Articles | Volume 22, issue 9
https://doi.org/10.5194/nhess-22-3063-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-3063-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating global landslide susceptibility and its uncertainty through ensemble modeling
Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
Jean Poesen
Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
Faculty of Earth Sciences and Spatial Management, Maria-Curie Skłodowska University, Lublin, Poland
Michel Bechtold
Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
Matthias Vanmaercke
Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
Gabriëlle J. M. De Lannoy
Department of Earth and Environmental Sciences, KU Leuven, Heverlee, Belgium
Related authors
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024, https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Short summary
With global warming increasing the frequency and intensity of wildfires in the boreal region, accurate risk assessments are becoming more crucial than ever before. The Canadian Fire Weather Index (FWI) is a renowned system, yet its effectiveness in peatlands, where hydrology plays a key role, is limited. By incorporating groundwater data from numerical models and satellite observations, our modified FWI improves the accuracy of fire danger predictions, especially over summer.
This article is included in the Encyclopedia of Geosciences
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 23, 3805–3821, https://doi.org/10.5194/nhess-23-3805-2023, https://doi.org/10.5194/nhess-23-3805-2023, 2023
Short summary
Short summary
The Probabilistic Hydrological Estimation of LandSlides (PHELS) model combines ensembles of landslide susceptibility and of hydrological predictor variables to provide daily, global ensembles of hazard for hydrologically triggered landslides. Testing different hydrological predictors showed that the combination of rainfall and soil moisture performed best, with the lowest number of missed and false alarms. The ensemble approach allowed the estimation of the associated prediction uncertainty.
This article is included in the Encyclopedia of Geosciences
Lucas Boeykens, Devon Dunmire, Jonas-Frederik Jans, Willem Waegeman, Gabriëlle De Lannoy, Ezra Beernaert, Niko E. C. Verhoest, and Hans Lievens
EGUsphere, https://doi.org/10.5194/egusphere-2025-3327, https://doi.org/10.5194/egusphere-2025-3327, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We used AI to better estimate the height of the snowpack present on the ground across the European Alps, by using novel satellite data, complemented by weather information or snow depth estimates from a computer model. We found that both combinations improve the accuracy of our AI-based snow depth estimates, performing almost equally well. This helps us better monitor how much water is stored as snow, which is vital for drinking water, farming, and clean energy production in Europe.
This article is included in the Encyclopedia of Geosciences
Louise Busschaert, Michel Bechtold, Sara Modanesi, Christian Massari, Dirk Raes, Sujay V. Kumar, and Gabriëlle J. M. De Lannoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2550, https://doi.org/10.5194/egusphere-2025-2550, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study estimates irrigation in the Po Valley using AquaCrop and Noah-MP models with sprinkler irrigation. Noah-MP shows higher annual rates than AquaCrop due to more water losses. After adjusting, both align with reported irrigation ranges (500–600 mm/yr). Soil moisture estimates from both models match satellite data, though both have limitations in vegetation and evapotranspiration modeling. The study emphasizes the need for observations to improve irrigation estimates.
This article is included in the Encyclopedia of Geosciences
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
This article is included in the Encyclopedia of Geosciences
Devon Dunmire, Michel Bechtold, Lucas Boeykens, and Gabriëlle J. M. De Lannoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2306, https://doi.org/10.5194/egusphere-2025-2306, 2025
Short summary
Short summary
Snow is vital for society and the climate, yet estimates of snowpack remain uncertain due to observational and modeling limitations. Data assimilation (DA) helps by integrating observations with models. Here, we integrate snow depth retrievals into a physically-based snow model across the European Alps. This work offers advancements for snow data assimilation, such as incorporating a dynamic observational uncertainty, which is essential for forecasting and water resource management.
