Articles | Volume 22, issue 8
Nat. Hazards Earth Syst. Sci., 22, 2637–2653, 2022
https://doi.org/10.5194/nhess-22-2637-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Estimating and predicting natural hazards and vulnerabilities...
Research article
17 Aug 2022
Research article
| 17 Aug 2022
Using Sentinel-1 radar amplitude time series to constrain the timings of individual landslides: a step towards understanding the controls on monsoon-triggered landsliding
Katy Burrows et al.
Related authors
Katy Burrows, David Milledge, Richard J. Walters, and Dino Bellugi
Nat. Hazards Earth Syst. Sci., 21, 2993–3014, https://doi.org/10.5194/nhess-21-2993-2021, https://doi.org/10.5194/nhess-21-2993-2021, 2021
Short summary
Short summary
When cloud cover obscures optical satellite imagery, there are two options remaining for generating information on earthquake-triggered landslide locations: (1) models which predict landslide locations based on, e.g., slope and ground shaking data and (2) satellite radar data, which penetrates cloud cover and is sensitive to landslides. Here we show that the two approaches can be combined to give a more consistent and more accurate model of landslide locations after an earthquake.
Katy Burrows, Richard J. Walters, David Milledge, and Alexander L. Densmore
Nat. Hazards Earth Syst. Sci., 20, 3197–3214, https://doi.org/10.5194/nhess-20-3197-2020, https://doi.org/10.5194/nhess-20-3197-2020, 2020
Short summary
Short summary
Satellite radar could provide information on landslide locations within days of an earthquake or rainfall event anywhere on Earth, but until now there has been a lack of systematic testing of possible radar methods, and most methods have been demonstrated using a single case study event and data from a single satellite sensor. Here we test five methods on four events, demonstrating their wide applicability and making recommendations on when different methods should be applied in the future.
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, and Katherine R. Barnhart
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-47, https://doi.org/10.5194/esurf-2022-47, 2022
Preprint under review for ESurf
Short summary
Short summary
Debris flows are mixtures of mud and rocks that can travel at high speeds across steep landscapes. Here, we propose a new model to describe how landscapes are shaped by debris flow erosion over long timescales. Model results demonstrate that the shapes of channel profiles are sensitive to uplift rate, meaning that it may be possible use topographic data from steep channel networks to infer how erosion rates vary in space across a landscape.
Robert Emberson, Dalia B. Kirschbaum, Pukar Amatya, Hakan Tanyas, and Odin Marc
Nat. Hazards Earth Syst. Sci., 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022, https://doi.org/10.5194/nhess-22-1129-2022, 2022
Short summary
Short summary
Understanding where landslides occur in mountainous areas is critical to support hazard analysis as well as understand landscape evolution. In this study, we present a large compilation of inventories of landslides triggered by rainfall, including several that are described here for the first time. We analyze the topographic characteristics of the landslides, finding consistent relationships for landslide source and deposition areas, despite differences in the inventories' locations.
Katy Burrows, David Milledge, Richard J. Walters, and Dino Bellugi
Nat. Hazards Earth Syst. Sci., 21, 2993–3014, https://doi.org/10.5194/nhess-21-2993-2021, https://doi.org/10.5194/nhess-21-2993-2021, 2021
Short summary
Short summary
When cloud cover obscures optical satellite imagery, there are two options remaining for generating information on earthquake-triggered landslide locations: (1) models which predict landslide locations based on, e.g., slope and ground shaking data and (2) satellite radar data, which penetrates cloud cover and is sensitive to landslides. Here we show that the two approaches can be combined to give a more consistent and more accurate model of landslide locations after an earthquake.
Odin Marc, Jens M. Turowski, and Patrick Meunier
Earth Surf. Dynam., 9, 995–1011, https://doi.org/10.5194/esurf-9-995-2021, https://doi.org/10.5194/esurf-9-995-2021, 2021
Short summary
Short summary
The size of grains delivered to rivers is an essential parameter for understanding erosion and sediment transport and their related hazards. In mountains, landslides deliver these rock fragments, but few studies have analyzed the landslide properties that control the resulting sizes. We present measurements on 17 landslides from Taiwan and show that their grain sizes depend on rock strength, landslide depth and drop height, thereby validating and updating a previous theory on fragmentation.
