Articles | Volume 22, issue 11
https://doi.org/10.5194/nhess-22-3543-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-3543-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Building-scale flood loss estimation through vulnerability pattern characterization: application to an urban flood in Milan, Italy
Andrea Taramelli
Istituto Universitario di Studi Superiori di Pavia (IUSS), Pavia,
27100, Italy
Institute for Environmental Protection and Research (ISPRA), Rome,
00144, Italy
Margherita Righini
CORRESPONDING AUTHOR
Istituto Universitario di Studi Superiori di Pavia (IUSS), Pavia,
27100, Italy
Emiliana Valentini
Institute of Polar Sciences of the Italian National Research Council (ISP CNR), Rome, 00015, Italy
Lorenzo Alfieri
CIMA Research Foundation, Savona, 17100, Italy
Ignacio Gatti
Istituto Universitario di Studi Superiori di Pavia (IUSS), Pavia,
27100, Italy
Simone Gabellani
CIMA Research Foundation, Savona, 17100, Italy
Related authors
O. Q. Gutiérrez, F. Filipponi, A. Taramelli, E. Valentini, P. Camus, and F. J. Méndez
Ocean Sci., 12, 39–49, https://doi.org/10.5194/os-12-39-2016, https://doi.org/10.5194/os-12-39-2016, 2016
Short summary
Short summary
High-resolution wave hindcast has been performed for the N Adriatic Sea using a hybrid methodology, combining a regional wave hindcast database, wind reanalysis, satellite SAR wind fields and data mining techniques. Comparison with in situ instrumental data indicates the good quality of the downscaled waves; moreover, a good correlation was found on the downscaled waves forced with different wind fields. Results demonstrate how SAR wind fields can be successfully up-taken in wave downscaling.
A. Taramelli, L. Cornacchia, E. Valentini, and F. Bozzeda
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurfd-1-1061-2013, https://doi.org/10.5194/esurfd-1-1061-2013, 2013
Revised manuscript not accepted
Lorenzo Alfieri, Andrea Libertino, Lorenzo Campo, Francesco Dottori, Simone Gabellani, Tatiana Ghizzoni, Alessandro Masoero, Lauro Rossi, Roberto Rudari, Nicola Testa, Eva Trasforini, Ahmed Amdihun, Jully Ouma, Luca Rossi, Yves Tramblay, Huan Wu, and Marco Massabò
EGUsphere, https://doi.org/10.5194/egusphere-2023-804, https://doi.org/10.5194/egusphere-2023-804, 2023
Short summary
Short summary
This work describes Flood-PROOFS East Africa, an impact-based flood forecasting system for the Greater Horn of Africa. It is based on hydrological simulations, inundation mapping, and estimation of population and assets exposed to upcoming river floods. The system supports duty officers in African institutions in the daily monitoring of hydro-meteorological disasters. A first evaluation shows the system performance for the catastrophic floods in the Nile River Basin in Summer 2020.
Giulia Blandini, Francesco Avanzi, Simone Gabellani, Denise Ponziani, Hervé Stevenin, Sara Ratto, Luca Ferraris, and Alberto Viglione
EGUsphere, https://doi.org/10.5194/egusphere-2023-656, https://doi.org/10.5194/egusphere-2023-656, 2023
Short summary
Short summary
Automatic snow depth data are a valuable source of information for hydrologists, but they also tend to be noisy. To maximize the value of these measurements for real-world applications, we developed an automatic procedure to differentiate snow cover from grass or bare ground data, as well as to detect random errors. This procedure can enhance snow ground data quality , thus providing more reliable data for snow models.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Flavio Pignone, Giulia Bruno, Luca Pulvirenti, Giuseppe Squicciarino, Elisabetta Fiori, Lauro Rossi, Silvia Puca, Alexander Toniazzo, Pietro Giordano, Marco Falzacappa, Sara Ratto, Hervè Stevenin, Antonio Cardillo, Matteo Fioletti, Orietta Cazzuli, Edoardo Cremonese, Umberto Morra di Cella, and Luca Ferraris
Earth Syst. Sci. Data, 15, 639–660, https://doi.org/10.5194/essd-15-639-2023, https://doi.org/10.5194/essd-15-639-2023, 2023
Short summary
Short summary
Snow cover has profound implications for worldwide water supply and security, but knowledge of its amount and distribution across the landscape is still elusive. We present IT-SNOW, a reanalysis comprising daily maps of snow amount and distribution across Italy for 11 snow seasons from September 2010 to August 2021. The reanalysis was validated using satellite images and snow measurements and will provide highly needed data to manage snow water resources in a warming climate.
Giulia Bruno, Doris Duethmann, Francesco Avanzi, Lorenzo Alfieri, Andrea Libertino, and Simone Gabellani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-416, https://doi.org/10.5194/hess-2022-416, 2022
Manuscript not accepted for further review
Short summary
Short summary
Hydrological models often have issues during droughts. We used the distributed Continuum model over the Po river basin and independent datasets of streamflow (Q), evapotranspiration (ET), and storage. Continuum simulated Q well during wet years and moderate droughts. Performances declined for a severe drought and we explained this drop with an increased uncertainty in ET anomalies in human-affected croplands. These findings provide guidelines for assessments of model robustness during droughts.
Francesca Munerol, Francesco Avanzi, Eleonora Panizza, Marco Altamura, Simone Gabellani, Lara Polo, Marina Mantini, Barbara Alessandri, and Luca Ferraris
EGUsphere, https://doi.org/10.5194/egusphere-2022-1250, https://doi.org/10.5194/egusphere-2022-1250, 2022
Short summary
Short summary
To contribute advancing education in a warming climate and prepare next generations to play their role in future societies, we designed "Water and Us", a three-module initiative focusing on the natural and anthropogenic water cycle, climate change, and conflicts. Results from 40+ hours of events confirm that students are generally aware of climate change (90 %), but have sparse knowledge of the concrete actions that are in place to mitigate or adapt (up to 20 %).
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022, https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary
Short summary
Knowing in real time how much snow and glacier ice has accumulated across the landscape has significant implications for water-resource management and flood control. This paper presents a computer model – S3M – allowing scientists and decision makers to predict snow and ice accumulation during winter and the subsequent melt during spring and summer. S3M has been employed for real-world flood forecasting since the early 2000s but is here being made open source for the first time.
Francesco Dottori, Lorenzo Alfieri, Alessandra Bianchi, Jon Skoien, and Peter Salamon
Earth Syst. Sci. Data, 14, 1549–1569, https://doi.org/10.5194/essd-14-1549-2022, https://doi.org/10.5194/essd-14-1549-2022, 2022
Short summary
Short summary
We present a set of hazard maps for river flooding for Europe and the Mediterranean basin. The maps depict inundation extent and depth for flood probabilities for up to 1-in-500-year flood hazards and are based on hydrological and hydrodynamic models driven by observed climatology. The maps can identify two-thirds of the flood extent reported by official flood maps, with increasing skill for higher-magnitude floods. The maps are used for evaluating present and future impacts of river floods.
Christian Massari, Francesco Avanzi, Giulia Bruno, Simone Gabellani, Daniele Penna, and Stefania Camici
Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022, https://doi.org/10.5194/hess-26-1527-2022, 2022
Short summary
Short summary
Droughts are a creeping disaster, meaning that their onset, duration and recovery are challenging to monitor and forecast. Here, we provide further evidence of an additional challenge of droughts, i.e. the fact that the deficit in water supply during droughts is generally much more than expected based on the observed decline in precipitation. At a European scale we explain this with enhanced evapotranspiration, sustained by higher atmospheric demand for moisture during such dry periods.
Francesco Avanzi, Giulia Ercolani, Simone Gabellani, Edoardo Cremonese, Paolo Pogliotti, Gianluca Filippa, Umberto Morra di Cella, Sara Ratto, Hervè Stevenin, Marco Cauduro, and Stefano Juglair
Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021, https://doi.org/10.5194/hess-25-2109-2021, 2021
Short summary
Short summary
Precipitation tends to increase with elevation, but the magnitude and distribution of this enhancement remain poorly understood. By leveraging over 11 000 spatially distributed, manual measurements of snow depth (snow courses) upstream of two reservoirs in the western European Alps, we show that these courses bear a characteristic signature of orographic precipitation. This opens a window of opportunity for improved modeling accuracy and, ultimately, our understanding of the water budget.
Shaun Harrigan, Ervin Zsoter, Lorenzo Alfieri, Christel Prudhomme, Peter Salamon, Fredrik Wetterhall, Christopher Barnard, Hannah Cloke, and Florian Pappenberger
Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, https://doi.org/10.5194/essd-12-2043-2020, 2020
Short summary
Short summary
A new river discharge reanalysis dataset is produced operationally by coupling ECMWF's latest global atmospheric reanalysis, ERA5, with the hydrological modelling component of the Global Flood Awareness System (GloFAS). The GloFAS-ERA5 reanalysis is a global gridded dataset with a horizontal resolution of 0.1° at a daily time step and is freely available from 1979 until near real time. The evaluation against observations shows that the GloFAS-ERA5 reanalysis was skilful in 86 % of catchments.
