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Abstract. Myocardial infarctions (MIs) are a major cause of
death worldwide, and both high and low temperatures (i.e.
heat and cold) may increase the risk of MI. The relation-
ship between health impacts and climate is complex and in-
fluenced by a multitude of climatic, environmental, socio-
demographic and behavioural factors. Here, we present a
machine learning (ML) approach for predicting MI events
based on multiple environmental and demographic variables.
We derived data on MI events from the KORA MI registry
dataset for Augsburg, Germany, between 1998 and 2015.
Multivariable predictors include weather and climate, air pol-
lution (PM10, NO, NO2, SO2 and O3), surrounding vegeta-
tion and demographic data. We tested the following ML re-
gression algorithms: decision tree, random forest, multi-layer
perceptron, gradient boosting and ridge regression. The mod-
els are able to predict the total annual number of MIs reason-
ably well (adjusted R2

= 0.62–0.71). Inter-annual variations
and long-term trends are captured. Across models the most
important predictors are air pollution and daily temperatures.
Variables not related to environmental conditions, such as de-
mographics need to be considered as well. This ML approach

provides a promising basis to model future MI under chang-
ing environmental conditions, as projected by scenarios for
climate and other environmental changes.

1 Introduction

Myocardial infarctions (MIs) are a major cause of
cardiovascular-related mortality and morbidity. The esti-
mated prevalence of MI worldwide in 2015 was close to
16 million, with 33 000 years lived with disability attributed
to the condition (Vos et al., 2016). In light of ageing west-
ern societies as well as ongoing environmental and climatic
changes, which have been identified as important risk fac-
tors, MI is likely to remain a considerable burden to health
systems in the future (e.g. Khraishah et al., 2022). It is there-
fore paramount to deepen the understanding of the complex
interplay between environmental and other risk factors and
their effect on MI and to estimate their expected future de-
velopment.
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Epidemiological research has shown that both high and
low air temperature extremes (i.e. extreme cold and heat) can
play an important role in triggering acute MI (Chen et al.,
2019; Wolf et al., 2009; Sun et al., 2018). This is especially
apparent in winter, when most of the MI events are observed.
Most previous studies (e.g. with registry data) have reported
significant cold effects on MI occurrence (e.g. The Eurow-
inter Group, 1997; Schwartz et al., 2004; Wolf et al., 2009;
Bhaskaran et al., 2010), whereas fewer studies have observed
increased risk of MI triggered by heat exposures so far (e.g.
Bhaskaran et al., 2012; Madrigano et al., 2013; Chen et al.,
2019). Severe periods of heat as encountered during heat
waves are likely to occur with higher frequency, intensity
and duration due to anthropogenic climate change, even if
limited to warming levels between 1.5 and 2 ◦C (Sieck et al.,
2021). Increasing levels of urbanisation entail higher levels
of exposure to heat as well, due to the urban heat island ef-
fect (e.g. Feng et al., 2014; Zhang et al., 2009). Air pollution
is another environmental factor known to potentially trig-
ger MI after periods of intense short-term exposure (e.g. Pe-
ters et al., 2004; Mustafić et al., 2012) but also to increase the
risk in association with elevated long-term exposure (Cesa-
roni et al., 2014; Wolf et al., 2021; Rajagopalan et al., 2018).
Moreover, the elderly are particularly vulnerable to MI, ex-
acerbating the potential adverse effects in light of the demo-
graphic ageing expected in developed countries, such as in
Germany (Schmidt et al., 2013; Rai et al., 2019).

A key issue in understanding current and future health im-
pacts is the inclusion of a multitude of processes and cir-
cumstances that influence the health outcomes (Roth, 2020)
in quantitative models. For MI, these include the occurrence
of high- and low-temperature events, air quality, the pres-
ence of water bodies, and vegetation and characteristics of
the built environment. Although the relevance of humidity
for MI has not been confirmed (e.g. Schwartz et al., 2004),
it is often included when studying human health impacts
(Davis et al., 2016). For instance, high temperatures are of-
ten perceived as more stressful under very humid conditions.
Hot and strongly saturated air carries less oxygen and inter-
feres with transpiration as the main mechanism of cooling the
human body (Havenith, 2005). Therefore, the same tempera-
ture can be perceived as more straining if humidity is high as
well. Changes in the exposed population, such as their age,
their health status and underlying diseases, are important as
well. Therefore, not only can future health risks from climate
change be estimated from changes in (extreme) weather, but
it is also critically important to account for all these other
relevant factors (Vanos et al., 2020). Finally, health interven-
tions such as heat health action plans and improved health-
care have been shown to reduce health risks from extreme
temperatures (see for instance Achebak et al., 2019). But
also policies related to climate change, such as reduced traf-
fic emissions, are expected to lead to a reduction in disease
burden (Laverty et al., 2021).

For more reliable estimations of potential future risks,
multiple variables must be incorporated into prediction mod-
els. In addition, several of the relations between environmen-
tal and other factors and health outcome are only partially
known. This is where data-driven approaches are particularly
useful, as they can provide accurate estimations of complex
processes, taking up many variables and also accounting for
complex and non-linear relations. Machine learning (ML)
approaches are now being tested widely for environmental
studies (Reichstein et al., 2019), and they are also increas-
ingly used to estimate social and economic impacts of en-
vironmental extremes such as floods and windstorms (Merz
et al., 2013; Wagenaar et al., 2017, 2021). ML, however, has
only recently been applied to health impact modelling. Sev-
eral studies have employed statistical methods as well as ML
to predict infectious diseases, such as malaria transmissions
(Zinszer et al., 2012; Sewe et al., 2017). Zhang et al. (2014)
studied heat-related mortality and identified relevant tem-
perature and humidity variables using random forests. Other
studies applied ML to evaluate the risk for MI or to predict
acute MI based on data such as patient history, blood mark-
ers or electrocardiogram, but they lack an environmental di-
mension (e.g. Tamarappoo et al., 2021; Commandeur et al.,
2020).

In this study we employ several ML algorithms in a data-
driven setting, using a range of meteorological, environmen-
tal, demographic and health variables on preceding days.
We estimate the importance of the predictive variables in
the models. We also assess the effects on different sub-
groups, depending on location (urban/rural), as these may ex-
hibit different vulnerabilities (Gabriel and Endlicher, 2011),
and patient characteristics (age, smoking and diabetes). The
ML models that are presented can be used to estimate future
health outcomes, using a set of scenarios for changes in cli-
matic, environmental and demographic variables. Instead of
using an approach based on time series modelling (see e.g.
Armstrong, 2006; Chen et al., 2018), we employ multivari-
ate ML regression models. These models do not require the
presupposition of a known exposure–response relationship.
Also, our study is aimed towards developing models to make
long-term projections at climate timescales (30 years). At
such timescales underlying statistical properties may change
gradually, which would not be reflected by any prescribed
exposure–response function based on historic or current data.
Contrary to other studies, we also do not account for seasonal
effects. Instead, we solely rely on a data-driven approach in
which we make no a priori assumptions about the relation-
ship between features and the health outcome. While this
does not allow for an explicit decomposition of the time se-
ries into, for example, trend, seasonality and random effects,
it might generalise better when applied to an ensemble of cli-
mate simulations in which the statistics of the features may
have changed drastically compared to the historical training
data.
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We expect that none of the risk factors that are included in
our models is strong enough to directly trigger MI in an oth-
erwise healthy person. Instead, these environmental and de-
mographic factors must be assumed to increase the statistical
likelihood of vulnerability to MI over longer periods of time.
Many of the risk factors that we cover in this study can mod-
ify this individual likelihood of suffering from MI. In light
of this, we do not expect the models to be able to accurately
provide predictions on a daily basis. However, our research
motivation is to eventually estimate the long-term tendencies
in MI due to climate change. We therefore decided to aggre-
gate our model results on an annual basis. This should allow
for some of the inherent randomness to average out and al-
low a more statistical view of MI occurrence over annual and
interannual timescales.