Katy Burrows, Richard J. Walters, David Milledge, and Alexander L. Densmore
Nat. Hazards Earth Syst. Sci., 20, 3197–3214, https://doi.org/10.5194/nhess-20-3197-2020, https://doi.org/10.5194/nhess-20-3197-2020, 2020
Short summary
Short summary
Satellite radar could provide information on landslide locations within days of an earthquake or rainfall event anywhere on Earth, but until now there has been a lack of systematic testing of possible radar methods, and most methods have been demonstrated using a single case study event and data from a single satellite sensor. Here we test five methods on four events, demonstrating their wide applicability and making recommendations on when different methods should be applied in the future.
Claire Rault, Alexandra Robert, Odin Marc, Niels Hovius, and Patrick Meunier
Earth Surf. Dynam., 7, 829–839, https://doi.org/10.5194/esurf-7-829-2019, https://doi.org/10.5194/esurf-7-829-2019, 2019
Short summary
Short summary
Large earthquakes trigger thousands of landslides in the area of their epicentre. For three earthquake cases, we have determined the position of these landslides along hillslopes. These co-seismic landslides tend to cluster at ridge crests and slope toes. We show that crest clustering is specific to seismic triggering. But although co-seismic landslides locate higher in the landscape than rainfall-induced landslides, geological features strongly modulate their position along the hillslopes.
Odin Marc, Robert Behling, Christoff Andermann, Jens M. Turowski, Luc Illien, Sigrid Roessner, and Niels Hovius
Earth Surf. Dynam., 7, 107–128, https://doi.org/10.5194/esurf-7-107-2019, https://doi.org/10.5194/esurf-7-107-2019, 2019
Short summary
Short summary
We mapped eight monsoon-related (> 100 m2) and large (> 0.1 km2) landslides in the Nepal Himalayas since 1970. Adding inventories of Holocene landslides, giant landslides (> 1 km3), and landslides from the 2015 Gorkha earthquake, we constrain the size–frequency distribution of monsoon- and earthquake-induced landslides. Both contribute ~50 % to a long-term (> 10 kyr) total erosion of ~2 mm yr-1, matching the long-term exhumation rate. Large landslides rarer than 10Be sampling time drive erosion.
Odin Marc, André Stumpf, Jean-Philippe Malet, Marielle Gosset, Taro Uchida, and Shou-Hao Chiang
Earth Surf. Dynam., 6, 903–922, https://doi.org/10.5194/esurf-6-903-2018, https://doi.org/10.5194/esurf-6-903-2018, 2018
Short summary
Short summary
Rainfall-induced landslides cause significant damage and fatality worldwide, but we have few datasets constraining the impact of individual storms. We present and analyze 8 landslide inventories, with >150 to >150 00 landslides, comprehensively representing the landslide population caused by 8 storms from Asia and the Americas. We found that the total storm rainfall is a major control on total landsliding, landslide size, and that storms trigger landslides on less steep slopes than earthquakes.
Odin Marc, Patrick Meunier, and Niels Hovius
Nat. Hazards Earth Syst. Sci., 17, 1159–1175, https://doi.org/10.5194/nhess-17-1159-2017, https://doi.org/10.5194/nhess-17-1159-2017, 2017
Short summary
Short summary
We present an analytical expression for the surface area of the region within which landslides induced by a given earthquake are distributed. The expression is based on seismological scaling laws. Without calibration the model predicts, within a factor of 2, up to 49 out of 83 cases reported in the literature and agrees with the smallest region around the fault containing 95 % of the total landslide area. This model may be used for hazard assessment based on early earthquake detection parameters.
Robert Emberson, Niels Hovius, Albert Galy, and Odin Marc
Earth Surf. Dynam., 4, 727–742, https://doi.org/10.5194/esurf-4-727-2016, https://doi.org/10.5194/esurf-4-727-2016, 2016
Short summary
Short summary
Rapid dissolution of bedrock and regolith mobilised by landslides can be an important control on rates of overall chemical weathering in mountain ranges. In this study we analysed a number of landslides and rivers in Taiwan to better understand why this occurs. We find that sulfuric acid resulting from rapid oxidation of highly reactive sulfides in landslide deposits drives the intense weathering and can set catchment-scale solute budgets. This could be a CO2 source in fast-eroding mountains.
