya, R. K.: Review of different methods and techniques used for flood vulnerability analysis, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2020-297, 2020.
Lal, P. N., Mitchell, T., Aldunce, P., Auld, H., Mechler, R., Miyan, A., Romano, L. E., Zakaria, S., Dlugolecki, A., 65 Masumoto, T., Ash, N., Hochrainer, S., Hodgson, R., Islam, T. U., Mc Cormick, S., Neri, C., Pulwarty, R., Rahman, A., Ramalingam, B., Sudmeier-Reiux, K., Tompkins, E., Twigg, J., and Wilby, R.: National systems for managing the risks from climate extremes and disasters, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, Special Report of the Intergovernmental Panel on Climate Change, Special Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros V., Stocker, T. F., and Dahe, Q., 339–392, 70, https://doi.org/10.1017/CBO9781139177245.009, 2012.
Malgwi, M. B., Fuchs, S., and Keiler, M.: A generic physical vulnerability model for floods: review and concept for data-scarce regions, Nat. Hazards Earth Syst. Sci., 20, 2067–2090, https://doi.org/10.5194/nhess-20-2067-2020, 2020.
Mazzorana, B., Simoni, S., Scherer, C., Gems, B., Fuchs, S., and Keiler, M.: A physical approach on flood risk vulnerability of buildings, Hydrol. Earth Syst. Sci., 18, 3817–3836, https://doi.org/10.5194/hess-18-3817-2014, 2014.
McBean, E. A., Gorrie, J., Fortin, M., Ding, J., and Monlton, R.: Adjustment
Factors for Flood Damage Curves, J. Water Res. Plan. Man., 114,
635–646, https://doi.org/10.1061/(asce)0733-9496(1988)114:6(635), 1988.
Menoni, S., Molinari, D., Ballio, F., Minucci, G., Mejri, O., Atun, F., Berni, N., and Pandolfo, C.: Flood damage: a model for consistent, complete and multipurpose scenarios, Nat. Hazards Earth Syst. Sci., 16, 2783–2797, https://doi.org/10.5194/nhess-16-2783-2016, 2016.
Merz, B., Kreibich, H., Thieken, A., and Schmidtke, R.: Estimation uncertainty of direct monetary flood damage to buildings, Nat. Hazards Earth Syst. Sci., 4, 153–163, https://doi.org/10.5194/nhess-4-153-2004, 2004.
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article “Assessment of economic flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.
Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H., and Viavattene, C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013.
Molinari, D. and Scorzini, A. R.: On the influence of input data quality to flood damage estimation: The performance of the INSYDE model, Water, 9, 688, https://doi.org/10.3390/w9090688, 2017.
Molinari, D., Ballio, F., and Menoni, S.: Floods emergency management: The
value of potential and actual damage estimation, WIT Trans. Ecol. Envir.,
159, 95–105, https://doi.org/10.2495/FRIAR120081, 2012.
Molinari, D., Menoni, S., Aronica, G. T., Ballio, F., Berni, N., Pandolfo, C., Stelluti, M., and Minucci, G.: Ex post damage assessment: an Italian experience, Nat. Hazards Earth Syst. Sci., 14, 901–916, https://doi.org/10.5194/nhess-14-901-2014, 2014.
Molinari, D., Scorzini, A. R., Arrighi, C., Carisi, F., Castelli, F., Domeneghetti, A., Gallazzi, A., Galliani, M., Grelot, F., Kellermann, P., Kreibich, H., Mohor, G. S., Mosimann, M., Natho, S., Richert, C., Schroeter, K., Thieken, A. H., Zischg, A. P., and Ballio, F.: Are flood damage models converging to “reality”? Lessons learnt from a blind test, Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, 2020.
Morelli, A., Taramelli, A., Bozzeda, F., Valentini, E., Colangelo, M. A.,
and Cueto, Y. R.: The disaster resilience assessment of coastal areas: A
method for improving the stakeholders' participation, Ocean Coast. Manage.,
214, 105867, https://doi.org/10.1016/j.ocecoaman.2021.105867, 2021.
Municipality of Milan: G_All09 Relazione aree esondabili e della pericolosità Analisi idraulica di dettaglio, Municipality of Milan [data set], https://www.pgt.comune.milano.it/gall09-relazione-aree-esondabili-e-della-pericolosita/analisi-idraulica-di-dettaglio-download-dati (last access: 27 April 2022), 2019.
Nafari, R. H.: Flood Damage Assessment with the Help of HEC-FIAModel. M.S. thesis, Department of Civil and Environmental Engineering, Politechnico Milano, https://www.politesi.polimi.it/bitstream/10589/86182/1/2012_13_Hasanzadeh Nafari.pdf (last access: 8 August 2021), 2013.
Nardi, F., Vivoni, E. R., and Grimaldi, S.: Investigating a floodplain
scaling relation using a hydrogeomorphic delineation method, Water Resour.
Res., 42, 1–15, https://doi.org/10.1029/2005WR004155, 2006.
Nasiri, H., Mohd Yusof, M. J., and Mohammad Ali, T. A.: An overview to flood
vulnerability assessment methods, Sustain. Water Resour. Manag., 2,
331–336, https://doi.org/10.1007/s40899-016-0051-x, 2016.