In Sect. 2, we present the methods used to develop the
ML models. In Sect. 3, we describe the input data for our
data-driven approach. In Sect. 4 the results of the simula-
tions and their performance are given. In Sect. 5 we discuss
the results and give an outlook for using the models to project
future MI events, and finally in Sect. 6 we provide the con-
clusions.

2 Methods

In this section, we present the approach to modelling the oc-
currence of MI events from a large variety of data and discuss
the ML methods that were applied. We also consider correla-
tions among the features and describe how we selected suit-
able parameters for the ML algorithms.

2.1 A supervised learning problem for MI events

ML models can comprise classification- or regression-based
algorithms. In this study, we focus solely on regression meth-
ods. The registry data are case-only; i.e. by design each par-
ticipant is bound to have a MI.

The target variable in our case is the time series of daily
events of MI observed in the study region. In addition, the
co-occurring environmental variables that have a plausible
causal relation to this target variable are collected and used
as predictors in the training process. We use the scikit-learn
package for performing the calculations (see Pedregosa et al.,
2011; Pedregosa et al., 2022). The figures use colours chosen
with disability friendliness in mind (Crameri et al., 2020).

For any given day d let yd be the number of MI events and
xi,d the value of the ith predictive variable on that day (e.g.
daily maximum temperature or daily mean PM10). To work
with standard regression algorithms, a fixed number of fea-
tures must be selected and together with the target value yd
be provided as training input. The variables xi,d represent a
time series, and therefore only a subset of them should be
selected as a feature of the regression problem, namely the
conditions on the day of prediction. Past conditions, how-

ever, might also have an influence on current events, both
long- and short-term. The sliding window method allows for
this by selecting the features with a lag n, referred to as the
window size. The merits of allowing for shorter or longer
memories are difficult to estimate. For instance, the effects of
extremely high temperatures on MI are generally expected to
be short-term (Breitner et al., 2014), ranging from immediate
effects to up to 3 weeks lag. The vector of features, i.e. the
training (or test) instance on day d , is then given as

xd =
(
x1,d−n+1, x1,d−n+2, . . ., x1,d, x2,d−n+1, . . ., x2,d,

xm,d−n+1, . . ., xm,d
)
, (1)

where n is the windows size and m the number of variables.
Each predictive variable then yields n features, and the total
number of features for this problem is n ·m. Accumulating
the xd and yd for all days into a matrix X and a vector y

yields input that can directly be used with the scikit-learn re-
gression algorithms. We applied the five ML methods and
associated scikit-learn classes, listed in Table 1 with their
abbreviations as used in the remainder of this paper. Note
that some features such as the slowly changing demographic
variables, were not subject to the sliding window and instead
simply used the value on the day of prediction. For this study,
after testing different lags between 1 and 21 d, we exclusively
used a lag of n= 3 d as this resulted in the best overall scores.
However, in order to account for possibly longer-lasting (see
Sun et al., 2018) cold effects, we added a predictor using the
21 d rolling mean of the minimum temperature.

Note that throughout this paper, we use the terms predictor
and feature in an interchangeable manner, namely to refer
to the features of the supervised learning problem derived
above: the vector X and its components.

We also added a random feature to be able to use its im-
portance as a benchmark. Predictors less important than the
random feature can be assumed to be irrelevant. Finally, we
added three time variables, namely the day of the week, the
day of the year and the current month.

2.2 Scaling and random split

Different magnitudes of the features can have adverse effects
as the results could be biased towards those variables given
in nominally large units relative to others. To avoid this, we
apply the sklearn.preprocessing.StandardScaler class to the
input, resulting in features that are centred around 0 with
unit variance. Second, we withhold parts of the data from
the training to have independent data instances for valida-
tion. We apply sklearn.model_selection.train_test_split with
shuffle, resulting in a random 75 %/25 % split of the data in
training and test portions. The 25 % of data not used for train-
ing the algorithms are used for validation. Splitting the data
randomly means that the underlying time series lose their
natural temporal order. This has implications when visual-
ising and interpreting model results that we will cover in a
later section, but it reduces the likelihood of autocorrelations
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Table 1. Regression methods used and associated scikit-learn classes.

Regression method Abbreviation scikit-learn class Version

Decision tree DTR sklearn.tree.DecisionTreeRegressor (https://scikit-learn.org/0.23/modules/
generated/sklearn.tree.DecisionTreeRegressor.html)

0.23.2

Random forest RF sklearn.ensemble.RandomForestRegressor (https://scikit-learn.org/0.23/
modules/generated/sklearn.ensemble.RandomForestRegressor.html)

0.23.2

Gradient boosting GBR sklearn.ensemble.GradientBoostingRegressor (https://scikit-learn.org/0.23/
modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)

0.23.2

Ridge regression RR sklearn.linear_model.Ridge (https://scikit-learn.org/0.23/modules/generated/
sklearn.linear_model.ridge_regression.html)

0.23.2

Multi-layer perceptron MLP sklearn.neural_network.MLPRegressor (https://scikit-learn.org/0.23/modules/
generated/sklearn.neural_network.MLPRegressor.html)

0.23.2

All links were accessed on 4 September 2022.

(e.g. seasonal signals) present in the time series that could
result in overoptimistic predictions. In order to split the data
randomly, the random number generator has to be initialised
with a seed. We found that different random seeds can result
in significantly different results. To avoid reporting results
that are strongly dependent on the chosen seed, we repeated
all calculations with 100 randomly selected seeds. The re-
sult with the R2 score closest to the average score of the
ensemble was then selected as a representative example of
model capability. Moreover, as the dependency on the ran-
dom seed is likely related to unbalanced splits, we employed
a simple stratification strategy. The data are stratified along
the number of MI occurrences observed; i.e. data points with
the same number of MIs are split among test and training
in a representative way. This is especially important for rare
events, such as five or more MIs in 1 d. The dependency on
the random seed was substantially reduced in this way, but
significant differences between different seeds could still be
observed.