O. Marc and N. Hovius
Nat. Hazards Earth Syst. Sci., 15, 723–733, https://doi.org/10.5194/nhess-15-723-2015, https://doi.org/10.5194/nhess-15-723-2015, 2015
Short summary
Short summary
We present how amalgamation (i.e. the mapping of several adjacent landslides as a single polygon) can distort results derived from landslide mapping. Errors on the total landslide volume and power-law exponent of the area–frequency distribution, resulting from amalgamation, may be up to 200 and 50%, respectively. We present an algorithm based on image and DEM analysis, for automatic identification of amalgamated polygons, allowing one to check and correct landslide inventories faster.
Related subject area
Landslides and Debris Flows Hazards
Landslide susceptibility assessment in the rocky coast subsystem of Essaouira, Morocco
Landsifier v1.0: a Python library to estimate likely triggers of mapped landslides
Timing landslide and flash flood events from SAR satellite: a regionally applicable methodology illustrated in African cloud-covered tropical environments
Potential of satellite-derived hydro-meteorological information for landslide initiation thresholds in Rwanda
Earthquake-induced landslides in Haiti: analysis of seismotectonic and possible climatic influences
Pre-collapse motion of the February 2021 Chamoli rock–ice avalanche, Indian Himalaya
Physically based modeling of co-seismic landslide, debris flow, and flood cascade
Finite-hillslope analysis of landslides triggered by excess pore water pressure: the roles of atmospheric pressure and rainfall infiltration during typhoons
Estimating global landslide susceptibility and its uncertainty through ensemble modeling
Terrain visibility impact on the preparation of landslide inventories: a practical example in Darjeeling district (India)
Introducing SlideforMAP: a probabilistic finite slope approach for modelling shallow-landslide probability in forested situations
Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars
What drives landslide risk? Disaggregating risk analyses, an example from the Franz Josef Glacier and Fox Glacier valleys, New Zealand
Geographic information system models with fuzzy logic for susceptibility maps of debris flow using multiple types of parameters: a case study in Pinggu District of Beijing, China
Spatial assessment of probable recharge areas – investigating the hydrogeological controls of an active deep-seated gravitational slope deformation
Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: an application for the southern Andes
Quantification of meteorological conditions for rockfall triggers in Germany
Debris flow velocity and volume estimations based on seismic data
Integration of observed and model-derived groundwater levels in landslide threshold models in Rwanda
Landslides caught on seismic networks and satellite radars
Variable hydrograph inputs for a numerical debris-flow runout model
Assessing the relationship between weather conditions and rockfall using terrestrial laser scanner to improve risk management
How 3d volcanic stratigraphy constrains headscarp collapse scenarios: the Samperre Cliff case study (Martinique Island, Lesser Antilles)
Brief Communication: An Autonomous UAV for Catchment-Wide Monitoring of a Debris Flow Torrent
Assessing the importance of conditioning factor selection in landslide susceptibility for the province of Belluno (region of Veneto, northeastern Italy)
Brief communication: Introducing rainfall thresholds for landslide triggering based on artificial neural networks
Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories
Generating landslide density heatmaps for rapid detection using open-access satellite radar data in Google Earth Engine
Multiscale effects caused by the fracturing and fragmentation of rock blocks during rock mass movement: implications for rock avalanche propagation
Rapid assessment of abrupt urban mega-gully and landslide events with structure-from-motion photogrammetric techniques validates link to water resources infrastructure failures in an urban periphery
Automated determination of landslide locations after large trigger events: advantages and disadvantages compared to manual mapping
Evaluation of filtering methods for use on high-frequency measurements of landslide displacements
A modeling methodology to study the tributary-junction alluvial fan connectivity during a debris flow event
Brief communication: The role of geophysical imaging in local landslide early warning systems
Evaluating landslide response in a seismic and rainfall regime: a case study from the SE Carpathians, Romania
Main Ethiopian Rift landslides formed in contrasting geological settings and climatic conditions
Investigating causal factors of shallow landslides in grassland regions of Switzerland
Debris flow event on Osorno volcano, Chile, during summer 2017: new interpretations for chain processes in the southern Andes
Integrating empirical models and satellite radar can improve landslide detection for emergency response
Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment
Optimizing and validating the Gravitational Process Path model for regional debris-flow runout modelling
Geographic-information-system-based topographic reconstruction and geomechanical modelling of the Köfels rockslide
Spatiotemporal clustering of flash floods in a changing climate (China, 1950–2015)
Atmospheric triggering conditions and climatic disposition of landslides in Kyrgyzstan and Tajikistan at the beginning of the 21st century
Analysis of meteorological parameters triggering rainfall-induced landslide: a review of 70 years in Valtellina
Landslide risk management analysis on expansive residential areas – case study of La Marina (Alicante, Spain)
Uncertainty analysis of a rainfall threshold estimate for stony debris flow based on the backward dynamical approach
Controls on the formation and size of potential landslide dams and dammed lakes in the Austrian Alps
The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines
Invited perspectives: Landslide populations – can they be predicted?
