Articles | Volume 22, issue 9
https://doi.org/10.5194/nhess-22-3015-2022
https://doi.org/10.5194/nhess-22-3015-2022
Research article
 | 
16 Sep 2022
Research article |  | 16 Sep 2022

Machine learning models to predict myocardial infarctions from past climatic and environmental conditions

Lennart Marien, Mahyar Valizadeh, Wolfgang zu Castell, Christine Nam, Diana Rechid, Alexandra Schneider, Christine Meisinger, Jakob Linseisen, Kathrin Wolf, and Laurens M. Bouwer

Related authors

Extrapolation is not enough: impacts of extreme land use change on wind profiles and wind energy according to regional climate models
Jan Wohland, Peter Hoffmann, Daniela C. A. Lima, Marcus Breil, Olivier Asselin, and Diana Rechid
Earth Syst. Dynam., 15, 1385–1400, https://doi.org/10.5194/esd-15-1385-2024,https://doi.org/10.5194/esd-15-1385-2024, 2024
Short summary
Infilling of Missing Rainfall Radar Data with a Memory-Assisted Deep Learning Approach
Johannes Meuer, Laurens M. Bouwer, Frank Kaspar, Roman Lehmann, Wolfgang Karl, Thomas Ludwig, and Christopher Kadow
EGUsphere, https://doi.org/10.5194/egusphere-2024-1392,https://doi.org/10.5194/egusphere-2024-1392, 2024
Short summary
Modeling and evaluating the effects of irrigation on land–atmosphere interaction in southwestern Europe with the regional climate model REMO2020–iMOVE using a newly developed parameterization
Christina Asmus, Peter Hoffmann, Joni-Pekka Pietikäinen, Jürgen Böhner, and Diana Rechid
Geosci. Model Dev., 16, 7311–7337, https://doi.org/10.5194/gmd-16-7311-2023,https://doi.org/10.5194/gmd-16-7311-2023, 2023
Short summary
High-resolution land use and land cover dataset for regional climate modelling: historical and future changes in Europe
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data, 15, 3819–3852, https://doi.org/10.5194/essd-15-3819-2023,https://doi.org/10.5194/essd-15-3819-2023, 2023
Short summary
Impacts and damages of the European multi-year drought and heat event 2018–2022 on forests, a review
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Joni-Pekka Pietikaeinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
EGUsphere, https://doi.org/10.5194/egusphere-2023-1463,https://doi.org/10.5194/egusphere-2023-1463, 2023
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024,https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024,https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Dynamic response of pile–slab retaining wall structure under rockfall impact
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024,https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024,https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024,https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary

Cited articles

Achebak, H., Devolder, D., and Ballester, J.: Trends in temperature-related age-specific and sex-specific mortality from cardiovascular diseases in Spain: a national time-series analysis, Lancet Planet. Health, 3, e297–e306, https://doi.org/10.1016/S2542-5196(19)30090-7, 2019. a
Armstrong, B.: Models for the Relationship Between Ambient Temperature and Daily Mortality, Epidemiology, 17, 624–631, https://doi.org/10.1097/01.ede.0000239732.50999.8f, 2006. a
Ban, N., Caillaud, C., Coppola, E., et al.: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation, Clim. Dynam., 57, 275–302, https://doi.org/10.1007/s00382-021-05708-w, 2021. a
Bayerische Landesamt für Umwelt: Lufthygienische Landesüberwachungssystem Bayern (LÜB), https://www.lfu.bayern.de/luft/immissionsmessungen/messwertarchiv/index.htm, last access: 4 September 2022a. a, b, c, d, e, f
Bayerisches Landesamt für Statistik: GENESIS Datenbank, https://www.statistikdaten.bayern.de/genesis/online/, last access: 4 September 2022. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Download
Short summary
Myocardial infarctions (MIs; heart attacks) are influenced by temperature extremes, air pollution, lack of green spaces and ageing population. Here, we apply machine learning (ML) models in order to estimate the influence of various environmental and demographic risk factors. The resulting ML models can accurately reproduce observed annual variability in MI and inter-annual trends. The models allow quantification of the importance of individual factors and can be used to project future risk.
Altmetrics
Final-revised paper
Preprint