This article is included in the Encyclopedia of Geosciences
Anne Springer, Gabriëlle De Lannoy, Matthew Rodell, Yorck Ewerdwalbesloh, Helena Gerdener, Mehdi Khaki, Bailing Li, Fupeng Li, Maike Schumacher, Natthachet Tangdamrongsub, Mohammad J. Tourian, Wanshu Nie, and Jürgen Kusche
EGUsphere, https://doi.org/10.5194/egusphere-2025-2058, https://doi.org/10.5194/egusphere-2025-2058, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The GRACE and GRACE Follow-On satellites monitor changes in Earth's water storage by observing gravity variations. By integrating these observations into hydrological models through data assimilation, estimates of groundwater, soil moisture, and hydrological trends are improved, helping to monitor droughts, floods, and human water use. This review highlights recent advances in GRACE data assimilation, identifies key challenges, and discusses future directions with upcoming satellite missions.
This article is included in the Encyclopedia of Geosciences
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
This article is included in the Encyclopedia of Geosciences
Louise Busschaert, Michel Bechtold, Sara Modanesi, Christian Massari, Dirk Raes, Sujay V. Kumar, and Gabrielle J. M. De Lannoy
EGUsphere, https://doi.org/10.2139/ssrn.4974019, https://doi.org/10.2139/ssrn.4974019, 2024
Preprint archived
Short summary
Short summary
This study estimates irrigation in the Po Valley using AquaCrop and Noah-MP models with sprinkler irrigation. Noah-MP shows higher annual rates than AquaCrop due to more water losses. After adjusting, both align with reported irrigation ranges (500–600 mm/yr). Soil moisture estimates from both models match satellite data, though both have limitations in vegetation and evapotranspiration modeling. The study emphasizes the need for observations to improve irrigation estimates.
This article is included in the Encyclopedia of Geosciences
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
This article is included in the Encyclopedia of Geosciences
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024, https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary
Short summary
To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains. The reflections were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The results demonstrate that C-band radar is sensitive to seasonal patterns in snow accumulation but that changes in microstructure, stratigraphy and snow wetness may complicate satellite-based snow depth retrievals.
This article is included in the Encyclopedia of Geosciences
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024, https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Short summary
With global warming increasing the frequency and intensity of wildfires in the boreal region, accurate risk assessments are becoming more crucial than ever before. The Canadian Fire Weather Index (FWI) is a renowned system, yet its effectiveness in peatlands, where hydrology plays a key role, is limited. By incorporating groundwater data from numerical models and satellite observations, our modified FWI improves the accuracy of fire danger predictions, especially over summer.
This article is included in the Encyclopedia of Geosciences
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
This article is included in the Encyclopedia of Geosciences
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 23, 3805–3821, https://doi.org/10.5194/nhess-23-3805-2023, https://doi.org/10.5194/nhess-23-3805-2023, 2023
Short summary
Short summary
The Probabilistic Hydrological Estimation of LandSlides (PHELS) model combines ensembles of landslide susceptibility and of hydrological predictor variables to provide daily, global ensembles of hazard for hydrologically triggered landslides. Testing different hydrological predictors showed that the combination of rainfall and soil moisture performed best, with the lowest number of missed and false alarms. The ensemble approach allowed the estimation of the associated prediction uncertainty.
This article is included in the Encyclopedia of Geosciences
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
This article is included in the Encyclopedia of Geosciences
Ioanna S. Panagea, Antonios Apostolakis, Antonio Berti, Jenny Bussell, Pavel Čermak, Jan Diels, Annemie Elsen, Helena Kusá, Ilaria Piccoli, Jean Poesen, Chris Stoate, Mia Tits, Zoltan Toth, and Guido Wyseure
SOIL, 8, 621–644, https://doi.org/10.5194/soil-8-621-2022, https://doi.org/10.5194/soil-8-621-2022, 2022
Short summary
Short summary
The potential to reverse the negative effects caused in topsoil by inversion tillage, using alternative agricultural practices, was evaluated. Reduced and no tillage, and additions of manure/compost, improved topsoil structure and OC content. Residue retention had a positive impact on structure. We concluded that the negative effects of inversion tillage can be mitigated by reducing tillage intensity or adding organic materials, optimally combined with non-inversion tillage.