Papathoma-Köhle, M., Schlögl, M., and Fuchs, S.: Vulnerability
indicators for natural hazards: an innovative selection and weighting
approach, Sci. Rep.-UK, 9, 1–14, https://doi.org/10.1038/s41598-019-50257-2,
2019.
Pistrika, A., Tsakiris, G., and Nalbantis, I.: Flood Depth-Damage Functions
for Built Environment, Environ. Process., 1, 553–572,
https://doi.org/10.1007/s40710-014-0038-2, 2014.
Roberts, N. J., Nadim, F., and Kalsnes, B.: Quantification of vulnerability
to natural hazards, Georisk Assess. Manag. Risk Eng. Syst. Geohazards, 3,
164–173, https://doi.org/10.1080/17499510902788850, 2009.
Schanze, J.: FLOOD RISK MANAGEMENT – A BASIC FRAMEWORK, in: Flood Risk
Management: Hazards, Vulnerability and Mitigation Measures, edited by:
Schanze, J., Zeman, E., and Marsalek, J., Springer Netherlands, Dordrecht,
1–20, https://doi.org/10.1007/978-1-4020-4598-1_1, 2006.
Scorzini, A. R., Dewals, B., Rodriguez Castro, D., Archambeau, P., and Molinari, D.: INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium), Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, 2022.
Seenath, A., Wilson, M., and Miller, K.: Hydrodynamic versus GIS modelling
for coastal flood vulnerability assessment: Which is better for guiding
coastal management?, Ocean Coast. Manage., 120, 99–109,
https://doi.org/10.1016/j.ocecoaman.2015.11.019, 2016.
Taramelli, A. and Reichenbach, P.: Comparison of Srtm Elevation Data With
Cartographically Derived DEMs in Italy, Rev. Geogr. Acad., 2, 41–52, 2008.
Taramelli, A., Valentini, E., and Sterlacchini, S.: A GIS-based approach for
hurricane hazard and vulnerability assessment in the Cayman Islands, Ocean
Coast. Manage., 108, 116–130,
https://doi.org/10.1016/j.ocecoaman.2014.07.021, 2015.
Taramelli, A., Manzo, C., Valentini, E., and Cornacchia, L.: Coastal
Subsidence: Causes, Mapping, and Monitoring, in: Natural Hazards:
Earthquakes, Volcanoes, and Landslides, edited by: Ramesh Singh, D. B., CRC
Press, 253–290, ISBN 9781138054431, 2018.
Taramelli, A., Lissoni, M., Piedelobo, L., Schiavon, E., Valentini, E.,
Nguyen Xuan, A., and González-Aguilera, D.: Monitoring Green
Infrastructure for Natural Water Retention Using Copernicus Global Land
Products, Remote Sens., 11, 1583, https://doi.org/10.3390/rs11131583, 2019.
Thieken, A. H., Olschewski, A., Kreibich, H., Kobsch, S., and Merz, B.:
Development and evaluation of FLEMOps – A new Flood Loss Estimation MOdel
for the private sector, WIT Trans. Ecol. Environ., 118, 315–324,
https://doi.org/10.2495/FRIAR080301, 2008.
Thrysøe, C., Balstrøm, T., Borup, M., Löwe, R., Jamali, B., and
Arnbjerg-Nielsen, K.: FloodStroem: A fast dynamic GIS-based urban flood and
damage model, J. Hydrol., 600, 126521,
https://doi.org/10.1016/j.jhydrol.2021.126521, 2021.
Usman Kaoje, I., Abdul Rahman, M. Z., Idris, N. H., Razak, K. A., Wan Mohd
Rani, W. N. M., Tam, T. H., and Mohd Salleh, M. R.: Physical flood
vulnerability assessment using geospatial indicator-based approach and
participatory analytical hierarchy process: A case study in Kota Bharu,
Malaysia, 13, 1–22, https://doi.org/10.3390/w13131786, 2021.
Vamvatsikos, D., Kouris, L. A., Panagopoulos, G., Kappos, A. J., Nigro, E., Rossetto, T., Lloyd, T. O., and Stathopoulos, T.: Structural vulnerability assessment under natural hazards: A review, COST ACTION C26 Urban Habitat Constr. under Catastrophic Events – Proc. Final Conf., 711–723, ISBN 978-0-415-60685-1, 2010
Vogel, C. and O’Brien, K.: Vulnerability and Global fnvironmental
Change: Rhetoric and Reality, nformation Bull. Glob. Environ.
Chang. Hum. Secur. No. 13. Environ. Chang. Secur. Proj. Int.
Dev. Res. Centre, Ottawa, https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/39859/IDL-39859.pdf?sequence=1&isAllowed=y (last access: 21 May 2021), 2004.
Short summary
This work aims to support decision-making processes to prioritize effective interventions for flood risk reduction and mitigation for the implementation of flood risk management concepts in urban areas. Our findings provide new insights into vulnerability spatialization of urban flood events for the residential sector, demonstrating that the nature of flood pathways varies spatially and is influenced by landscape characteristics, as well as building features.
This work aims to support decision-making processes to prioritize effective interventions for...
Altmetrics
Final-revised paper
Preprint