2.3 Feature importance

It is useful to evaluate the relative importance of different fea-
tures, i.e. to measure the contribution a given feature makes
to the overall prediction. In this study, we use the built-in
variable importance capabilities provided by the scikit-learn
package, yielding a number between 0 and 1 for each fea-
ture. The sum of all individual contributions is always equal
to 1. For RR we simply relate the magnitude of the trained
weights (coefficients) of the model to their associated predic-
tors. Here, care must be taken to consider the relative mag-
nitudes of the predictors, but this has been addressed in our
study by scaling the input data. For DT, RF and GBR the im-
portance is based on the normalised total impurity decrease,
i.e. a measure of the quality of splits associated with a given
feature, aggregated across the whole tree or the ensemble of
trees, respectively. For MLP no variable importance is pro-

vided by scikit-learn, and we therefore constrained this part
of the analysis to the four aforementioned algorithms.

2.4 Feature reduction

Correlated features can lead to an overemphasis of their in-
fluence on the target variable. This can be counteracted by
choosing only one of the correlated features, usually the one
that has the strongest correlation with the target variable. In
our case, we aimed to include as many variables as possible
that could reasonably have an effect on MI. The downside
is that some features, for instance maximum, minimum and
mean temperature, are highly correlated on a daily basis. A
visualisation of the correlation between the predictors used
in this study is shown in Fig. A8. To address this issue, we
tested the option of transforming the data to a smaller feature
space using principal component analysis (PCA). The result-
ing principal components are uncorrelated to each other, and
the risk of introducing spurious or overly strong relationships
into the training data is reduced while retaining most of the
original information. We used sklearn.decomposition.PCA
and opted to retain at least 98 % of the variance. Having the
principal components as optional features allowed us to com-
pare predictions with PCA to estimate the potential adverse
effects of correlations present in our data. The results using
the PCA data (not shown here) did not improve, suggesting
that using the original set of features does not introduce spu-
rious relations. Moreover, using PCA leads to a reduction in
interpretability, as the principal components are linear com-
binations of the original features, without a clear relation to
the original variables.

2.5 Hyperparameter optimisation

The ability of the ML algorithms listed in Table 1 to pro-
duce accurate predictions is dependent on the selection of ap-
propriate hyperparameters. These parameters generally con-
trol specific aspects of the underlying methods, such as the
maximum depth of a decision tree, the number of neurons
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in a layer or the strength of regularisation. With regulari-
sation, a penalty is added as model complexity increases,
which helps to avoid overfitting. In this study, we used the
sklearn.model_selection.GridSearchCV class to optimise hy-
perparameters over predefined parameter spaces with 5-fold
cross-validation. We used the adjusted R2 as the governing
score to make decisions on optimal parameters. The param-
eter set with the best overall score is selected. Using cross-
validation allows the production of more robust generalisa-
tion error estimates without having to reserve a dedicated
cross-validation set that would not be available for training.
Moreover, by using folds based only on 75 % of the training
data, no information from the remaining 25 % of the data is
used for optimising the models and validation through pa-
rameter selection.

Due to substantial computational expense, we only opti-
mised over rather sparse parameter spaces and a limited num-
ber of the available parameters. Table 2 shows a list of the
selected hyperparameters for all the methods used as well as
their optimised values. To speed up the calculations we used
the Intel® extension package for scikit-learn, called scikit-
learn-intelex.

3 Data

The dataset used in this study is highly heterogeneous along
many dimensions, with differences ranging from file format,
metadata conventions, spatial coverage (e.g. regional, local)
and resolution to temporal frequency (e.g. daily, monthly,
annual) and representation (e.g. raster, polygon and point
data). In this section, we give an overview of the data used in
this study and describe the workflow applied to homogenise
and prepare these. Table 3 lists all environmental and demo-
graphic predictive variables that were used for this study in
addition to the MI data, as well as the source datasets and
associated references.

3.1 KORA MI registry

The health dataset for our study is the KORA/MONICA
MI registry (see Tunstall-Pedoe et al., 1994; Holle et al.,
2005), comprising records of MI events that occurred within
the study region from 1985 to 2015. These data were col-
lected at the hospitals in the Augsburg region. Each record
contains the date of the MI occurrence and age and sex of the
patient. Depending on availability, complementary informa-
tion is given, such as the patients’ residential county (Land-
kreis), their body mass index (BMI), smoking status and
pre-existing conditions such as diabetes. Although no de-
tailed information is provided on the location of the pa-
tient during a MI event, they can be assigned to either the
urban (city of Augsburg) or one of the two rural coun-
ties (Landkreise) of the study region (Landkreis Augsburg
and Aichach-Friedberg). As pointed out earlier, the individ- Ta
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Figure 1. Number of annual MIs (a) and mean annual cycle (b) in people aged under 75 from 1985 to 2015 for the study region (city of
Augsburg and counties Aichach-Friedberg and Augsburg).

Table 3. Overview of predictive variables, source datasets and their origin.

Variable Abbreviation Unit Time period Resolution Dataset Reference

MI events (DONSET) MI # 1985–2015 District, daily KORA Helmholtz Zentrum München (2022)

Maximum temperature TXK ◦C 1985–2015 Station, daily DWD DWD (2022)
Mean temperature TMK ◦C 1985–2015 Station, daily DWD DWD (2022)
Minimum temperature TNK ◦C 1985–2015 Station, daily DWD DWD (2022)
21 d rolling mean minimum temperature TNK21D ◦C 1985–2015 Grid, daily This study –
Relative humidity UPM % 1985–2015 Station, daily DWD DWD (2022)
Apparent temperature ATMK ◦C 1985–2015 Grid, daily This study –
Maximum apparent temperature ATXK ◦C 1985–2015 Grid, daily This study –
Minimum apparent temperature ATNK ◦C 1985–2015 Grid, daily This study –

Vegetation index NDVI – 1998–2015 1 km2, 10-daily NDVI v2 CGLS (2022)

Nitrogen oxide NO ppm 1993–2015 Station, daily LÜB Bayerische Landesamt für Umwelt (2022)
Nitrogen dioxide NO2 ppm 1993–2015 Station, daily LÜB Bayerische Landesamt für Umwelt (2022)
Sulfur dioxide SO2 ppm 1980–2015 Station, daily LÜB Bayerische Landesamt für Umwelt (2022)
Ozone O3 ppm 1990–2015 Station, daily LÜB Bayerische Landesamt für Umwelt (2022)
Particulate matter PM10 ppm 1980–2015 Station, daily LÜB Bayerische Landesamt für Umwelt (2022)

Male population (total) mtotal # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Female population (total) ftotal # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age under 1 u1m, u1f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 1 to 4 1t4m, 1t4f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 5 to 9 5t9m, 5t9f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 10 to 14 10t14m, 10t14f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 15 to 19 15t19m, 15t19f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 20 to 24 20t24m, 20t24f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 25 to 29 25t29m, 25t29f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 30 to 34 30t34m, 30t34f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 35 to 39 35t39m, 35t39f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 40 to 44 40t44m, 40t44f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 45 to 49 45t49m, 45t49f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 50 to 54 50t54m, 50t54f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 55 to 59 55t59m, 55t59f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 60 to 64 60t64m, 60t64f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age 65 to 74 65t74m, 65t74f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)
Male/female population age over 75 o75m, o75f # 1985–2015 District, annual LfStat Bayerisches Landesamt für Statistik (2022)