This article is included in the Encyclopedia of Geosciences
Sara Modanesi, Christian Massari, Michel Bechtold, Hans Lievens, Angelica Tarpanelli, Luca Brocca, Luca Zappa, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 4685–4706, https://doi.org/10.5194/hess-26-4685-2022, https://doi.org/10.5194/hess-26-4685-2022, 2022
Short summary
Short summary
Given the crucial impact of irrigation practices on the water cycle, this study aims at estimating irrigation through the development of an innovative data assimilation system able to ingest high-resolution Sentinel-1 radar observations into the Noah-MP land surface model. The developed methodology has important implications for global water resource management and the comprehension of human impacts on the water cycle and identifies main challenges and outlooks for future research.
This article is included in the Encyclopedia of Geosciences
Louise Busschaert, Shannon de Roos, Wim Thiery, Dirk Raes, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 3731–3752, https://doi.org/10.5194/hess-26-3731-2022, https://doi.org/10.5194/hess-26-3731-2022, 2022
Short summary
Short summary
Increasing amounts of water are used for agriculture. Therefore, we looked into how irrigation requirements will evolve under a changing climate over Europe. Our results show that, by the end of the century and under high emissions, irrigation water will increase by 30 % on average compared to the year 2000. Also, the irrigation requirement is likely to vary more from 1 year to another. However, if emissions are mitigated, these effects are reduced.
This article is included in the Encyclopedia of Geosciences
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
This article is included in the Encyclopedia of Geosciences
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
This article is included in the Encyclopedia of Geosciences
Shannon de Roos, Gabriëlle J. M. De Lannoy, and Dirk Raes
Geosci. Model Dev., 14, 7309–7328, https://doi.org/10.5194/gmd-14-7309-2021, https://doi.org/10.5194/gmd-14-7309-2021, 2021
Short summary
Short summary
A spatially distributed version of the field-scale crop model AquaCrop v6.1 was developed for applications at various spatial scales. Multi-year 1 km simulations over central Europe were evaluated against biomass and surface soil moisture products derived from optical and microwave satellite missions, as well as in situ observations of soil moisture. The regional version of the AquaCrop model provides a suitable setup for subsequent satellite-based data assimilation.
This article is included in the Encyclopedia of Geosciences
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021, https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Short summary
In this study, we simulated the water balance over the South American Dry Chaco and assessed the impact of land cover changes thereon using three different land surface models. Our simulations indicated that different models result in a different partitioning of the total water budget, but all showed an increase in soil moisture and percolation over the deforested areas. We also found that, relative to independent data, no specific land surface model is significantly better than another.
This article is included in the Encyclopedia of Geosciences
Jianxiu Qiu, Jianzhi Dong, Wade T. Crow, Xiaohu Zhang, Rolf H. Reichle, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 1569–1586, https://doi.org/10.5194/hess-25-1569-2021, https://doi.org/10.5194/hess-25-1569-2021, 2021
Short summary
Short summary
The SMAP L4 dataset has been extensively used in hydrological applications. We innovatively use a machine learning method to analyze how the efficiency of the L4 data assimilation (DA) system is determined. It shows that DA efficiency is mainly related to Tb innovation, followed by error in precipitation forcing and microwave soil roughness. Since the L4 system can effectively filter out precipitation error, future development should focus on correctly specifying the SSM–RZSM coupling strength.
This article is included in the Encyclopedia of Geosciences
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020, https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Short summary
Landslides shape the Earth’s surface and are a dominant source of terrestrial sediment. Rivers, then, act as conveyor belts evacuating landslide-produced sediment. Understanding the interaction among rivers and landslides is important to predict the Earth’s surface response to past and future environmental changes and for mitigating natural hazards. We develop HyLands, a new numerical model that provides a toolbox to explore how landslides and rivers interact over several timescales.