Silvia Terzago, Valentina Andreoli, Gabriele Arduini, Gianpaolo Balsamo, Lorenzo Campo, Claudio Cassardo, Edoardo Cremonese, Daniele Dolia, Simone Gabellani, Jost von Hardenberg, Umberto Morra di Cella, Elisa Palazzi, Gaia Piazzi, Paolo Pogliotti, and Antonello Provenzale
Hydrol. Earth Syst. Sci., 24, 4061–4090, https://doi.org/10.5194/hess-24-4061-2020, https://doi.org/10.5194/hess-24-4061-2020, 2020
Short summary
Short summary
In mountain areas high-quality meteorological data to drive snow models are rarely available, so coarse-resolution data from spatial interpolation of the available in situ measurements or reanalyses are typically employed. We perform 12 experiments using six snow models with different degrees of complexity to show the impact of the accuracy of the forcing on snow depth and snow water equivalent simulations at the Alpine site of Torgnon, discussing the results in relation to the model complexity.
Maria Cortès, Marco Turco, Philip Ward, Josep A. Sánchez-Espigares, Lorenzo Alfieri, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci., 19, 2855–2877, https://doi.org/10.5194/nhess-19-2855-2019, https://doi.org/10.5194/nhess-19-2855-2019, 2019
Short summary
Short summary
The main objective of this paper is to estimate changes in the probability of damaging flood events with global warming of 1.5, 2 and 3 °C above pre-industrial levels and taking into account different socioeconomic scenarios in two western Mediterranean regions. The results show a general increase in the probability of a damaging event, with larger increments when higher warming is considered. Moreover, this increase is higher when both climate and population change are included.
Gaia Piazzi, Guillaume Thirel, Lorenzo Campo, and Simone Gabellani
The Cryosphere, 12, 2287–2306, https://doi.org/10.5194/tc-12-2287-2018, https://doi.org/10.5194/tc-12-2287-2018, 2018
Short summary
Short summary
The study focuses on the development of a multivariate particle filtering data assimilation scheme into a point-scale snow model. One of the main challenging issues concerns the impoverishment of the particle sample, which is addressed by jointly perturbing meteorological data and model parameters. An additional snow density model is introduced to reduce sensitivity to the availability of snow mass-related observations. In this configuration, the system reveals a satisfying performance.
Luca Cenci, Luca Pulvirenti, Giorgio Boni, Marco Chini, Patrick Matgen, Simone Gabellani, Giuseppe Squicciarino, and Nazzareno Pierdicca
Adv. Geosci., 44, 89–100, https://doi.org/10.5194/adgeo-44-89-2017, https://doi.org/10.5194/adgeo-44-89-2017, 2017
Short summary
Short summary
This research aims at improving hydrological modelling skills of flash flood prediction by exploiting earth observation data. To this aim, high spatial/moderate temporal resolution soil moisture maps, derived from Sentinel 1 acquisitions, were used in a data assimilation framework. Findings revealed the potential of Sentinel 1-based soil moisture data assimilation for flash flood risk reduction and improved our understanding of the capabilities of the aforementioned satellite-derived product.
Francesco Dottori, Milan Kalas, Peter Salamon, Alessandra Bianchi, Lorenzo Alfieri, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 17, 1111–1126, https://doi.org/10.5194/nhess-17-1111-2017, https://doi.org/10.5194/nhess-17-1111-2017, 2017
Short summary
Short summary
We present a method to use river flow forecasts to estimate the impacts of flood events in terms of flood-prone areas, economic damage, cities and population at risk. We tested our method by simulating the catastrophic floods occurred in May 2014 in Southern Europe. Comparison with observed data shows that our simulations can predict flooded areas and flood impacts well in advance. The method is now being used for real-time risk forecasts to help emergency response and management.
Lorenzo Mentaschi, Michalis Vousdoukas, Evangelos Voukouvalas, Ludovica Sartini, Luc Feyen, Giovanni Besio, and Lorenzo Alfieri
Hydrol. Earth Syst. Sci., 20, 3527–3547, https://doi.org/10.5194/hess-20-3527-2016, https://doi.org/10.5194/hess-20-3527-2016, 2016
Short summary
Short summary
The climate is subject to variations which must be considered
studying the intensity and frequency of extreme events.
We introduce in this paper a new methodology
for the study of variable extremes, which consists in detecting
the pattern of variability of a time series, and applying these patterns
to the analysis of the extreme events.
This technique comes with advantages with respect to the previous ones
in terms of accuracy, simplicity, and robustness.
Francesco Silvestro, Nicola Rebora, Lauro Rossi, Daniele Dolia, Simone Gabellani, Flavio Pignone, Eva Trasforini, Roberto Rudari, Silvia De Angeli, and Cristiano Masciulli
Nat. Hazards Earth Syst. Sci., 16, 1737–1753, https://doi.org/10.5194/nhess-16-1737-2016, https://doi.org/10.5194/nhess-16-1737-2016, 2016
Lorenzo Alfieri, Luc Feyen, Peter Salamon, Jutta Thielen, Alessandra Bianchi, Francesco Dottori, and Peter Burek
Nat. Hazards Earth Syst. Sci., 16, 1401–1411, https://doi.org/10.5194/nhess-16-1401-2016, https://doi.org/10.5194/nhess-16-1401-2016, 2016
Short summary
Short summary
This work couples recent advances in large scale flood hazard mapping into a pan-European flood risk model to estimate the impact of river floods in a seamless simulation, covering more than two decades.
Results of this research are an important contribution in the reconstruction of a complete dataset of flood impact data. Also, it has direct implications in the area of flood early warning with regard to the rapid risk assessment of flood impacts.
O. Q. Gutiérrez, F. Filipponi, A. Taramelli, E. Valentini, P. Camus, and F. J. Méndez
Ocean Sci., 12, 39–49, https://doi.org/10.5194/os-12-39-2016, https://doi.org/10.5194/os-12-39-2016, 2016
Short summary
Short summary
High-resolution wave hindcast has been performed for the N Adriatic Sea using a hybrid methodology, combining a regional wave hindcast database, wind reanalysis, satellite SAR wind fields and data mining techniques. Comparison with in situ instrumental data indicates the good quality of the downscaled waves; moreover, a good correlation was found on the downscaled waves forced with different wind fields. Results demonstrate how SAR wind fields can be successfully up-taken in wave downscaling.
L. Alfieri, P. Burek, L. Feyen, and G. Forzieri
Hydrol. Earth Syst. Sci., 19, 2247–2260, https://doi.org/10.5194/hess-19-2247-2015, https://doi.org/10.5194/hess-19-2247-2015, 2015
Short summary
Short summary
This work presents, to our best knowledge, the first pan-European assessment of the future hydro-meteorological hazard based on an ensemble of the new EURO-CORDEX regional climate scenarios.
We propose a novel approach, which shows how the change in the frequency of future floods in Europe is likely to have a larger impact on the overall flood hazard as compared to the change in their magnitude.
A consistent method is proposed to evaluate the agreement of ensemble projections.