Random variable RND Fractional 1985–2015 Study area, daily This study –

Day of the week DOW 1–7 1985–2015 Study area, daily This study –
Month of the year MOY 1–12 1985–2015 Study area, daily This study –
Day of the year DOY 1–366 1985–2015 Study area, daily This study –
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ual patient-specific data could not be used as predictive data
due to the nature of the regression approach, which aims to
predict the gross number of MI in the population. It is, how-
ever, possible to use these data to confine investigations to
subgroups, e.g. to inhabitants of either urban or rural areas,
and also to the elderly or to smokers, albeit at the cost of
being limited to a smaller subset of the overall data. In to-
tal the number of recorded MIs is n= 34618. Until 2008
the study was limited to participants of up to 74 years of age,
with n= 30081 records total in that category. Figure 1 shows
the aggregated number of MIs per year and the mean annual
cycle for the population aged under 75. The yearly maxi-
mum in MI is observed during the winter months, whereas
the summertime shows the lowest number of occurrences.
To generate the ground truth for our regression problem,
we counted the total daily number of MIs observed in the
KORA study and used the resultant time series as input for
the ML algorithms.

3.2 Air temperature and humidity

Air temperature close to the ground is the most important
factor to consider as the most direct measure of human ex-
posure to heat and cold. The relatively small spatial scale of
the study region (1998 km2) puts high demand on the data in
terms of spatial resolution and accuracy. At the same time,
daily environmental data are required for our approach.

We opted to derive a 1× 1 km grid for the study period
between 1985 and 2015 from daily data of 22 DWD stations
in the vicinity of Augsburg and its neighbouring districts. To
this end, we applied universal Kriging with linear drift to the
daily values at the temperature stations shown in Fig. 2. The
resulting gridded datasets (minimum, maximum and mean
temperature) were aggregated to the counties comprising the
study region. This relatively simple approach proved to be
accurate enough to obtain realistic aggregated daily time se-
ries for the study region, as shown by the reasonable predic-
tions in this paper.

We also include humidity features in the models to gauge
their relative importance. Relative humidity was also gath-
ered from DWD, and we applied the same Kriging proce-
dure for spatial interpolation, as used for temperature. To ac-
count for possible effects of perceived heat stress expressed
by simultaneous high humidity and high temperatures we in-
cluded apparent temperature. Measures of apparent temper-
atures relate a given temperature to the ambient humidity to
account for the perceived temperature differences between
dry and humid conditions. The specifics of the computation
can be found in the Appendix A1.

In a next step, the data were aggregated for the three dif-
ferent counties within the model region, the urban and the
two rural areas, by computing weighted area means. The re-
sulting daily time series can be readily used as input to the
ML models, as described in Sect. 2.

3.3 Air quality

Air pollution is usually a complex mixture, but several partic-
ulate and gaseous pollutants can be considered in investigat-
ing its effects on MI (e.g. Chen et al., 2018; Bourdrel et al.,
2017; Mustafić et al., 2012). From the “Bavarian Air Hygiene
State Monitoring System” (LÜB) database (Bayerische Lan-
desamt für Umwelt, 2022) we collected data on PM10, NO,
NO2, ozone (O3) and SO2 concentrations at multiple stations
across Bavaria at daily resolution.

Table A1 in the Appendix gives an overview of the se-
lected measuring stations and their urban or rural categories,
the corresponding pollutants data, and their availability. Fig-
ure 2 gives an overview of the selected temperature and air
quality measurement stations. We determined the aggregated
daily means by calculating the mean values of the aforemen-
tioned stations, taking into consideration their proximity to
the city centres, traffic-loaded inner-city streets, industrial ar-
eas and the outskirts as well as taking into consideration the
large-scale background pollution.

The map shows that there are only few air quality stations
within the study region (five blue circles and an archived sta-
tion with red border circle). Since not all stations have been
always active during our study period, we use merely the ac-
tive stations. However, if none of the regularly used stations
in the counties had recorded data on a given day, especially
for the surrounding counties, alternative stations (light-blue
dots in Fig. 2) with equal proximity settings from outside the
study region were used as replacements for the calculations.
This has been achieved through an acceptable 10 %–15 %
error criterion for the monthly value of alternative stations
compared to the calculated monthly mean value of the county
over a span of time provided by the monitoring system. The
calculated monthly mean time series have been provided in
Fig. A9.

3.4 Vegetation

The normalised difference vegetation index (NDVI) is an in-
dicator of the greenness of the natural vegetation and other
vegetation types such as agriculture, parks and gardens. It is
widely used for ecosystem monitoring. In this study NDVI
also is used as a proxy for shade as well as a potential lo-
cal cooling effect of vegetation by absorbing sunlight and
through evapotranspiration. The NDVI_v2_1km database of
the CGLS (2022) vegetation products is freely available at a
1× 1 km spatial resolution starting in April 1998, measured
every 10 d. We extracted the NDVI for our region and used
a cubic spline interpolation to upscale the temporal resolu-
tion from 10 d to daily values. Given the very gradual rate of
change in vegetation cover and consequently the NDVI, we
assume this interpolation does not produce large errors. Note
that due to lack of availability of NDVI data before 1998,
training and testing of the algorithms had to be confined to
the time between April 1998 and December 2015.
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Figure 2. Air quality (blue) and temperature (orange) stations in the region of interest (ROI) around Augsburg.

Table 4. Training and test scores for 7 d aggregated daily predictions.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adjusted R2 0.02 −0.22 0.24 −0.19 0.29 −0.26 −0.01 −0.21 0.04 −0.21
R2 0.1 0.06 0.3 0.08 0.35 0.03 0.06 0.07 0.11 0.07
Max error 15.8 14.17 13.58 14.26 13.63 15.58 14.95 13.82 15.36 14.03
RMSE 4.44 4.38 3.91 4.33 3.77 4.44 4.52 4.36 4.41 4.37
BIC 2419.29 979.57 2241.72 973.88 2194.26 986.19 2444.85 977.7 2409.56 978.11
(Bayesian information criterion)

3.5 Demographics

The absolute number of MIs depends not only on various
environmental risk factors but also on the size and charac-
teristics of the population. Disregarding other factors, any
change in the absolute number of inhabitants would produce
a similar change in the number of cases of MI as well. More-

over, both age and sex are strongly correlated with health out-
comes in general, and specifically so for MI. Given trends of
increasing urbanisation, rural depopulation and an ageing so-
ciety, it is important to account for changes in both number of
inhabitants and age stratification of the population over time.
In addition, domestic migration reflected in relative changes
between urban and rural parts, leading to differential changes
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Figure 3. Daily predictions aggregated to 7 d intervals for all models. Shows predicted (crossed) and observed MI (dotted) for the training (a)
and test (b) sets.

in exposure to environmental hazards in the Augsburg region,
can be important as well. We collected data from the Bavar-
ian Office of Statistics that comprise annual values for the
total number of inhabitants for each of the three counties,
as well as the distribution of sex and age in the population
from 1985 to 2015. Overall, 17 different age groups are ac-
counted for as listed in Table 3. Since the algorithms require
daily input values, a linear interpolation was applied to esti-
mate the development within a given year.