This article is included in the Encyclopedia of Geosciences
Cited articles
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear
Mixed-Effects Models Using lme4, J. Stat. Softw., 67,
1–48, https://doi.org/10.18637/jss.v067.i01, 2015. a
Blöschl, G. and Sivapalan, M.: Scale Issues in Hydrological Modelling: A
Review, Hydrol. Process., 9, 251–290, https://doi.org/10.1002/hyp.3360090305,
1995. a
Bosilovich, M. G., Lucchesi, R., and Suarez, M.: MERRA-2: File Specification, GMAO Office Note No. 9 (Version 1.1), 73 pp., http://gmao.gsfc.nasa.gov/pubs/office_notes (last access: 15 September 2021), 2016. a
Brenning, A.: Spatial prediction models for landslide hazards: review, comparison and evaluation, Nat. Hazards Earth Syst. Sci., 5, 853–862, https://doi.org/10.5194/nhess-5-853-2005, 2005. a, b, c
Broeckx, J., Rossi, M., Lijnen, K., Campforts, B., Poesen, J., and Vanmaercke,
M.: Landslide Mobilization Rates: A Global Analysis and Model, Earth-Sci.
Rev., 201, 102972, https://doi.org/10.1016/j.earscirev.2019.102972, 2020. a
Calvello, M. and Pecoraro, G.: FraneItalia: A Catalog of Recent Italian
Landslides (Version 2.0), 2, Mendeley [data set], https://doi.org/10.17632/zygb8jygrw.2, 2020. a
ampforts, B., Vanacker, V., Herman, F., Vanmaercke, M., Schwanghart, W., Tenorio, G. E., Willems, P., and Govers, G.: Parameterization of river incision models requires accounting for environmental heterogeneity: insights from the tropical Andes, Earth Surf. Dynam., 8, 447–470, https://doi.org/10.5194/esurf-8-447-2020, 2020. a
Crozier, M.: 7.26 Mass-Movement Hazards and Risks, in: Treatise on
Geomorphology, 7, 249–258,
https://doi.org/10.1016/B978-0-12-374739-6.00175-5, 2013. a, b
De Lannoy, G. J. M.: Assimilation of Soil Moisture Observations into a
Spatially Distributed Hydrologic Model, PhD thesis, Ghent University,
ISBN 9789059891418,
2006. a
De Lannoy, G. J. M., Reichle, R. H., Houser, P. R., Arsenault, K. R., Verhoest,
N. E. C., and Pauwels, V. R. N.: Satellite-Scale Snow Water Equivalent
Assimilation into a High-Resolution Land Surface Model, J.
Hydrometeorol., 11, 352–369, https://doi.org/10.1175/2009JHM1192.1, 2010. a
De Lannoy, G. J. M. D., Koster, R. D., Reichle, R. H., Mahanama, S. P. P., and
Liu, Q.: An Updated Treatment of Soil Texture and Associated Hydraulic
Properties in a Global Land Modeling System, J. Adv. Model.