F. Silvestro, S. Gabellani, R. Rudari, F. Delogu, P. Laiolo, and G. Boni
Hydrol. Earth Syst. Sci., 19, 1727–1751, https://doi.org/10.5194/hess-19-1727-2015, https://doi.org/10.5194/hess-19-1727-2015, 2015
L. Alfieri, F. Pappenberger, and F. Wetterhall
Nat. Hazards Earth Syst. Sci., 14, 1505–1515, https://doi.org/10.5194/nhess-14-1505-2014, https://doi.org/10.5194/nhess-14-1505-2014, 2014
A. Taramelli, L. Cornacchia, E. Valentini, and F. Bozzeda
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurfd-1-1061-2013, https://doi.org/10.5194/esurfd-1-1061-2013, 2013
Revised manuscript not accepted
L. Alfieri, P. Burek, E. Dutra, B. Krzeminski, D. Muraro, J. Thielen, and F. Pappenberger
Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, https://doi.org/10.5194/hess-17-1161-2013, 2013
F. Silvestro, S. Gabellani, F. Delogu, R. Rudari, and G. Boni
Hydrol. Earth Syst. Sci., 17, 39–62, https://doi.org/10.5194/hess-17-39-2013, https://doi.org/10.5194/hess-17-39-2013, 2013
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Scientists as storytellers: the explanatory power of stories told about environmental crises
Back analysis of a building collapse under snow and rain loads in a Mediterranean area
Assessment of building damage and risk under extreme flood scenarios in Shanghai
Towards a global impact-based forecasting model for tropical cyclones
Mangrove ecosystem properties regulate high water levels in a river delta
Analysis of flood warning and evacuation efficiency by comparing damage and life-loss estimates with real consequences related to the São Francisco tailings dam failure in Brazil
Impacts from Hurricane Sandy on New York City in alternative climate-driven event storylines
Analysis of the effects of urban micro-scale vulnerabilities on tsunami evacuation using and Agent-Based model. Case study in the city of Iquique, Chile
Estimation of emergency costs for earthquakes and floods in Central Asia based on modelled losses
Criteria-based visualization design for hazard maps
Regional-scale landslide risk assessment in Central-Asia
Low-regret climate change adaptation in coastal megacities – evaluating large-scale flood protection and small-scale rainwater detention measures for Ho Chi Minh City, Vietnam
Modeling compound flood risk and risk reduction using a globally applicable framework: a pilot in the Sofala province of Mozambique
Scenario-based multi-risk assessment from existing single-hazard vulnerability models. An application to consecutive earthquakes and tsunamis in Lima, Peru
A new regionally consistent exposure database for Central Asia: population and residential buildings
Using machine learning algorithms to identify predictors of social vulnerability in the event of a hazard: Istanbul case study
Large-scale risk assessment on snow avalanche hazard in alpine regions
Probabilistic and machine learning methods for uncertainty quantification in power outage prediction due to extreme events
Review article: current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards
Public intention to participate in sustainable geohazard mitigation: an empirical study based on an extended theory of planned behavior
An assessment of short–medium-term interventions using CAESAR-Lisflood in a post-earthquake mountainous area
Review article: Design and evaluation of weather index insurance for multi-hazard resilience and food insecurity
Design and application of a multi-hazard risk rapid assessment questionnaire for hill communities in the Indian Himalayan region
Identifying the drivers of private flood precautionary measures in Ho Chi Minh City, Vietnam
Cost estimation for the monitoring instrumentalization of Landslide Early Warning Systems
Performance of the flood warning system in Germany in July 2021 – insights from affected residents
Differences in volcanic risk perception among Goma's population before the Nyiragongo eruption of May 2021, Virunga volcanic province (DR Congo)
Empirical tsunami fragility modelling for hierarchical damage levels
Quantifying the potential benefits of risk-mitigation strategies on future flood losses in Kathmandu Valley, Nepal
The Role of Response Efficacy and Self-efficacy in Disaster Preparedness Actions for Vulnerable Households
An assessment of potential improvements in social capital, risk awareness, and preparedness from digital technologies
Review article: Potential of nature-based solutions to mitigate hydro-meteorological risks in sub-Saharan Africa
Identifying Vulnerable Population in the Urban Society: a Case Study of Wuhan, China
Invited perspectives: An insurer's perspective on the knowns and unknowns in natural hazard risk modelling
Classifying marine faults for hazard assessment offshore Israel: a new approach based on fault size and vertical displacement
Assessing agriculture's vulnerability to drought in European pre-Alpine regions
Tsunami risk perception in central and southern Italy
Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event
Multi-scenario urban flood risk assessment by integrating future land use change models and hydrodynamic models
Process-based flood damage modelling relying on expert knowledge: a methodological contribution applied to the agricultural sector
Dynamic risk assessment of compound hazards based on VFS–IEM–IDM: a case study of typhoon–rainstorm hazards in Shenzhen, China
Integrated seismic risk assessment in Nepal
Machine learning models to predict myocardial infarctions from past climatic and environmental conditions
Reliability of flood marks and practical relevance for flood hazard assessment in southwestern Germany
Spatial accessibility of emergency medical services under inclement weather: A case study in Beijing, China
Invited perspectives: Managed realignment as a solution to mitigate coastal flood risks – optimizing success through knowledge co-production
Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals
Estimating return intervals for extreme climate conditions related to winter disasters and livestock mortality in Mongolia
Surveying the surveyors to address risk perception and adaptive-behaviour cross-study comparability
Comparison of sustainable flood risk management by four countries – the United Kingdom, the Netherlands, the United States, and Japan – and the implications for Asian coastal megacities
Jenni Barclay, Richie Robertson, and M. Teresa Armijos
Nat. Hazards Earth Syst. Sci., 23, 3603–3615, https://doi.org/10.5194/nhess-23-3603-2023, https://doi.org/10.5194/nhess-23-3603-2023, 2023
Short summary
Short summary
Stories create avenues for sharing the meanings and social implications of scientific knowledge. We explore their value when told between scientists during a volcanic eruption. They are important vehicles for understanding how risk is generated during volcanic eruptions and create new knowledge about these interactions. Stories explore how risk is negotiated when scientific information is ambiguous or uncertain, identify cause and effect, and rationalize the emotional intensity of a crisis.
Isabelle Ousset, Guillaume Evin, Damien Raynaud, and Thierry Faug
Nat. Hazards Earth Syst. Sci., 23, 3509–3523, https://doi.org/10.5194/nhess-23-3509-2023, https://doi.org/10.5194/nhess-23-3509-2023, 2023
Short summary
Short summary
This paper deals with an exceptional snow and rain event in a Mediterranean region of France which is usually not prone to heavy snowfall and its consequences on a particular building that collapsed completely. Independent analyses of the meteorological episode are carried out, and the response of the building to different snow and rain loads is confronted to identify the main critical factors that led to the collapse.
Jiachang Tu, Jiahong Wen, Liang Emlyn Yang, Andrea Reimuth, Stephen S. Young, Min Zhang, Luyang Wang, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 23, 3247–3260, https://doi.org/10.5194/nhess-23-3247-2023, https://doi.org/10.5194/nhess-23-3247-2023, 2023
Short summary
Short summary
This paper evaluates the flood risk and the resulting patterns in buildings following low-probability, high-impact flood scenarios by a risk analysis chain in Shanghai. The results provide a benchmark and also a clear future for buildings with respect to flood risks in Shanghai. This study links directly to disaster risk management, e.g., the Shanghai Master Plan. We also discussed different potential adaptation options for flood risk management.
Mersedeh Kooshki Forooshani, Marc van den Homberg, Kyriaki Kalimeri, Andreas Kaltenbrunner, Yelena Mejova, Leonardo Milano, Pauline Ndirangu, Daniela Paolotti, Aklilu Teklesadik, and Monica L. Turner
EGUsphere, https://doi.org/10.5194/egusphere-2023-2205, https://doi.org/10.5194/egusphere-2023-2205, 2023
Short summary
Short summary
In this work, we improve an existing impact forecasting model for the Philippines by transforming the target variable (percentage of damaged houses) to a fine grid and using only features which are globally available. We show that our two-stage model conserves the performance of the original, and even has the potential of introducing savings in anticipatory action resources. Such model generalizability is important in increasing the applicability of such tools around the world.
Ignace Pelckmans, Jean-Philippe Belliard, Luis E. Dominguez-Granda, Cornelis Slobbe, Stijn Temmerman, and Olivier Gourgue
Nat. Hazards Earth Syst. Sci., 23, 3169–3183, https://doi.org/10.5194/nhess-23-3169-2023, https://doi.org/10.5194/nhess-23-3169-2023, 2023
Short summary
Short summary
Mangroves are increasingly recognized as a coastal protection against extreme sea levels. Their effectiveness in doing so, however, is still poorly understood, as mangroves are typically located in tropical countries where data on mangrove vegetation and topography properties are often scarce. Through a modelling study, we identified the degree of channelization and the mangrove forest floor topography as the key properties for regulating high water levels in a tropical delta.
André Felipe Rocha Silva and Julian Cardoso Eleutério
Nat. Hazards Earth Syst. Sci., 23, 3095–3110, https://doi.org/10.5194/nhess-23-3095-2023, https://doi.org/10.5194/nhess-23-3095-2023, 2023
Short summary
Short summary
This work evaluates the application of flood consequence models through their application in a real case related to a tailings dam failure. Furthermore, we simulated the implementation of less efficient alert systems on life-loss alleviation. The results revealed that the models represented the event well and were able to estimate the relevance of implementing efficient alert systems. They highlight that their use may be an important tool for new regulations for dam safety legislation.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
EGUsphere, https://doi.org/10.5194/egusphere-2023-2032, https://doi.org/10.5194/egusphere-2023-2032, 2023
Short summary
Short summary
We explore how Hurricane Sandy (2012) could affect New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into modelling framework, offering insights for high-impact event assessments.
Rodrigo Cienfuegos, Gonzalo Álvarez, Jorge León, Alejandro Urrutia, and Sebastián Castro
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-139, https://doi.org/10.5194/nhess-2023-139, 2023
Revised manuscript under review for NHESS
Short summary
Short summary
This study carries out a detailed analysis of possible tsunami evacuation scenarios in the city of Iquique in Chile. Evacuation and tsunami modeling are integrated, allowing for an estimation of the potential number of people that the inundation may reach under different scenarios, by emulating the dynamics and behavior of the population and the decision making regarding the starting time of the evacuation.
Emilio Berny, Carlos Avelar, Mario A. Salgado-Gálvez, and Mario Ordaz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-135, https://doi.org/10.5194/nhess-2023-135, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
This paper presents a methodology to estimate the total emergency costs based on modelled damages for earthquakes and floods, together with the demographic and building characteristics of the study area. The methodology has been applied in five countries in Central Asia, being the first time that these estimates are made available for the study area, and are intended to be useful for regional and local stakeholders and decision makers.
Max Schneider, Fabrice Cotton, and Pia-Johanna Schweizer
Nat. Hazards Earth Syst. Sci., 23, 2505–2521, https://doi.org/10.5194/nhess-23-2505-2023, https://doi.org/10.5194/nhess-23-2505-2023, 2023
Short summary
Short summary
Hazard maps are fundamental to earthquake risk reduction, but research is missing on how to design them. We review the visualization literature to identify evidence-based criteria for color and classification schemes for hazard maps. We implement these for the German seismic hazard map, focusing on communicating four properties of seismic hazard. Our evaluation finds that the redesigned map successfully communicates seismic hazard in Germany, improving on the baseline map for two key properties.