4 Results

4.1 Weekly predictions of MI events

Our models produce daily predictions of MI events based on
the environmental and demographic features within the given
window size. We found that the models are not able to repro-
duce the daily variability in MI with sufficient accuracy. As
an example, we show the daily predictions aggregated to 7 d
intervals to increase visibility in Fig. 3. The resultant scores
are given in Table 4 for both training and validation, respec-
tively.

Although the 7 d predictions suggest some skill for the
training period, for the testing period the models do not
predict 7 d variations (or day-to-day predictions) accurately
enough for practical purposes. The predictions are too close
to the mean and lack the variability displayed by the obser-
vations. An overview of average mean, standard deviation,
and minimum and maximum daily predictions across mod-
els and for each subgroup considered is given in Table A8.
This is likely related to randomness as well as risk factors
that affect MI events that were not considered in the models.
For instance, the temperature or air quality predictors may
not sufficiently capture actual local circumstances, but also

information about the built environment and other conditions
that cannot be easily accounted for is missing.

4.2 Annual predictions of MI events

Figure 4 shows the model performances on both the train-
ing and test sets as well as the actually observed MI as a
reference for the five ML models given in Table 1. After
training the models and performing the daily prediction on
the test set, the results were aggregated to annual sums. By
aggregating the model results to an annual basis, some of
the inherent randomness is averaged out. Based on the annu-
alised prediction results and time series of observed MI, the
performance scores were derived (see Table 5). The training
scores demonstrate that the ML models are able to predict the
year-to-year variations quite well, with adjusted R2 scores
between 0.87 and 0.94. The performance on the test dataset is
relevant for assessing the generalisation error for previously
unseen data. In contrast to the training data, the results on the
test set are less but still reasonably accurate, with adjusted
R2 scores between 0.62 and 0.71, showing that inter-annual
variations and long-term trends are largely captured. The
RR and MLP models exhibit the best performance, showing
that both well-tuned linear models and neural networks are
able to simulate the relations between environmental condi-
tions and MI events. The DTR shows the lowest overall per-
formance by comparison.

4.3 Feature importance

In Fig. 5 we show a condensed rendition of the feature im-
portance, where related variables have been grouped together
for each model, except for the MLP, which does not support
feature importance within the scikit-learn framework. Note
that variables subject to the sliding window were aggregated
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Table 5. Training and test scores on annual basis for the general population.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adjusted R2 0.87 0.62 0.92 0.68 0.94 0.66 0.92 0.7 0.93 0.71
R2 0.87 0.64 0.93 0.69 0.94 0.67 0.92 0.71 0.93 0.72
Max error 37.37 41.91 28.09 36.83 23.89 38.33 33.96 36.59 35.21 36.11
RMSE 19.14 17.4 14.71 16.04 12.76 16.48 15.13 15.63 14.47 15.19
BIC 262.34 258.91 252.87 255.99 247.74 256.96 253.89 255.04 252.29 254.03

Figure 4. Annually aggregated predictions of MI in the general population for all models. Predicted (solid) and observed MI (dashed) for
training (a) and test (b) sets.

over the window length of 3 d to improve readability. More-
over, features related to time such as the current month num-
ber and the day of the week were also aggregated to a single
group. More detailed plots retaining the differentiation of all
features and window days can be found in the Appendix (see
Figs. A6 and A7). The latter figure also shows that many of
the original demographic features carry little to no weight.
We therefore reduced the granularity of the demographic data
to the age groups 0–29, 30–49, 50–74 and > 75, generally
yielding improved results.

While the performance of the models differs, some trends
can be observed. Overall, the single most important group is
air quality, closely followed by temperature-, demographic-
and time-related predictors. Humidity as well as NDVI ex-
hibits the lowest explanatory power. NDVI is ranked very
closely to the random feature by all models.

Compared to the environmental features that display
strong daily variation the demographic predictors are subject
to slow, gradual change only. We therefore also conducted
this experiment with all demographic features turned off. The

results are shown in Table A7. As evidenced by the reduction
in scores (adjusted R2 reduced from 0.67 to 0.62 on average)
the demographic predictors still make a relevant contribution
to the overall result despite the lower temporal resolution of
the input data.

4.4 Subgroup analysis

The models were also applied to subgroups of the popula-
tion, albeit at the expense of a reduced number of available
training data (see Table 6 for an overview). For this analysis
we selected a total of five subgroups: the urban (Augsburg
city) and rural population (two adjacent counties), respec-
tively; the elderly (people aged between 60 and 74); patients
with diabetes; and active smokers. The data were reduced to
include only participants with the associated attribute. The
training procedure was then repeated as detailed for the gen-
eral case on the resulting subsets. As expected, the validation
scores dropped considerably for all subgroups, likely a con-
sequence of reduced quantities of training data. We refer to
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Figure 5. Aggregated feature importance for predicting MI for the general population. Related features have been grouped thematically.
Larger values indicate higher importance, and per model the sum over all features equals 1.

Table 6. Overview of the number of cases as well as age and sex
distribution for the different study populations considered.

Population Count Age

All Female Male Min Max Mean SD

General 17 134 4330 12 804 25.0 74.0 62.34 9.42
Urban 8424 2248 6176 25.0 74.0 62.46 9.46
Rural 8710 2082 6628 25.0 74.0 62.22 9.39
Elderly 11 470 3314 8156 60.0 74.0 67.94 4.26
Diabetic 5451 1521 3930 26.0 74.0 64.44 8.07
Smoker 3800 793 3007 26.0 74.0 55.72 9.76

the Appendix for detailed results, but for the urban and rural
subgroups adjusted R2 scores between 0.35 and 0.6 were ob-
served in validation (see Tables A2 and A3). Both subgroups,
being of almost equal size, performed comparably well, with
the urban population exhibiting slightly lower scores how-
ever.

The validation results for the elderly population (see
Fig. A3 and Table A4) are more accurate (adjusted R2 be-
tween 0.53 and 0.65) than for the urban and rural popu-
lations, although the number of training samples is much
higher in both of those cases.

The results for patients with diabetes are shown in Fig. A4
and Table A5. As observed with the elderly, the scores for
patients with diabetes (adjusted R2 between 0.28 and 0.61)
are comparable to those of the (much bigger) rural and urban
subgroups, except for DTR, which resulted in a substantially
reduced score.

The results for the smoking population are shown in
Fig. A5, and the scores are given in Table A6. For this group
adjusted R2 validation scores drop to around 0.42 on average,
indicating a less accurate fit than for all the other subgroups.
This is consistent with the smoker group being the smallest
of the explored subgroups, resulting in the lowest number of
training data as well.