Earth Sy., 6, 957–979, https://doi.org/10.1002/2014MS000330, 2014. a, b
Depicker, A., Jacobs, L., Delvaux, D., Havenith, H.-B., Maki Mateso, J.-C.,
Govers, G., and Dewitte, O.: The Added Value of a Regional Landslide
Susceptibility Assessment: The Western Branch of the East African Rift,
Geomorphology, 353, 106886, https://doi.org/10.1016/j.geomorph.2019.106886, 2020. a, b, c, d, e
Depicker, A., Jacobs, L., Mboga, N., Smets, B., Van Rompaey, A., Lennert, M.,
Wolff, E., Kervyn, F., Michellier, C., Dewitte, O., and Govers, G.:
Historical Dynamics of Landslide Risk from Population and Forest-Cover
Changes in the Kivu Rift, Nature Sustainability, 4, 965–974,
https://doi.org/10.1038/s41893-021-00757-9, 2021. a, b
Dille, A., Kervyn, F., Mugaruka Bibentyo, T., Delvaux, D., Ganza, G. B.,
Ilombe Mawe, G., Kalikone Buzera, C., Safari Nakito, E., Moeyersons, J.,
Monsieurs, E., Nzolang, C., Smets, B., Kervyn, M., and Dewitte, O.: Causes
and Triggers of Deep-Seated Hillslope Instability in the Tropics
– Insights from a 60-Year Record of Ikoma Landslide (DR
Congo), Geomorphology, 345, 106835, https://doi.org/10.1016/j.geomorph.2019.106835,
2019. a
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G.,
Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J.,
Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B.,
Schröder, B., Skidmore, A. K., Zurell, D., and Lautenbach, S.:
Collinearity: A Review of Methods to Deal with It and a Simulation Study
Evaluating Their Performance, Ecography, 36, 27–46,
https://doi.org/10.1111/j.1600-0587.2012.07348.x, 2013. a
Emberson, R., Kirschbaum, D. B., Amatya, P., Tanyas, H., and Marc, O.: Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories, Nat. Hazards Earth Syst. Sci., 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022, 2022. a
EROS: Global Topographic 30 Arc-Second Hydrologic Digital Elevation
Model 1 Km, USGS [data set], https://doi.org/10.5066/F77P8WN0, 2018. a
Felsberg, A., De Lannoy, G. J. M., Poesen, J., Bechtold, M., and Vanmaercke, M.: Ensemble of global landslide susceptibility, Zenodo [data set], https://doi.org/10.5281/zenodo.6893230, 2022. a
Felsberg, A., De Lannoy, G. J. M., Girotto, M., Poesen, J., Reichle, R. H., and
Stanley, T.: Global Soil Water Estimates as Landslide Predictor: The
Effectiveness of SMOS, SMAP, and GRACE Observations, Land
Surface Simulations, and Data Assimilation, J. Hydrometeorol., 22, 1065–1084, https://doi.org/10.1175/JHM-D-20-0228.1, 2021. a, b
FSBIH – Federal State Budgetary Institution “Hydrospetzgeologiya”: Quarter Annual Reports of Exogenous Geological Processes on Territories of the Russian Federation, Center for monitoring the state of the subsoil, 2018. a
Giardini, D., Grünthal, G., Shedlock, K., and Zhang, P.: The GSHAP Global
Seismic Hazard Map, Lee, W., Kanamori, H., Jennings, P., and Kisslinger, C.
(Eds.): International Handbook of Earthquake & Engineering Seismology,
International Geophysics Series 81 B, Academic Press, Amsterdam,
1233–1239, ISBN 0-12-440658-0, 2003. a, b
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F.:
Probabilistic Landslide Hazard Assessment at the Basin Scale, Geomorphology,
72, 272–299, https://doi.org/10.1016/j.geomorph.2005.06.002, 2005. a
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M.:
Estimating the Quality of Landslide Susceptibility Models, Geomorphology, 81,