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-106, https://doi.org/10.5194/nhess-2023-106, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows to identify where high losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for Central-Asia and it surely represents an advance step in the field of risk analysis for very large areas. Our findings show a total risk of about 3.9 billion USD and a mean risk of 0.6 million USD per square kilometer.
Leon Scheiber, Christoph Gabriel David, Mazen Hoballah Jalloul, Jan Visscher, Hong Quan Nguyen, Roxana Leitold, Javier Revilla Diez, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2333–2347, https://doi.org/10.5194/nhess-23-2333-2023, https://doi.org/10.5194/nhess-23-2333-2023, 2023
Short summary
Short summary
Like many other megacities in low-elevation coastal zones, Ho Chi Minh City in southern Vietnam suffers from the convoluting impact of changing environmental stressors and rapid urbanization. This study assesses quantitative hydro-numerical results against the background of the low-regret paradigm for (1) a large-scale flood protection scheme as currently constructed and (2) the widespread implementation of small-scale rainwater detention as envisioned in the Chinese Sponge City Program.
Dirk Eilander, Anaïs Couasnon, Frederiek C. Sperna Weiland, Willem Ligtvoet, Arno Bouwman, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 2251–2272, https://doi.org/10.5194/nhess-23-2251-2023, https://doi.org/10.5194/nhess-23-2251-2023, 2023
Short summary
Short summary
This study presents a framework for assessing compound flood risk using hydrodynamic, impact, and statistical modeling. A pilot in Mozambique shows the importance of accounting for compound events in risk assessments. We also show how the framework can be used to assess the effectiveness of different risk reduction measures. As the framework is based on global datasets and is largely automated, it can easily be applied in other areas for first-order assessments of compound flood risk.
Juan Camilo Gómez Zapata, Massimiliano Pittore, Nils Brinckmann, Juan Lizarazo-Marriaga, Sergio Medina, Nicola Tarque, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 23, 2203–2228, https://doi.org/10.5194/nhess-23-2203-2023, https://doi.org/10.5194/nhess-23-2203-2023, 2023
Short summary
Short summary
To investigate cumulative damage on extended building portfolios, we propose an alternative and modular method to probabilistically integrate sets of single-hazard vulnerability models that are being constantly developed by experts from various research fields to be used within a multi-risk context. We demonstrate its application by assessing the economic losses expected for the residential building stock of Lima, Peru, a megacity commonly exposed to consecutive earthquake and tsunami scenarios.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Vakhitkhan Ismailov, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Fagà
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-94, https://doi.org/10.5194/nhess-2023-94, 2023
Revised manuscript under review for NHESS
Short summary
Short summary
Central Asia is highly exposed to multiple hazards, including earthquakes, floods and landslides, for which risk reduction strategies are currently under development. We provide a regional-scale database of assets at risk, including population and residential buildings, based on existing information and recent data collected for each Central Asia country. Population and number of buildings are also estimated for the year 2080 to support the definition of disaster risk reduction strategies.
Oya Kalaycıoğlu, Serhat Emre Akhanlı, Emin Yahya Menteşe, Mehmet Kalaycıoğlu, and Sibel Kalaycıoğlu
Nat. Hazards Earth Syst. Sci., 23, 2133–2156, https://doi.org/10.5194/nhess-23-2133-2023, https://doi.org/10.5194/nhess-23-2133-2023, 2023
Short summary
Short summary
The associations between household characteristics and hazard-related social vulnerability in Istanbul, Türkiye, were assessed using machine learning techniques. The results indicated that less educated households with no social security and job insecurity that live in squatter houses are at a higher risk of social vulnerability. We present the findings in an open-access R Shiny web application, which can serve as a guidance for identifying the target groups in the interest of risk mitigation.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Prateek Arora and Luis Ceferino
Nat. Hazards Earth Syst. Sci., 23, 1665–1683, https://doi.org/10.5194/nhess-23-1665-2023, https://doi.org/10.5194/nhess-23-1665-2023, 2023
Short summary
Short summary
Power outage models can help utilities manage risks for outages from hurricanes. Our article reviews the existing outage models during hurricanes and highlights their strengths and limitations. Existing models can give erroneous estimates with outage predictions larger than the number of customers, can struggle with predictions for catastrophic hurricanes, and do not adequately represent infrastructure failure's uncertainties. We suggest models for the future that can overcome these challenges.
Soheil Mohammadi, Silvia De Angeli, Giorgio Boni, Francesca Pirlone, and Serena Cattari
EGUsphere, https://doi.org/10.5194/egusphere-2023-504, https://doi.org/10.5194/egusphere-2023-504, 2023
Short summary
Short summary
This paper critically reviews disaster recovery literature to provide a basis to develop multi-hazard recovery planning tools for decision-making. Identified key challenges encompass the lack of approaches integrating physical reconstruction and socio-economic recovery, the neglect of multi-risk interactions, the limited exploration of recovery from a pre-disaster planning perspective, low consideration of disaster recovery as a non-linear process in which communities need change over time.
Huige Xing, Ting Que, Yuxin Wu, Shiyu Hu, Haibo Li, Hongyang Li, Martin Skitmore, and Nima Talebian
Nat. Hazards Earth Syst. Sci., 23, 1529–1547, https://doi.org/10.5194/nhess-23-1529-2023, https://doi.org/10.5194/nhess-23-1529-2023, 2023
Short summary
Short summary
Disaster risk reduction requires public power. The aim of this study is to investigate the factors influencing the public's intention to participate in disaster risk reduction. An empirical study was conducted using structural equation modeling data analysis methods. The findings show that public attitudes, perceptions of those around them, ability to participate, and sense of participation are important factors.
Di Wang, Ming Wang, Kai Liu, and Jun Xie
Nat. Hazards Earth Syst. Sci., 23, 1409–1423, https://doi.org/10.5194/nhess-23-1409-2023, https://doi.org/10.5194/nhess-23-1409-2023, 2023
Short summary
Short summary
The short–medium-term intervention effect on the post-earthquake area was analysed by simulations in different scenarios. The sediment transport patterns varied in different sub-regions, and the relative effectiveness in different scenarios changed over time with a general downward trend, where the steady stage implicated the scenario with more facilities performing better in controlling sediment output. Therefore, the simulation methods could support optimal rehabilitation strategies.
Marcos Roberto Benso, Gabriela Chiquito Gesualdo, Roberto Fray Silva, Greicelene Jesus Silva, Luis Miguel Castillo Rápalo, Fabricio Alonso Richmond Navarro, Patricia Angélica Alves Marques, José Antônio Marengo, and Eduardo Mario Mendiondo
Nat. Hazards Earth Syst. Sci., 23, 1335–1354, https://doi.org/10.5194/nhess-23-1335-2023, https://doi.org/10.5194/nhess-23-1335-2023, 2023
Short summary
Short summary
This article is about how farmers can better protect themselves from disasters like droughts, extreme temperatures, and floods. The authors suggest that one way to do this is by offering insurance contracts that cover these different types of disasters. By having this insurance, farmers can receive financial support and recover more quickly. The article elicits different ideas about how to design this type of insurance and suggests ways to make it better.
Shivani Chouhan and Mahua Mukherjee
Nat. Hazards Earth Syst. Sci., 23, 1267–1286, https://doi.org/10.5194/nhess-23-1267-2023, https://doi.org/10.5194/nhess-23-1267-2023, 2023
Short summary
Short summary
The Himalayas are prone to multi-hazards. To minimise loss, proper planning and execution are necessary. Data collection is the basis of any risk assessment process. This enhanced survey form is easy to understand and pictorial and identifies high-risk components of any building (structural and non-structural) surrounded by multi-hazards. Its results can help to utilise the budget in a prioritised way. A SWOT (strengths, weaknesses, threats and opportunities) analysis has been performed.
Thulasi Vishwanath Harish, Nivedita Sairam, Liang Emlyn Yang, Matthias Garschagen, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 23, 1125–1138, https://doi.org/10.5194/nhess-23-1125-2023, https://doi.org/10.5194/nhess-23-1125-2023, 2023
Short summary
Short summary
Coastal Asian cities are becoming more vulnerable to flooding. In this study we analyse the data collected from flood-prone houses in Ho Chi Minh City to identify what motivates the households to adopt flood precautionary measures. The results revealed that educating the households about the available flood precautionary measures and communicating the flood protection measures taken by the government encourage the households to adopt measures without having to experience multiple flood events.
Marta Sapena, Mortiz Gamperl, Marlene Kühnl, Carolina Garcia-Londoño, John Singer, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-41, https://doi.org/10.5194/nhess-2023-41, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
A new approach for the deployment of Early Warning Systems (EWSs) in landslide-prone areas is proposed. We combine data-driven landslide susceptibility mapping and population maps to identify high-risk locations. We estimate the cost of monitoring sensors and demonstrate that EWSs could be installed with a budget ranging from €5 to €41 per person in Medellín, Colombia. We provide recommendations for stakeholders and outlines the challenges and opportunities for successful EWS implementation.