Overall, the skill of the models is clearly reduced when
limited to subsets of the overall data. The decrease in per-

formance, however, is quite different between subgroups, es-
pecially when taking into account their relative sizes. A par-
ticularly interesting question is whether the variable impor-
tance for any one subgroup changes substantially in compar-
ison to the general population. Figure 6 shows the difference
in variable importance for each of the subgroups in relation
to that of the general population. To aid readability, related
features have been grouped again. Considerable differences
between subgroups, models and feature groups can be ob-
served. For instance, most models agree that demographics,
humidity and NDVI are particularly important for predicting
urban MI while giving less weight to the temperature-related
features. The importance of time-related indicators reduced
consistently over the general population. In some cases the
importance of the random feature is also reduced, indicating
increased robustness of the results.

For the rural population the results suggest slightly in-
creased relevance of NDVI compared to the overall popu-
lation. Temperature and air quality mostly align with the re-
sults for the general population. The demographic indicators
are less relevant when compared to the general case, as are
the time-related features.

For the elderly, the models are mostly undecided on air
quality, with a slight tendency towards increased importance.
The weight of the demographic features is emphasised in
comparison to the general case. Less importance is also at-
tributed to (apparent) temperature and humidity.

For patients with diabetes, the models mostly agree that
demographic features, NDVI and air quality are more impor-
tant in predicting MI for this group in comparison to the gen-
eral population. On the other hand, (apparent) temperature-,
humidity- and time-related features are ranked lower.

Lastly, for the group of active smokers the models mostly
suggest an increased importance of air quality as well as de-
mographic features for the prediction of MI. Humidity as
well as (apparent) temperature- and time-related features is
overall considered less important.
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Figure 6. Change in feature importance for predicting MI in percent relative to the general population for every subgroup considered. Related
features have been grouped thematically.

5 Discussion

To our knowledge, this is the first study building and testing
ML models that include more than only weather variables
(such as Zhang et al., 2009, for heat mortality) for predicting
MI prevalence. The developed ML models have varying skill
in predicting MI. At the daily to 7 d timescales, randomness
seems too large to produce meaningful predictions. However,
when predictions are aggregated to annual sums, the models
are very well capable of reproducing the inter-annual vari-
ability in observed MI, as well as the long-term trends, also
for the validation datasets. This is comparable to the perfor-
mance of methods used for predicting malaria incidence (e.g.
Sewe et al., 2017). In terms of performance scores the mod-
els achieve very similar outcomes in both training and valida-
tion (see Table 5), indicating some robustness of the predic-
tions. More qualitative differences emerge, however, when
investigating feature importance. There are substantial dif-
ferences between the ML models in terms of some features
(Fig. 5). Most models rank air quality variations and temper-
atures among the most important features, but a large spread
between models can be observed. This indicates at least some
inherent uncertainty.

Classical epidemiological approaches like general linear
or additive models are mostly used for explaining the direc-

tion and corresponding uncertainty in associations between
environmental risk factors and health outcomes, thereby ad-
justing for potential confounding factors. In the case of po-
tential non-linearities, the shape of the exposure–response
curve is usually modelled as a smooth function. However,
the models are limited in the case of high correlation and/or
high-dimensional interactions between the covariates. The
suggested ML approaches can (partly) handle these issues
and offer the possibility of comparing the importance and
predictive performance of a multitude of environmental pre-
dictors.

The training scores in many cases are close to the maxi-
mum, with adjusted R2 values greater than 0.85. This may be
indicative of overfitting, possibly opening room for improv-
ing further on the generalisation by applying stronger regu-
larisation. While the models were adjusted by optimising the
hyperparameters, not all possible parameter values have been
explored. For instance, in the case of the tree-based models
pruning is an effective way to reduce overfitting, which was
not applied here. For the MLP and RR models regularising
parameters were explicitly included in the optimisation, but
possibly the ranges were not wide enough to achieve the best
trade-off between training and validation.

The model results are sensitive to the selection of the ran-
dom seed that is used in making the initial train–test split. We
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found that changes in the random seed routinely had greater
impact than the choice of hyperparameters. One way of deal-
ing with this would be to also include this random seed in the
optimisation process. Currently, only the random seeds used
for randomly selecting the folds in cross-validation and in
initialising the regressors are optimised. In light of the strong
influence of the initial split, however, we opted to instead test
over a range of possible seeds and select the results closest
to the average performance of the models, not to overstate
our results. The sensitivity to the initial split may indicate a
lack of data but is likely mostly due to unbalanced splits. We
reduced this sensitivity by employing a simple but effective
stratification strategy. This reduced the variation across seeds
but does not entirely resolve the issue. Possibly, more in-
tricate stratification approaches may reduce the dependency
even further.

We were able to indicate differences between different
geographical regions, i.e. urban and rural populations. For
instance, humidity, demographics and NDVI become more
important predictors for the urban population, compared to
the overall population, at the expense of (apparent) tempera-
ture. The models could be further improved by increasing the
spatial representation, as the environmental predictors also
would support this. Increased spatial representation would
also allow for additional exposure metrics to be established
and more predictors, such as those related to building struc-
tures, their insulation and energy efficiency.

An additional area of possible improvement is the envi-
ronmental data. Some variables such as the NDVI and the
air quality indicators were not fully available for the period
between 1985 and 2015, effectively limiting analysis to the
period from 1998 to 2015. It is also possible to reduce the
bias in the station data (temperature, air quality), for instance
by using more sophisticated interpolation methods or addi-
tional data sources such as from remote sensing.

All ML models’ results consistently demonstrated the im-
portance of the air quality variables. Climate impact studies,
especially related to MI, might therefore benefit from care-
fully analysing possible future developments of these vari-
ables. Electrification of traffic, reduction in fossil fuel and
related changes might yield substantial improvements in air
quality in the future. Instead of just focusing on projected
changes in, for example, temperature and humidity, scenar-
ios for air quality need to be considered as well.

Current data availability from climate modelling and de-
mographic and environmental scenario development provide
many opportunities to use the developed ML models from
our research for projecting future health risks. Ensembles
of regional climate models provide climate projections with
the highest spatial resolution. For the study region, EURO-
CORDEX simulations (Jacob et al., 2014, 2020) can be con-
sidered, providing the largest ensemble of climate simula-
tions at high spatial (0.11◦, i.e. 12 km) and temporal (daily)
resolution available today. Several of the predictors used in
this study could be derived from the EURO-CORDEX en-

semble, namely temperatures and in many cases relative hu-
midity, as well as dew point temperatures. Alternatively, an
ensemble of convection permitting decadal regional climate
simulations at ∼ 3 km, for both historic and future condi-
tions, has been created within CORDEX FPS (e.g. Ban et al.,
2021). Using an ensemble of near-future (2035–2065) cli-
mate model simulations allows for scenario uncertainty, in-
ternal climate variability and climate model uncertainty to be
assessed (Hawkins and Sutton, 2011) when comparing the
changes in MI to the reference historical simulations.