166–184, https://doi.org/10.1016/j.geomorph.2006.04.007, 2006. a, b
Hartmann, J. and Moosdorf, N.: The New Global Lithological Map Database
GLiM: A Representation of Rock Properties at the Earth Surface,
Geochem. Geophy. Geosy., 13, Q12004,
https://doi.org/10.1029/2012GC004370, 2012. a, b
Hong, Y., Adler, R., and Huffman, G.: Use of Satellite Remote Sensing Data in
the Mapping of Global Landslide Susceptibility, Nat. Hazards,
43, 245–256, https://doi.org/10.1007/s11069-006-9104-z, 2007. a, b, c
Juang, C. S., Stanley, T. A., and Kirschbaum, D. B.: Using Citizen Science to
Expand the Global Map of Landslides: Introducing the Cooperative Open
Online Landslide Repository (COOLR), PLOS ONE, 14, e0218657,
https://doi.org/10.1371/journal.pone.0218657, 2019. a
Kalnay, E., Hunt, B., Ott, E., and Szunyogh, I.: Ensemble Forecasting and Data
Assimilation: Two Problems with the Same Solution?, in: Predictability of
Weather and Climate, edited by:
Palmer, T. and Hagedorn, R.,
Cambridge University Press,
Cambridge, 157–180, https://doi.org/10.1017/CBO9780511617652.008, 2006. a, b
Kirschbaum, D., Stanley, T., and Zhou, Y.: Spatial and Temporal Analysis of a
Global Landslide Catalog, Geomorphology, 249, 4–15,
https://doi.org/10.1016/j.geomorph.2015.03.016, 2015. a, b, c
Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A.: A
Global Landslide Catalog for Hazard Applications: Method, Results, and
Limitations, Nat. Hazards, 52, 561–575, https://doi.org/10.1007/s11069-009-9401-4,
2010. a, b, c
Knevels, R., Petschko, H., Proske, H., Leopold, P., Maraun, D., and Brenning,
A.: Event-Based Landslide Modeling in the Styrian Basin, Austria:
Accounting for Time-Varying Rainfall and Land Cover, Geosciences,
10, 217, https://doi.org/10.3390/geosciences10060217, 2020. a, b, c, d
Knevels, R., Brenning, A., Gingrich, S., Heiss, G., Lechner, T., Leopold, P.,
Plutzar, C., Proske, H., and Petschko, H.: Towards the Use of Land Use
Legacies in Landslide Modeling: Current Challenges and Future
Perspectives in an Austrian Case Study, Land, 10, 954,
https://doi.org/10.3390/land10090954, 2021. a
Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M., and Kumar, P.: A
Catchment-Based Approach to Modeling Land Surface Processes in a General
Circulation Model: 1. Model Structure, J. Geophys. Res.-Atmos., 105, 24809–24822, https://doi.org/10.1029/2000JD900327, 2000. a
Lima, P., Steger, S., and Glade, T.: Counteracting Flawed Landslide Data in
Statistically Based Landslide Susceptibility Modelling for Very Large Areas:
A National-Scale Assessment for Austria, Landslides 18, 3531–3546,
https://doi.org/10.1007/s10346-021-01693-7, 2021. a, b
Lin, Q., Lima, P., Steger, S., Glade, T., Jiang, T., Zhang, J., Liu, T., and
Wang, Y.: National-Scale Data-Driven Rainfall Induced Landslide
Susceptibility Mapping for China by Accounting for Incomplete Landslide
Data, Geosci. Front., 12, 101248, https://doi.org/10.1016/j.gsf.2021.101248,
2021. a, b
Lloyd, S.: Least Squares Quantization in PCM, IEEE T.
Inform. Theory, 28, 129–137, https://doi.org/10.1109/TIT.1982.1056489, 1982. a, b
Maes, J., Kervyn, M., de Hontheim, A., Dewitte, O., Jacobs, L., Mertens, K.,
Vanmaercke, M., Vranken, L., and Poesen, J.: Landslide Risk Reduction
Measures: A Review of Practices and Challenges for the Tropics, Prog.