Annegret H. Thieken, Philip Bubeck, Anna Heidenreich, Jennifer von Keyserlingk, Lisa Dillenardt, and Antje Otto
Nat. Hazards Earth Syst. Sci., 23, 973–990, https://doi.org/10.5194/nhess-23-973-2023, https://doi.org/10.5194/nhess-23-973-2023, 2023
Short summary
Short summary
In July 2021 intense rainfall caused devastating floods in western Europe with 184 fatalities in the German federal states of North Rhine-Westphalia (NW) and Rhineland-Palatinate (RP), calling their warning system into question. An online survey revealed that 35 % of respondents from NW and 29 % from RP did not receive any warning. Many of those who were warned did not expect severe flooding, nor did they know how to react. The study provides entry points for improving Germany's warning system.
Blaise Mafuko Nyandwi, Matthieu Kervyn, François Muhashy Habiyaremye, François Kervyn, and Caroline Michellier
Nat. Hazards Earth Syst. Sci., 23, 933–953, https://doi.org/10.5194/nhess-23-933-2023, https://doi.org/10.5194/nhess-23-933-2023, 2023
Short summary
Short summary
Risk perception involves the processes of collecting, selecting and interpreting signals about the uncertain impacts of hazards. It may contribute to improving risk communication and motivating the protective behaviour of the population living near volcanoes. Our work describes the spatial variation and factors influencing volcanic risk perception of 2204 adults of Goma exposed to Nyiragongo. It contributes to providing a case study for risk perception understanding in the Global South.
Fatemeh Jalayer, Hossein Ebrahimian, Konstantinos Trevlopoulos, and Brendon Bradley
Nat. Hazards Earth Syst. Sci., 23, 909–931, https://doi.org/10.5194/nhess-23-909-2023, https://doi.org/10.5194/nhess-23-909-2023, 2023
Short summary
Short summary
Assessing tsunami fragility and the related uncertainties is crucial in the evaluation of incurred losses. Empirical fragility modelling is based on observed tsunami intensity and damage data. Fragility curves for hierarchical damage levels are distinguished by their laminar shape; that is, the curves should not intersect. However, this condition is not satisfied automatically. We present a workflow for hierarchical fragility modelling, uncertainty propagation and fragility model selection.
Carlos Mesta, Gemma Cremen, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 23, 711–731, https://doi.org/10.5194/nhess-23-711-2023, https://doi.org/10.5194/nhess-23-711-2023, 2023
Short summary
Short summary
Flood risk is expected to increase in many regions worldwide due to rapid urbanization and climate change. The benefits of risk-mitigation measures remain inadequately quantified for potential future events in some multi-hazard-prone areas such as Kathmandu Valley (KV), Nepal, which this paper addresses. The analysis involves modeling two flood occurrence scenarios and using four residential exposure inventories representing current urban system or near-future development trajectories for KV.
Dong Qiu, Binglin Lv, Yuepeng Cui, and Zexiong Zhan
EGUsphere, https://doi.org/10.5194/egusphere-2022-1349, https://doi.org/10.5194/egusphere-2022-1349, 2023
Short summary
Short summary
This paper divides preparedness behavior into minimal and adequate preparedness. In addition to studying the main factors that promote families' disaster preparedness, we also study the moderating effects of response and self-efficacy on preparedness actions by vulnerable families. Based on the findings of this study policymakers can target interventions and programs that can be designed to remedy the current lack of disaster preparedness education for vulnerable families.
Tommaso Piseddu, Mathilda Englund, and Karina Barquet
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-8, https://doi.org/10.5194/nhess-2023-8, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
The manuscript deals with the necessity to understand to what extent the analysis of stakeholders' opinions in survey results is affected by the choices that researchers make. We look at four technologies that are objects to increased interest in the field of disaster risk management and find that different methodologies indeed produce different preferences over these. This work should pose as a warning to further research that seek to evaluate tools and technologies using survey results.
Kirk B. Enu, Aude Zingraff-Hamed, Mohammad A. Rahman, Lindsay C. Stringer, and Stephan Pauleit
Nat. Hazards Earth Syst. Sci., 23, 481–505, https://doi.org/10.5194/nhess-23-481-2023, https://doi.org/10.5194/nhess-23-481-2023, 2023
Short summary
Short summary
In sub-Saharan Africa, there is reported uptake of at least one nature-based solution (NBS) in 71 % of urban areas in the region for mitigating hydro-meteorological risks. These NBSs are implemented where risks exist but not where they are most severe. With these NBSs providing multiple ecosystem services and four out of every five NBSs creating livelihood opportunities, NBSs can help address major development challenges in the region, such as water and food insecurity and unemployment.
Jia Xu, Makoto Takahashi, and Weifu Li
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-277, https://doi.org/10.5194/nhess-2022-277, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Through the development of micro-individual social vulnerability indicators and the use of cluster analysis, this research has assessed the level of social vulnerability of 599 residents in 11 communities in the Hongshan District of Wuhan. Quantitative assessments offer comparisons specifically between distinct units and, the results indicate that different types of communities have great differences in social vulnerability.
Madeleine-Sophie Déroche
Nat. Hazards Earth Syst. Sci., 23, 251–259, https://doi.org/10.5194/nhess-23-251-2023, https://doi.org/10.5194/nhess-23-251-2023, 2023
Short summary
Short summary
This paper proves the need to conduct an in-depth review of the existing loss modelling framework and makes it clear that only a transdisciplinary effort will be up to the challenge of building global loss models. These two factors are essential to capture the interactions and increasing complexity of the three risk drivers (exposure, hazard, and vulnerability), thus enabling insurers to anticipate and be equipped to face the far-ranging impacts of climate change and other natural events.
May Laor and Zohar Gvirtzman
Nat. Hazards Earth Syst. Sci., 23, 139–158, https://doi.org/10.5194/nhess-23-139-2023, https://doi.org/10.5194/nhess-23-139-2023, 2023
Short summary
Short summary
This study aims to provide a practical and relatively fast solution for early-stage planning of marine infrastructure that must cross a faulted zone. Instead of investing huge efforts in finding whether each specific fault meets a pre-defined criterion of activeness, we map the subsurface and determine the levels of fault hazard based on the amount of displacement and the fault's plane size. This allows for choosing the least problematic infrastructure routes at an early planning stage.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Lorenzo Cugliari, Massimo Crescimbene, Federica La Longa, Andrea Cerase, Alessandro Amato, and Loredana Cerbara
Nat. Hazards Earth Syst. Sci., 22, 4119–4138, https://doi.org/10.5194/nhess-22-4119-2022, https://doi.org/10.5194/nhess-22-4119-2022, 2022
Short summary
Short summary
The Tsunami Alert Centre of the National Institute of Geophysics and Volcanology (CAT-INGV) has been promoting the study of tsunami risk perception in Italy since 2018. A total of 7342 questionnaires were collected in three survey phases (2018, 2020, 2021). In this work we present the main results of the three survey phases, with a comparison among the eight surveyed regions and between the coastal regions and some coastal metropolitan cities involved in the survey.
Elco E. Koks, Kees C. H. van Ginkel, Margreet J. E. van Marle, and Anne Lemnitzer
Nat. Hazards Earth Syst. Sci., 22, 3831–3838, https://doi.org/10.5194/nhess-22-3831-2022, https://doi.org/10.5194/nhess-22-3831-2022, 2022
Short summary
Short summary
This study provides an overview of the impacts to critical infrastructure and how recovery has progressed after the July 2021 flood event in Germany, Belgium and the Netherlands. The results show that Germany and Belgium were particularly affected, with many infrastructure assets severely damaged or completely destroyed. This study helps to better understand how infrastructure can be affected by flooding and can be used for validation purposes for future studies.
Qinke Sun, Jiayi Fang, Xuewei Dang, Kepeng Xu, Yongqiang Fang, Xia Li, and Min Liu
Nat. Hazards Earth Syst. Sci., 22, 3815–3829, https://doi.org/10.5194/nhess-22-3815-2022, https://doi.org/10.5194/nhess-22-3815-2022, 2022
Short summary
Short summary
Flooding by extreme weather events and human activities can lead to catastrophic impacts in coastal areas. The research illustrates the importance of assessing the performance of different future urban development scenarios in response to climate change, and the simulation study of urban risks will prove to decision makers that incorporating disaster prevention measures into urban development plans will help reduce disaster losses and improve the ability of urban systems to respond to floods.
Pauline Brémond, Anne-Laurence Agenais, Frédéric Grelot, and Claire Richert
Nat. Hazards Earth Syst. Sci., 22, 3385–3412, https://doi.org/10.5194/nhess-22-3385-2022, https://doi.org/10.5194/nhess-22-3385-2022, 2022
Short summary
Short summary
It is impossible to protect all issues against flood risk. To prioritise protection, economic analyses are conducted. The French Ministry of the Environment wanted to make available damage functions that we have developed for several sectors. For this, we propose a methodological framework and apply it to the model we have developed to assess damage to agriculture. This improves the description, validation, transferability and updatability of models based on expert knowledge.