Demographic predictions until 2039 for the study region at
the county level can be obtained from the Bayerisches Lan-
desamt für Statistik (2022). Longer-term projections up until
the year 2060, albeit contingent on different socio-economic
scenarios and at the level of the federal state of Bavaria,
could be obtained from the Statistisches Bundesamt (2022)
and be used to estimate the local projected demographics in
the study area. These projections would provide a robust ba-
sis to estimate potential developments of the local population
in the near-future.

For vegetation changes, as represented by NDVI, it can be
reasonably assumed that the potential for increased green-
ness in the inner city is limited. Likewise, the potential for
substantial effects from added green in the rural surround-
ings of Augsburg is low, as it is already ubiquitous there. We
therefore believe that moderate up- or downscaling of NDVI
patterns observed in the past and present may suffice to yield
suitable estimates of possible future developments, such as
adaptation measures of increasing vegetation to reduce the
urban heat island effect.

Air quality projections are related to the emission scenar-
ios used by global climate models. For the CMIP6 climate
models, estimates of regional surface air quality are available
at the global model scale (Turnock et al., 2020). These pro-
jections could be used to scale the observed daily air quality
observations, but more exhaustive and local projection data
would be preferred. To date, however, regional climate mod-
els do not feature the necessary complex chemical models to
accurately model the transport, dispersion and diffusion of
pollutants. A pragmatic up- or downscaling of the observed
patterns from the global to the local level currently appears
to be the most convenient approach.

6 Conclusions

We have developed an approach for predicting MI events us-
ing multivariable ML methods, based on environmental and
demographic data. Given that health outcomes depend on a
multitude of factors, we applied a data-driven approach to es-
tablish relevant relationships. We acquired data on MI events
from the KORA MI registry in Augsburg, Germany, as well
as weather, environmental and demographic data from vari-
ous sources to create a meaningful and consistent daily time
series of the predictive features and the target variable.
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Starting from these time series, a supervised learning prob-
lem for MI was formulated, accounting for lagged effects.
Five different regression algorithms were trained on these
data, based on random 75/25 train–test splits for the period
between April 1998 and December 2015. Various hyperpa-
rameters were used to optimise the performance of the algo-
rithms, based on 5-fold cross-validation with respect to the
R2 scores.

Applying the trained models on the unseen test data al-
lowed an estimation of the generalisation error of the mod-
els. We found that the daily or weekly results do not provide
meaningful and accurate predictions of MI events. We found
that the annually aggregated predictions agree well with the
observed MI events, accurately reflecting observed trends
and inter-annual variability in MI. The match between ob-
servations and the model predictions is supported by the ob-
served validation scores, with adjusted R2 scores ranging be-
tween 0.62 and 0.71. Overall, the models displayed compa-
rable skill, but the ridge regression (RR) and multi-layer per-
ceptron (MLP) models slightly outperformed the tree-based
methods. The least accurate results were produced by the de-
cision tree (DTR) model. The feature importance showed
that despite similar overall scores, the relative weight can
vary substantially between the models. This emphasised the
necessity to consider ensembles of models, as it allows the
model spread to be gauged and inherent uncertainty to be es-
timated. In this study, air quality tends to be the most impor-
tant feature to predict MI, closely followed by temperature,
demographics and apparent temperature. We also applied the
models to various vulnerable subgroups, such as the elderly
or patients with diabetes, resulting in only slightly reduced
skill scores due to the reduced quantities of training data.

Possibilities of improving the current approach are mani-
fold, including increasing the variety and quality of the pre-
dictor data. Further analysis of the data, including account-
ing for trends over time, may further increase robustness of
the results to prevent the attribution of exogenous effects not
considered in the model to the existing features. Also, dif-
ferent ML approaches could be explored, such as density
estimation and Bayesian methods, yielding estimates of rel-
ative risk of different groups to suffer MI. Such estimates
could be more readily compared with commonly used epi-
demiological models than the regression models presented
here. Overall, the models’ capacity to give reasonable esti-
mates of possible future developments of MI based on the
predictive features appears robust. In a next step, the trained
models can be applied to scenarios of future climatic, en-
vironmental and demographic conditions. This will allow
the estimation of future changes in MI taking into account
climatic as well as other environmental and demographic
factors expanding on limitations of earlier studies. These
changes could also include further improvements in air qual-
ity or increased “greening” of urban environments with veg-
etation. Such estimates will enable the gauging of the sen-
sitivity of the complex health–environment interactions and

benefits of proposed environmental and health interventions
in urban areas.

Appendix A

A1 Derivation of apparent temperature

We have computed the apparent temperature according to

Ta =−2.653+ 0.994T + 0.01537T 2
d , (A1)

where Ta is the apparent temperature, T the near-surface
mean temperature and Td the near-surface dew point temper-
ature (see Davis et al., 2016). Dew point temperature, how-
ever, was not available for this study. To facilitate the esti-
mation of the apparent temperature we therefore first derived
another humidity-related quantity: vapour pressure. Apply-
ing again universal Kriging with linear drift, we arrived at
1×1 km gridded data for vapour pressure, applying the Mag-
nus formula to estimate the dew point temperature:

Td =
b · v

a− v
, (A2)

where a = 7.5; b = 237.3; and v = log10
( pv

6.1078

)
, with

pv the vapour pressure.
Applying these formulas to the gridded temperature and

humidity data derived before yields a 1×1 km grid for appar-
ent temperature. Note that the formulas were independently
applied to mean, maximum and minimum temperature. Sub-
sequent aggregation over the model region then completed
the preparation of apparent temperature as an input feature.
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A2 Detailed subgroup and feature importance results

Figure A1. Annually aggregated predictions of MI in the urban population for all models. Predicted (solid) and observed MI (dashed) for
training (a) and test (b) sets.

Figure A2. Annually aggregated predictions of MI in the rural population for all models. Predicted (solid) and observed MI (dashed) for
training (a) and test (b) sets.
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Figure A3. Annually aggregated predictions of MI in the elderly population for all models. Predicted (solid) and observed MI (dashed) for
training (a) and test (b) sets.

Figure A4. Annually aggregated predictions of MI in the diabetic population for all models. Predicted (solid) and observed MI (dashed) for
training (a) and test (b) sets.
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Figure A5. Annually aggregated predictions of MI in the smoking population for all models. Predicted (solid) and observed MI (dashed) for
training (a) and test (b) sets.

Figure A6. Feature importance for predicting MI in the general population. Larger values indicate higher importance, and per model the sum
over all features equals 1.
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Figure A7. Feature importance for predicting MI in the general population when the full set of demographic features is used. Where
applicable the lag in days (0, 1 or 2) is indicated. Larger values indicate higher importance, and per model the sum over all features equals 1.
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Figure A8. Feature correlation matrix differentiated by lag in days (0, 1 or 2) and with the full set of demographic features.
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Figure A9. Monthly mean time series for all air quality features.

Table A1. Air quality stations data availability and categories.