Phys. Geog., 41, 191–221, https://doi.org/10.1177/0309133316689344, 2017. a
Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J., and Schipper,
A. M.: Global Patterns of Current and Future Road Infrastructure,
Environ. Res. Lett., 13, 064006, https://doi.org/10.1088/1748-9326/aabd42,
2018. a
Nowicki Jessee, M. A., Hamburger, M. W., Allstadt, K., Wald, D. J., Robeson,
S. M., Tanyas, H., Hearne, M., and Thompson, E. M.: A Global Empirical
Model for Near-Real-Time Assessment of Seismically Induced
Landslides, J. Geophys. Res.-Earth, 123,
1835–1859, https://doi.org/10.1029/2017JF004494, 2018. a, b, c
Petschko, H., Brenning, A., Bell, R., Goetz, J., and Glade, T.: Assessing the quality of landslide susceptibility maps – case study Lower Austria, Nat. Hazards Earth Syst. Sci., 14, 95–118, https://doi.org/10.5194/nhess-14-95-2014, 2014. a
Pourghasemi, H. R. and Rossi, M.: Landslide Susceptibility Modeling in a
Landslide Prone Area in Mazandarn Province, North of Iran: A
Comparison between GLM, GAM, MARS, and M-AHP Methods,
Theor. Appl. Climatol., 130, 609–633,
https://doi.org/10.1007/s00704-016-1919-2, 2016. a, b
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 1 November 2021), 2020. a
Reichle, R. H., Liu, Q., Koster, R. D., Crow, W. T., De Lannoy, G. J. M.,
Kimball, J. S., Ardizzone, J. V., Bosch, D., Colliander, A., Cosh, M.,
Kolassa, J., Mahanama, S. P., Prueger, J., Starks, P., and Walker, J. P.:
Version 4 of the SMAP Level-4 Soil Moisture Algorithm and Data
Product, J. Adv. Model. Earth Sy., 11, 3106–3130,
https://doi.org/10.1029/2019MS001729, 2019. a
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J.,
Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder,
B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., and Dormann,
C. F.: Cross-Validation Strategies for Data with Temporal, Spatial,
Hierarchical, or Phylogenetic Structure, Ecography, 40, 913–929,
https://doi.org/10.1111/ecog.02881, 2017. a, b, c, d
Sidle, R. C. and Bogaard, T. A.: Dynamic Earth System and Ecological Controls
of Rainfall-Initiated Landslides, Earth-Sci. Rev., 159, 275–291,
https://doi.org/10.1016/j.earscirev.2016.05.013, 2016. a
Stanley, T. A., Kirschbaum, D. B., Benz, G., Emberson, R. A., Amatya, P. M.,
Medwedeff, W., and Clark, M. K.: Data-Driven Landslide Nowcasting at the
Global Scale, Front. Earth Sci., 9, 640043, https://doi.org/10.3389/feart.2021.640043,
2021. a, b, c
Steger, S., Bell, R., Petschko, H., and Glade, T.: Evaluating the Effect of
Modelling Methods and Landslide Inventories Used for Statistical
Susceptibility Modelling, in: Engineering Geology for Society and
Territory – Volume 2, edited by: Lollino, G., Giordan, D., Crosta, G. B., Corominas, J., Azzam, R., Wasowski, J., and Sciarra, N., Springer, Cham, 201–204,
https://doi.org/10.1007/978-3-319-09057-3_27, ISBN 978-3-319-09057-3, 2015. a
Steger, S., Brenning, A., Bell, R., and Glade, T.: The Influence of
Systematically Incomplete Shallow Landslide Inventories on Statistical
Susceptibility Models and Suggestions for Improvements, Landslides, 14,
1767–1781, https://doi.org/10.1007/s10346-017-0820-0, 2017. a, b
Steger, S., Schmaltz, E., and Glade, T.: The (f)Utility to Account for
Pre-Failure Topography in Data-Driven Landslide Susceptibility Modelling,
Geomorphology, 354, 107041, https://doi.org/10.1016/j.geomorph.2020.107041, 2020. a, b
Talagrand, O., Vautard, R., and Strauss, B.: Evaluation of Probabilistic
Prediction Systems, Workshop on Predictability, 20–22 October 1997, ECMWF, Reading, UK, 1–25,
1997. a
Van Den Eeckhaut, M., Hervás, J., Jaedicke, C., Malet, J.-P., Montanarella,
L., and Nadim, F.: Statistical Modelling of Europe-Wide Landslide
Susceptibility Using Limited Landslide Inventory Data, Landslides, 9,
357–369, https://doi.org/10.1007/s10346-011-0299-z, 2012. a, b, c, d
van Leeuwen, P. J.: Representation Errors and Retrievals in Linear and
Nonlinear Data Assimilation, Q. J. Roy. Meteor.