Wenwu Gong, Jie Jiang, and Lili Yang
Nat. Hazards Earth Syst. Sci., 22, 3271–3283, https://doi.org/10.5194/nhess-22-3271-2022, https://doi.org/10.5194/nhess-22-3271-2022, 2022
Short summary
Short summary
We propose a model named variable fuzzy set and information diffusion (VFS–IEM–IDM) to assess the dynamic risk of compound hazards, which takes into account the interrelations between the hazard drivers, deals with the problem of data sparsity, and considers the temporal dynamics of the occurrences of the compound hazards. To examine the efficacy of the proposed VFS–IEM–IDM model, a case study of typhoon–rainstorm risks in Shenzhen, China, is presented.
Sanish Bhochhibhoya and Roisha Maharjan
Nat. Hazards Earth Syst. Sci., 22, 3211–3230, https://doi.org/10.5194/nhess-22-3211-2022, https://doi.org/10.5194/nhess-22-3211-2022, 2022
Short summary
Short summary
This is a comprehensive approach to risk assessment that considers the dynamic relationship between loss and damage. The study combines physical risk with social science to mitigate the disaster caused by earthquakes in Nepal, taking socioeconomical parameters into account such that the risk estimates can be monitored over time. The main objective is to recognize the cause of and solutions to seismic hazard, building the interrelationship between individual, natural, and built-in environments.
Lennart Marien, Mahyar Valizadeh, Wolfgang zu Castell, Christine Nam, Diana Rechid, Alexandra Schneider, Christine Meisinger, Jakob Linseisen, Kathrin Wolf, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci., 22, 3015–3039, https://doi.org/10.5194/nhess-22-3015-2022, https://doi.org/10.5194/nhess-22-3015-2022, 2022
Short summary
Short summary
Myocardial infarctions (MIs; heart attacks) are influenced by temperature extremes, air pollution, lack of green spaces and ageing population. Here, we apply machine learning (ML) models in order to estimate the influence of various environmental and demographic risk factors. The resulting ML models can accurately reproduce observed annual variability in MI and inter-annual trends. The models allow quantification of the importance of individual factors and can be used to project future risk.
Annette Sophie Bösmeier, Iso Himmelsbach, and Stefan Seeger
Nat. Hazards Earth Syst. Sci., 22, 2963–2979, https://doi.org/10.5194/nhess-22-2963-2022, https://doi.org/10.5194/nhess-22-2963-2022, 2022
Short summary
Short summary
Encouraging a systematic use of flood marks for more comprehensive flood risk management, we collected a large number of marks along the Kinzig, southwestern Germany, and tested them for plausibility and temporal continuance. Despite uncertainty, the marks appeared to be an overall consistent and practical source that may also increase flood risk awareness. A wide agreement between the current flood hazard maps and the collected flood marks moreover indicated a robust local hazard assessment.
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-218, https://doi.org/10.5194/nhess-2022-218, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
This article is aimed at developing a method to quantify the influence of inclement weather on the accessibility of the emergency medical services and identifying the vulnerable areas that could not get timely emergency medical services under inclement weather. And we found that inclement weather could reduce the accessibility of emergency medical services by up to 40 %. Besides, towns with lower baseline EMS accessibility is more vulnerable to inclement weather.
Mark Schuerch, Hannah L. Mossman, Harriet E. Moore, Elizabeth Christie, and Joshua Kiesel
Nat. Hazards Earth Syst. Sci., 22, 2879–2890, https://doi.org/10.5194/nhess-22-2879-2022, https://doi.org/10.5194/nhess-22-2879-2022, 2022
Short summary
Short summary
Coastal nature-based solutions to adapt to sea-level rise, such as managed realignments (MRs), are becoming increasingly popular amongst scientists and coastal managers. However, local communities often oppose these projects, partly because scientific evidence for their efficiency is limited. Here, we propose a framework to work with stakeholders and communities to define success variables of MR projects and co-produce novel knowledge on the projects’ efficiency to mitigate coastal flood risks.
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022, https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
Short summary
Here we present survey responses of 350 natural hazard community members to key challenges in natural hazards research and step changes to achieve the Sustainable Development Goals. Challenges identified range from technical (e.g. model development, early warning) to governance (e.g. co-production with community members). Step changes needed are equally broad; however, the majority of answers showed a need for wider stakeholder engagement, increased risk management and interdisciplinary work.
Masahiko Haraguchi, Nicole Davi, Mukund Palat Rao, Caroline Leland, Masataka Watanabe, and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 22, 2751–2770, https://doi.org/10.5194/nhess-22-2751-2022, https://doi.org/10.5194/nhess-22-2751-2022, 2022
Short summary
Short summary
Mass livestock mortality during severe winters (dzud in Mongolian) is a compound event. Summer droughts are a precondition for dzud. We estimate the return levels of relevant variables: summer drought conditions and minimum winter temperature. The result shows that the return levels of drought conditions vary over time. Winter severity, however, is constant. We link climatic factors to socioeconomic impacts and draw attention to the need for index insurance.
Samuel Rufat, Mariana Madruga de Brito, Alexander Fekete, Emeline Comby, Peter J. Robinson, Iuliana Armaş, W. J. Wouter Botzen, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 22, 2655–2672, https://doi.org/10.5194/nhess-22-2655-2022, https://doi.org/10.5194/nhess-22-2655-2022, 2022
Short summary
Short summary
It remains unclear why people fail to act adaptively to reduce future losses, even when there is ever-richer information available. To improve the ability of researchers to build cumulative knowledge, we conducted an international survey – the Risk Perception and Behaviour Survey of Surveyors (Risk-SoS). We find that most studies are exploratory and often overlook theoretical efforts that would enable the accumulation of evidence. We offer several recommendations for future studies.
Faith Ka Shun Chan, Liang Emlyn Yang, Gordon Mitchell, Nigel Wright, Mingfu Guan, Xiaohui Lu, Zilin Wang, Burrell Montz, and Olalekan Adekola
Nat. Hazards Earth Syst. Sci., 22, 2567–2588, https://doi.org/10.5194/nhess-22-2567-2022, https://doi.org/10.5194/nhess-22-2567-2022, 2022
Short summary
Short summary
Sustainable flood risk management (SFRM) has become popular since the 1980s. This study examines the past and present flood management experiences in four developed countries (UK, the Netherlands, USA, and Japan) that have frequently suffered floods. We analysed ways towards SFRM among Asian coastal cities, which are still reliant on a hard-engineering approach that is insufficient to reduce future flood risk. We recommend stakeholders adopt mixed options to undertake SFRM practices.
Cited articles
Akbas, S., Blahut, J., and Sterlacchini, S.: Critical assessment of existing physical vulnerability estimation approaches for debris flows, in: International Conference – Landslide processes: from geomorphological mappingto dynamic modelling, edited by: Malet, J., Remaître, A., and Bogaard, T., CERG Editions, Strasbourg, 229–233, 2009.
Amadio, M., Scorzini, A. R., Carisi, F., Essenfelder, A. H., Domeneghetti, A., Mysiak, J., and Castellarin, A.: Testing empirical and synthetic flood damage models: the case of Italy, Nat. Hazards Earth Syst. Sci., 19, 661–678, https://doi.org/10.5194/nhess-19-661-2019, 2019.
Apel, H., Merz, B., and Thieken, A. H.: Quantification of uncertainties in
flood risk assessments, Int. J. River Basin Manag., 6, 149–162,
https://doi.org/10.1080/15715124.2008.9635344, 2008.
Arrighi, C., Mazzanti, B., Pistone, F., and Castelli, F.: Empirical flash
flood vulnerability functions for residential buildings, SN Appl. Sci., 2,
1–12, https://doi.org/10.1007/s42452-020-2696-1, 2020.
Balica, S. F., Douben, N., and Wright, N. G.: Flood vulnerability indices at
varying spatial scales, Water Sci. Technol., 60, 2571–2580,
https://doi.org/10.2166/wst.2009.183, 2009.
Becciu, G., Ghia, M., and Mambretti, S.: A century of works on river seveso:
From unregulated development to basin reclamation, Int. J. Environ. Impacts
Manag. Mitig. Recover., 1, 461–472,
https://doi.org/10.2495/ei-v1-n4-461-472, 2018.
Bocci, M., Puppo, D. D., and Fasolini, D.: Il nuovo modello digitale del terreno della Regione Lombardia; un esempio di utilizzo di dati esistenti, XIX Conferenza Nazionale ASITA, 833–841, http://atti.asita.it/ASITA2015/Autori/56.html (last access: 27 April 2022), 2015.
Bouwer, L. M., Bubeck, P., and Aerts, J. C. J. H.: Changes in future flood
risk due to climate and development in a Dutch polder area, Global Environ.
Change, 20, 463–471, https://doi.org/10.1016/j.gloenvcha.2010.04.002, 2010.
Cammerer, H. and Thieken, A. H.: Historical development and future outlook
of the flood damage potential of residential areas in the Alpine Lech Valley
(Austria) between 1971 and 2030, Reg. Environ. Change, 13, 999–1012,
https://doi.org/10.1007/s10113-013-0407-9, 2013.
Cammerer, H., Thieken, A. H., and Verburg, P. H.: Spatio-temporal dynamics
in the flood exposure due to land use changes in the Alpine Lech Valley in
Tyrol (Austria), Nat. Hazards, 68, 1243–1270,
https://doi.org/10.1007/s11069-012-0280-8, 2013.