Stations: Augsburg/Königsplatz Augsburg/Bourges-Platz Augsburg/LfU Augsburg/Karlstraße Augsburg/Haunstetten Andechs/Rothenfeld Kempten/Westendstraße
Time period (resolution) Time period (resolution) Time period (resolution) Time period (resolution) Time period (resolution) Time period (resolution) Time period (resolution)

Urban-Rural categories: Urban Rural

PM10 1980–1985 (daily) 1986–2004 (3 h) 2000–2004 (3 h) 2003–2004 (3 h) – 2003–2004 (3 h) 1980–1985 (daily)
1986–2004 (3 h) 2005–2018 (1 h) 2005–2018 (1 h) 2005–2018 (1 h) 2005–2018 (1 h) 1986–2004 (3 h)
2005–2018 (1 h) 2013–2014 missing 2010–2016 missing 2005–2015 (1 h)

2015–2018 missing

PM2.5 – 2008–2018 (1 h) 2008–2018 (1 h) – – 2012–2018 (1 h) 2014–2018 (1 h)
2010–2016 missing

NO 1980–2018 (1 h) 1986–2018 (1 h) 2000–2018 (1 h) 2003–2018 (1 h) – 2003–2018 (1 h) 1993–2018 ( h)
2012–2013 missing

NO2 1980–2018 (1 h) 1986–2018 (1 h) 2000–2018 (1 h) 2003–2018 (1 h) – 2003–2018 (1 h) 1993–2018 (1 h)
2012–2013 missing

Ozone 1980–1985 (1 h) 2012–2018 (1 h) 2000–2018 (1 h) – 1985–1999 (1 h) 2003–2018 (1 h) 1990–2018 (1 h)
(O3)

CO 1980–1999 (1 h) 1987–1999 (1 h) Only 2018 (1 h) Only 2018 (1 h) 1980–1999 (1 h) – 1980–1999 (1 h)
only 2018 (1 h)

SO2 1980–2018 (1 h) 1986–2018 (1 h) 2000–2018 (1 h) 2003–2018 (1 h) – 2003–2018 (1 h) 1993–2018 (1 h)
2012–2013 missing

BTX 1980–2018 (1 h) 1986–2018 (1 h) 2000–2018 (1 h) 2003–2018 (1 h) – 2003–2018 (1 h) 1993–2018 (1 h)
2012–2013 missing
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Table A2. Training and test scores on annual basis for the urban population.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adjusted R2 0.67 0.35 0.8 0.48 0.87 0.45 0.69 0.5 0.57 0.47
R2 0.67 0.37 0.81 0.49 0.87 0.47 0.69 0.51 0.58 0.49
Max error 30.59 24.88 20.29 21.83 19.03 21.39 27.91 21.33 32.91 23.44
RMSE 16.69 12.7 12.84 11.38 10.39 11.68 16.12 11.15 18.93 11.43
BIC 257.41 247.59 247.97 243.61 240.34 244.55 256.17 242.9 261.94 243.78

Table A3. Training and test scores on annual basis for the rural population.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adjusted R2 0.62 0.43 0.8 0.59 0.85 0.6 0.79 0.59 0.67 0.55
R2 0.62 0.45 0.8 0.6 0.85 0.61 0.79 0.6 0.68 0.57
Max error 40.97 19.97 25.12 23.09 28.21 21.38 29.16 22.84 42.1 25.38
RMSE 19.04 10.57 13.72 8.97 11.84 8.87 14.1 9.02 17.67 9.39
BIC 262.15 240.98 250.35 235.05 245.06 234.64 251.35 235.26 259.47 236.72

Table A4. Training and test scores on annual basis for the elderly population.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adjusted R2 0.88 0.53 0.93 0.65 0.94 0.61 0.9 0.65 0.89 0.64
R2 0.88 0.54 0.93 0.66 0.94 0.62 0.9 0.66 0.89 0.65
Max error 28.76 30.37 20.63 27.66 21.31 26.74 20.93 28.16 22.54 28.13
RMSE 13.7 12.94 10.54 11.21 9.93 11.75 12.6 11.19 13.39 11.34
BIC 250.3 248.24 240.87 243.1 238.74 244.78 247.29 243.03 249.48 243.51

Table A5. Training and test scores on annual basis for the diabetic population.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adjusted R2 0.93 0.28 0.87 0.59 0.92 0.5 0.79 0.61 0.63 0.54
R2 0.93 0.31 0.87 0.6 0.92 0.51 0.79 0.63 0.63 0.56
Max error 16.0 41.4 23.24 31.92 20.59 35.94 27.67 29.99 39.45 27.9
RMSE 8.16 12.55 11.06 9.53 8.58 10.5 13.79 9.22 18.49 10.03
BIC 231.64 247.15 242.61 237.24 233.44 240.73 250.55 236.04 261.1 239.08
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Table A6. Training and test scores on annual basis for the smoker population.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adjusted R2 0.91 0.37 0.85 0.53 0.87 0.48 0.74 0.5 0.41 0.22
R2 0.91 0.39 0.85 0.55 0.87 0.5 0.74 0.51 0.41 0.25
Max error 14.43 13.3 20.14 14.42 18.04 14.08 23.77 15.78 39.55 23.37
RMSE 7.42 7.35 9.5 6.37 8.69 6.68 12.54 6.6 18.79 8.18
BIC 228.25 227.91 237.14 222.72 233.91 224.45 247.11 224.0 261.69 231.74

Table A7. Training and test scores on annual basis for the general population with demographic features turned off.

Method DTR RF GBR RR MLP

Score Train Test Train Test Train Test Train Test Train Test

Adjusted R2 0.83 0.67 0.81 0.63 0.9 0.63 0.74 0.59 0.74 0.57
R2 0.83 0.68 0.81 0.63 0.9 0.64 0.74 0.6 0.74 0.58
Max error 39.97 34.42 47.65 38.81 28.72 38.79 56.42 40.22 53.93 40.96
RMSE 22.01 16.35 23.38 17.42 16.81 17.22 27.51 18.18 27.34 18.59
BIC 238.47 227.76 240.65 230.04 228.77 229.64 246.5 231.58 246.28 232.39

Table A8. Daily mean, standard deviation, and minimum and maximum predictions across models for each subgroup.

Subgroup Mean SD Min Max

Score Train Test Train Test Train Test Train Test

General population 2.64 2.63 0.26 0.26 1.91 1.92 3.64 3.58
Urban 1.29 1.29 0.15 0.15 0.91 0.93 1.99 1.84
Rural 1.34 1.33 0.13 0.13 0.94 1.0 1.86 1.76
Elderly 1.77 1.76 0.21 0.21 1.15 1.23 2.77 2.51
Diabetic 0.85 0.85 0.13 0.12 0.5 0.53 1.4 1.28
Smoker 0.59 0.59 0.09 0.09 0.38 0.37 0.99 0.85

Code and data availability. The data used in this paper are avail-
able from third-party sources. The principle MI registry data
are available from the KORA dataset and can be applied for
at HMGU here: https://helmholtz-muenchen.managed-otrs.com/
external (Helmholtz Zentrum München, 2022). Other data sources
(environmental and demographic data) are available from the
sources quoted in the paper (Table 3). The code used for the
ML models and data pre- and post-processing is available on re-
quest from the authors.
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