Soc., 141, 1612–1623, https://doi.org/10.1002/qj.2464, 2015. a
Vanmaercke, M., Ardizzone, F., Rossi, M., and Guzzetti, F.: Exploring the
Effects of Seismicity on Landslides and Catchment Sediment Yield: An
Italian Case Study, Geomorphology, 278, 171–183,
https://doi.org/10.1016/j.geomorph.2016.11.010, 2017. a
Verdin, K.: Final Report High Resolution Topographic Analysis for
GMAO's Catchment LSM, Tech. rep., Global Modeling and Assimilation
Office, NASA/Goddard Space Flight Center, Greenbelt, MD 201771, Technical report, https://gmao.gsfc.nasa.gov/gmaoftp/sarith/ROUTING_MODEL/docs/SRTM_TopoData_CompletionReport_Verdin2013.pdf (last access: 14 September 2021), 2013. a, b, c
Verdin, K. L., Godt, J., Funk, C., Pedreros, D., Worstell, B., and Verdin, J.:
Development of a Global Slope Dataset for Estimation of Landslide
Occurrence Resulting from Earthquakes, Open-File Report 2007-1188,
Colorado: U.S. Geological Survey, Reston, Virginia, https://pubs.usgs.gov/of/2007/1188/pdf/OF07-1188_508.pdf (last access: 14 September 2021), 2007. a, b
Whiteley, J. S., Chambers, J. E., Uhlemann, S., Wilkinson, P. B., and Kendall,
J. M.: Geophysical Monitoring of Moisture-Induced Landslides: A
Review, Rev. Geophys., 57, 106–145, https://doi.org/10.1029/2018RG000603,
2019. a
Wilde, M., Günther, A., Reichenbach, P., Malet, J.-P., and Hervás, J.:
Pan-European Landslide Susceptibility Mapping: ELSUS Version 2,
J. Maps, 14, 97–104, https://doi.org/10.1080/17445647.2018.1432511, 2018. a
Wilks, D. S.: Forecast Verification, in: International
Geophysics, chap. 8, edited by: Wilks, D. S., vol. 100 of Statistical
Methods in the Atmospheric Sciences, Academic
Press, 301–394, https://doi.org/10.1016/B978-0-12-385022-5.00008-7, 2011. a, b, c
Willmott, C. J. and Feddema, J. J.: A More Rational Climatic Moisture
Index*, Prof. Geogr., 44, 84–88,
https://doi.org/10.1111/j.0033-0124.1992.00084.x, 1992. a
Zêzere, J. L., Pereira, S., Melo, R., Oliveira, S. C., and Garcia, R.
A. C.: Mapping Landslide Susceptibility Using Data-Driven Methods, Sci.
Total Environ., 589, 250–267, https://doi.org/10.1016/j.scitotenv.2017.02.188,
2017. a, b
Zhu, J., Baise, L. G., and Thompson, E. M.: An Updated Geospatial
Liquefaction Model for Global Application, B.
Seismol. Soc. Am., 107, 1365–1385, https://doi.org/10.1785/0120160198,
2017. a, b
Zuur, A. F. (Ed.): Mixed Effects Models and Extensions in Ecology with R,
Statistics for Biology and Health, Springer, New York, NY, ISBN 978-0-387-87457-9,
ISBN 978-0-387-87458-6,
https://doi.org/10.1007/978-0-387-87458-6, 2009. a, b
Short summary
In this study we assessed global landslide susceptibility at the coarse 36 km spatial resolution of global satellite soil moisture observations to prepare for a subsequent combination of the two. Specifically, we focus therefore on the susceptibility of hydrologically triggered landslides. We introduce ensemble techniques, common in, for example, meteorology but not yet in the landslide community, to retrieve reliable estimates of the total prediction uncertainty.
In this study we assessed global landslide susceptibility at the coarse 36 km spatial resolution...
Altmetrics
Final-revised paper
Preprint