Cardona, O. D.: The need for rethinking the concepts of vulnerability and risk from a holistic perspective: A necessary review and criticism for effective risk management, in: Mapping Vulnerability Disasters, Development and People, edited by: Bankoff, G. Frerks, G., and Hilhorst, D., 1st ed., Routledge, London, UK, 37–51, https://doi.org/10.4324/9781849771924, 2004.
Carrera, L., Standardi, G., Bosello, F., and Mysiak, J.: Assessing direct and indirect economic impacts of a flood event through the integration of spatial and computable general equilibrium modelling, Environ. Model. Softw., 63, 109–122, https://doi.org/10.1016/j.envsoft.2014.09.016, 2015.
Cohen, S., Raney, A., Munasinghe, D., Loftis, J. D., Molthan, A., Bell, J., Rogers, L., Galantowicz, J., Brakenridge, G. R., Kettner, A. J., Huang, Y.-F., and Tsang, Y.-P.: The Floodwater Depth Estimation Tool (FwDET v2.0) for improved remote sensing analysis of coastal flooding, Nat. Hazards Earth Syst. Sci., 19, 2053–2065, https://doi.org/10.5194/nhess-19-2053-2019, 2019.
Copernicus Programme: Mapping Guide v6.1 for an European Urban Atlas, 42 pp., https://land.copernicus.eu/user-corner/technical-library/urban_atlas_2012_2018_mapping_guide_v6-1.pdf (last access: 21 May 2021), 2018.
Corradi, J., Salvucci, G., and Vitale, V.: Analisi della vulnerabilità sismica dell’edificato italiano: tra demografia e “domografia” una proposta metodologica innovativa, Ingenio, 1–22, https://www.ingenio-web.it/4518-tra-demografia-e-domografia-una-propostametodologica-innovativa-per-valutare-la-vulnerabilita-sismica-delledificato-italiano (last access: 21 May 2021), 2015.
Crigg, N. S. and Helweg, O. J.: State-of-the-Art of Estimating Flood Damage
in Urban Areas, Am. Wat. Res., 11, 379–390, 1975.
Davies, R.: Seveso River Floods Milan, http://floodlist.com/europe/seveso-river-floods-milan (last access: 17 December 2020), 2014.
Department Of The Army and U.S. Army Corps of Engineers (USACE): ER
1105-2-101_Risk Assessment for Flood Risk Management,
https://www.publications.usace.army.mil/Portals/76/Users/182/86/2486/ER 1105-2-101_Clean.pdf (last access: 27 April 2022), 2019.
Dietrich, W. E. and Perron, J. T.: The search for a topographic signature of
life, Nature, 439, 411–418, https://doi.org/10.1038/nature04452, 2006.
Dodov, B. A. and Foufoula-Georgiou, E.: Floodplain morphometry extraction
from a high-resolution digital elevation model: a simple algorithm for
regional analysis studies, IEEE Geosci. Remote S., 3, 410–413,
https://doi.org/10.1109/LGRS.2006.874161, 2006.
Dottori, F., Figueiredo, R., Martina, M. L. V., Molinari, D., and Scorzini, A. R.: INSYDE: a synthetic, probabilistic flood damage model based on explicit cost analysis, Nat. Hazards Earth Syst. Sci., 16, 2577–2591, https://doi.org/10.5194/nhess-16-2577-2016, 2016a.
Dottori, F., Figueiredo, R., Martina, M. L. V., Molinari, D., and Scorzini, A. R.: INSYDE, a synthetic, probabilistic flood damage model based on explicit cost analysis, GitHub [code], https://github.com/ruipcfig/insyde (last access: 17 May 2022), 2016b.
Elmer, F., Thieken, A. H., Pech, I., and Kreibich, H.: Influence of flood frequency on residential building losses, Nat. Hazards Earth Syst. Sci., 10, 2145–2159, https://doi.org/10.5194/nhess-10-2145-2010, 2010.
Englhardt, J., de Moel, H., Huyck, C. K., de Ruiter, M. C., Aerts, J. C. J. H., and Ward, P. J.: Enhancement of large-scale flood risk assessments using building-material-based vulnerability curves for an object-based approach in urban and rural areas, Nat. Hazards Earth Syst. Sci., 19, 1703–1722, https://doi.org/10.5194/nhess-19-1703-2019, 2019.
European Union, Copernicus Land Monitoring Service, European Environment Agency: Urban Atlas 2018, European Union, Copernicus Land Monitoring Service, European Environment Agency (EEA) [data set], https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018?tab=download (last access: 27 April 2022), 2018a.
European Union, Copernicus Land Monitoring Service, European Environment Agency: Imperviousness Density 2018, European Union, Copernicus Land Monitoring Service, European Environment Agency (EEA) [data set], https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps/imperviousness-density-2018?tab=download (last access: 27 April 2022), 2018b.
Faella, C. and Nigro, E.: Dynamic impact of the debris flows on the constructions during the hydrogeological disaster in Campania-1998: Failure mechanical models and evaluation of the impact velocity, in: Proceedings of the international conference on FSM, Naples, Italy, 179–186, 2003.
Fekete, A., Damm, M., and Birkmann, J.: Scales as a challenge for
vulnerability assessment, Nat. Hazards, 55, 729–747,
https://doi.org/10.1007/s11069-009-9445-5, 2010.
Figueiredo, R. and Martina, M.: Using open building data in the development of exposure data sets for catastrophe risk modelling, Nat. Hazards Earth Syst. Sci., 16, 417–429, https://doi.org/10.5194/nhess-16-417-2016, 2016.
Fleming, G.: Learning to live with rivers—the ICE's report to government,
Proc. Inst. Civ. Eng.-Civ. Eng., 150, 15–21,
https://doi.org/10.1680/cien.2002.150.5.15, 2002.
Fuchs, S., Keiler, M., Ortlepp, R., Schinke, R., and Papathoma-Köhle,
M.: Recent advances in vulnerability assessment for the built environment
exposed to torrential hazards: Challenges and the way forward, J. Hydrol.,
575, 587–595, https://doi.org/10.1016/j.jhydrol.2019.05.067, 2019.
Gabriels, K., Willems, P., and Van Orshoven, J.: A comparative flood damage and risk impact assessment of land use changes, Nat. Hazards Earth Syst. Sci., 22, 395–410, https://doi.org/10.5194/nhess-22-395-2022, 2022.
Gizzi, F. T., Potenza, M. R., and Zotta, C.: The Insurance Market of Natural
Hazards for Residential Properties in Italy, Open J. Earthq. Res., 5,
35–61, https://doi.org/10.4236/ojer.2016.51004, 2016.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future
flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806,
https://doi.org/10.1038/nclimate1979, 2013.
Hufschmidt, G., Crozier, M., and Glade, T.: Evolution of natural risk: research framework and perspectives, Nat. Hazards Earth Syst. Sci., 5, 375–387, https://doi.org/10.5194/nhess-5-375-2005, 2005.
Huizinga, J., De Moel, H., and Szewczyk, W.: Global flood depth-damage functions: Methodology and the database with guidelines, EUR 28552 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-79-67781-6, https://doi.org/10.2760/16510, 2017.
Italian Ministry of Environment’s Geoportale Nazionale: Edificato dei capoluoghi di provincia, Italian Ministry of Environment’s Geoportale Nazionale [data set], http://www.pcn.minambiente.it/mattm/servizio-wms/ (last access: 21 May 2021), 2003.
Italian National Institute for Statistics: 2011 census, Italian National Institute for Statistics [data set], http://www.istat.it/ (last access: 27 April 2022), 2011.
Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D., Feyen, L., Gericke, A., Neal, J., Aerts, J. C. J. H., and Ward, P. J.: Comparative flood damage model assessment: towards a European approach, Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, 2012.
Kappes, M. S., Papathoma-Köhle, M., and Keiler, M.: Assessing physical
vulnerability for multi-hazards using an indicator-based methodology, Appl.
Geogr., 32, 577–590, https://doi.org/10.1016/j.apgeog.2011.07.002, 2012.
Kumar, D. and Bhattacharjya, R. K.: Review of different methods and techniques used for flood vulnerability analysis, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2020-297, 2020.
Lal, P. N., Mitchell, T., Aldunce, P., Auld, H., Mechler, R., Miyan, A., Romano, L. E., Zakaria, S., Dlugolecki, A., 65 Masumoto, T., Ash, N., Hochrainer, S., Hodgson, R., Islam, T. U., Mc Cormick, S., Neri, C., Pulwarty, R., Rahman, A., Ramalingam, B., Sudmeier-Reiux, K., Tompkins, E., Twigg, J., and Wilby, R.: National systems for managing the risks from climate extremes and disasters, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, Special Report of the Intergovernmental Panel on Climate Change, Special Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros V., Stocker, T. F., and Dahe, Q., 339–392, 70, https://doi.org/10.1017/CBO9781139177245.009, 2012.
Malgwi, M. B., Fuchs, S., and Keiler, M.: A generic physical vulnerability model for floods: review and concept for data-scarce regions, Nat. Hazards Earth Syst. Sci., 20, 2067–2090, https://doi.org/10.5194/nhess-20-2067-2020, 2020.
Mazzorana, B., Simoni, S., Scherer, C., Gems, B., Fuchs, S., and Keiler, M.: A physical approach on flood risk vulnerability of buildings, Hydrol. Earth Syst. Sci., 18, 3817–3836, https://doi.org/10.5194/hess-18-3817-2014, 2014.
McBean, E. A., Gorrie, J., Fortin, M., Ding, J., and Monlton, R.: Adjustment
Factors for Flood Damage Curves, J. Water Res. Plan. Man., 114,
635–646, https://doi.org/10.1061/(asce)0733-9496(1988)114:6(635), 1988.
Menoni, S., Molinari, D., Ballio, F., Minucci, G., Mejri, O., Atun, F., Berni, N., and Pandolfo, C.: Flood damage: a model for consistent, complete and multipurpose scenarios, Nat. Hazards Earth Syst. Sci., 16, 2783–2797, https://doi.org/10.5194/nhess-16-2783-2016, 2016.
Merz, B., Kreibich, H., Thieken, A., and Schmidtke, R.: Estimation uncertainty of direct monetary flood damage to buildings, Nat. Hazards Earth Syst. Sci., 4, 153–163, https://doi.org/10.5194/nhess-4-153-2004, 2004.
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article “Assessment of economic flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.
Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H., and Viavattene, C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013.
Molinari, D. and Scorzini, A. R.: On the influence of input data quality to flood damage estimation: The performance of the INSYDE model, Water, 9, 688, https://doi.org/10.3390/w9090688, 2017.
Molinari, D., Ballio, F., and Menoni, S.: Floods emergency management: The
value of potential and actual damage estimation, WIT Trans. Ecol. Envir.,
159, 95–105, https://doi.org/10.2495/FRIAR120081, 2012.
Molinari, D., Menoni, S., Aronica, G. T., Ballio, F., Berni, N., Pandolfo, C., Stelluti, M., and Minucci, G.: Ex post damage assessment: an Italian experience, Nat. Hazards Earth Syst. Sci., 14, 901–916, https://doi.org/10.5194/nhess-14-901-2014, 2014.
Molinari, D., Scorzini, A. R., Arrighi, C., Carisi, F., Castelli, F., Domeneghetti, A., Gallazzi, A., Galliani, M., Grelot, F., Kellermann, P., Kreibich, H., Mohor, G. S., Mosimann, M., Natho, S., Richert, C., Schroeter, K., Thieken, A. H., Zischg, A. P., and Ballio, F.: Are flood damage models converging to “reality”? Lessons learnt from a blind test, Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, 2020.
Morelli, A., Taramelli, A., Bozzeda, F., Valentini, E., Colangelo, M. A.,
and Cueto, Y. R.: The disaster resilience assessment of coastal areas: A
method for improving the stakeholders' participation, Ocean Coast. Manage.,
214, 105867, https://doi.org/10.1016/j.ocecoaman.2021.105867, 2021.
Municipality of Milan: G_All09 Relazione aree esondabili e della pericolosità Analisi idraulica di dettaglio, Municipality of Milan [data set], https://www.pgt.comune.milano.it/gall09-relazione-aree-esondabili-e-della-pericolosita/analisi-idraulica-di-dettaglio-download-dati (last access: 27 April 2022), 2019.
Nafari, R. H.: Flood Damage Assessment with the Help of HEC-FIAModel. M.S. thesis, Department of Civil and Environmental Engineering, Politechnico Milano, https://www.politesi.polimi.it/bitstream/10589/86182/1/2012_13_Hasanzadeh Nafari.pdf (last access: 8 August 2021), 2013.
Nardi, F., Vivoni, E. R., and Grimaldi, S.: Investigating a floodplain
scaling relation using a hydrogeomorphic delineation method, Water Resour.
Res., 42, 1–15, https://doi.org/10.1029/2005WR004155, 2006.
Nasiri, H., Mohd Yusof, M. J., and Mohammad Ali, T. A.: An overview to flood
vulnerability assessment methods, Sustain. Water Resour. Manag., 2,
331–336, https://doi.org/10.1007/s40899-016-0051-x, 2016.
Papathoma-Köhle, M., Schlögl, M., and Fuchs, S.: Vulnerability
indicators for natural hazards: an innovative selection and weighting
approach, Sci. Rep.-UK, 9, 1–14, https://doi.org/10.1038/s41598-019-50257-2,
2019.
Pistrika, A., Tsakiris, G., and Nalbantis, I.: Flood Depth-Damage Functions
for Built Environment, Environ. Process., 1, 553–572,
https://doi.org/10.1007/s40710-014-0038-2, 2014.
Roberts, N. J., Nadim, F., and Kalsnes, B.: Quantification of vulnerability
to natural hazards, Georisk Assess. Manag. Risk Eng. Syst. Geohazards, 3,
164–173, https://doi.org/10.1080/17499510902788850, 2009.
Schanze, J.: FLOOD RISK MANAGEMENT – A BASIC FRAMEWORK, in: Flood Risk
Management: Hazards, Vulnerability and Mitigation Measures, edited by:
Schanze, J., Zeman, E., and Marsalek, J., Springer Netherlands, Dordrecht,
1–20, https://doi.org/10.1007/978-1-4020-4598-1_1, 2006.
Scorzini, A. R., Dewals, B., Rodriguez Castro, D., Archambeau, P., and Molinari, D.: INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium), Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, 2022.
Seenath, A., Wilson, M., and Miller, K.: Hydrodynamic versus GIS modelling
for coastal flood vulnerability assessment: Which is better for guiding
coastal management?, Ocean Coast. Manage., 120, 99–109,
https://doi.org/10.1016/j.ocecoaman.2015.11.019, 2016.
Taramelli, A. and Reichenbach, P.: Comparison of Srtm Elevation Data With
Cartographically Derived DEMs in Italy, Rev. Geogr. Acad., 2, 41–52, 2008.
Taramelli, A., Valentini, E., and Sterlacchini, S.: A GIS-based approach for
hurricane hazard and vulnerability assessment in the Cayman Islands, Ocean
Coast. Manage., 108, 116–130,
https://doi.org/10.1016/j.ocecoaman.2014.07.021, 2015.
Taramelli, A., Manzo, C., Valentini, E., and Cornacchia, L.: Coastal
Subsidence: Causes, Mapping, and Monitoring, in: Natural Hazards:
Earthquakes, Volcanoes, and Landslides, edited by: Ramesh Singh, D. B., CRC
Press, 253–290, ISBN 9781138054431, 2018.
Taramelli, A., Lissoni, M., Piedelobo, L., Schiavon, E., Valentini, E.,
Nguyen Xuan, A., and González-Aguilera, D.: Monitoring Green
Infrastructure for Natural Water Retention Using Copernicus Global Land
Products, Remote Sens., 11, 1583, https://doi.org/10.3390/rs11131583, 2019.
Thieken, A. H., Olschewski, A., Kreibich, H., Kobsch, S., and Merz, B.:
Development and evaluation of FLEMOps – A new Flood Loss Estimation MOdel
for the private sector, WIT Trans. Ecol. Environ., 118, 315–324,
https://doi.org/10.2495/FRIAR080301, 2008.
Thrysøe, C., Balstrøm, T., Borup, M., Löwe, R., Jamali, B., and
Arnbjerg-Nielsen, K.: FloodStroem: A fast dynamic GIS-based urban flood and
damage model, J. Hydrol., 600, 126521,
https://doi.org/10.1016/j.jhydrol.2021.126521, 2021.
Usman Kaoje, I., Abdul Rahman, M. Z., Idris, N. H., Razak, K. A., Wan Mohd
Rani, W. N. M., Tam, T. H., and Mohd Salleh, M. R.: Physical flood
vulnerability assessment using geospatial indicator-based approach and
participatory analytical hierarchy process: A case study in Kota Bharu,
Malaysia, 13, 1–22, https://doi.org/10.3390/w13131786, 2021.
Vamvatsikos, D., Kouris, L. A., Panagopoulos, G., Kappos, A. J., Nigro, E., Rossetto, T., Lloyd, T. O., and Stathopoulos, T.: Structural vulnerability assessment under natural hazards: A review, COST ACTION C26 Urban Habitat Constr. under Catastrophic Events – Proc. Final Conf., 711–723, ISBN 978-0-415-60685-1, 2010
Vogel, C. and O’Brien, K.: Vulnerability and Global fnvironmental
Change: Rhetoric and Reality, nformation Bull. Glob. Environ.
Chang. Hum. Secur. No. 13. Environ. Chang. Secur. Proj. Int.
Dev. Res. Centre, Ottawa, https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/39859/IDL-39859.pdf?sequence=1&isAllowed=y (last access: 21 May 2021), 2004.
Short summary
This work aims to support decision-making processes to prioritize effective interventions for flood risk reduction and mitigation for the implementation of flood risk management concepts in urban areas. Our findings provide new insights into vulnerability spatialization of urban flood events for the residential sector, demonstrating that the nature of flood pathways varies spatially and is influenced by landscape characteristics, as well as building features.
This work aims to support decision-making processes to prioritize effective interventions for...
Altmetrics
Final-revised paper
Preprint