Abdellah Khouz, Jorge Trindade, Sérgio C. Oliveira, Fatima El Bchari, Blaid Bougadir, Ricardo A. C. Garcia, and Mourad Jadoud
Nat. Hazards Earth Syst. Sci., 22, 3793–3814, https://doi.org/10.5194/nhess-22-3793-2022, https://doi.org/10.5194/nhess-22-3793-2022, 2022
Short summary
Short summary
The aim of this study was to assess the landslide susceptibility of the rocky coast of Essaouira using the information value model. The resulting susceptibility maps could be used for both environmental protection and general planning of future development activities.
Kamal Rana, Nishant Malik, and Ugur Ozturk
Nat. Hazards Earth Syst. Sci., 22, 3751–3764, https://doi.org/10.5194/nhess-22-3751-2022, https://doi.org/10.5194/nhess-22-3751-2022, 2022
Short summary
Short summary
The landslide hazard models assist in mitigating losses due to landslides. However, these models depend on landslide databases, which often have missing triggering information, rendering these databases unusable for landslide hazard models. In this work, we developed a Python library, Landsifier, consisting of three different methods to identify the triggers of landslides. These methods can classify landslide triggers with high accuracy using only a landslide polygon shapefile as an input.
Axel A. J. Deijns, Olivier Dewitte, Wim Thiery, Nicolas d'Oreye, Jean-Philippe Malet, and François Kervyn
Nat. Hazards Earth Syst. Sci., 22, 3679–3700, https://doi.org/10.5194/nhess-22-3679-2022, https://doi.org/10.5194/nhess-22-3679-2022, 2022
Short summary
Short summary
Landslides and flash floods are rainfall-induced processes that often co-occur and interact, generally very quickly. In mountainous cloud-covered environments, determining when these processes occur remains challenging. We propose a regional methodology using open-access satellite radar images that allow for the timing of landslide and flash floods events, in the contrasting landscapes of tropical Africa, with an accuracy of up to a few days. The methodology shows potential for transferability.
Judith Uwihirwe, Alessia Riveros, Hellen Wanjala, Jaap Schellekens, Frederiek Sperna Weiland, Markus Hrachowitz, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 22, 3641–3661, https://doi.org/10.5194/nhess-22-3641-2022, https://doi.org/10.5194/nhess-22-3641-2022, 2022
Short summary
Short summary
This study compared gauge-based and satellite-based precipitation products. Similarly, satellite- and hydrological model-derived soil moisture was compared to in situ soil moisture and used in landslide hazard assessment and warning. The results reveal the cumulative 3 d rainfall from the NASA-GPM to be the most effective landslide trigger. The modelled antecedent soil moisture in the root zone was the most informative hydrological variable for landslide hazard assessment and warning in Rwanda.
Hans-Balder Havenith, Kelly Guerrier, Romy Schlögel, Anika Braun, Sophia Ulysse, Anne-Sophie Mreyen, Karl-Henry Victor, Newdeskarl Saint-Fleur, Léna Cauchie, Dominique Boisson, and Claude Prépetit
Nat. Hazards Earth Syst. Sci., 22, 3361–3384, https://doi.org/10.5194/nhess-22-3361-2022, https://doi.org/10.5194/nhess-22-3361-2022, 2022
Short summary
Short summary
We present a new landslide inventory for the 2021, M 7.2, Haiti, earthquake. We compare characteristics of this inventory with those of the 2010 seismically induced landslides, highlighting the much larger total area of 2021 landslides. This fact could be related to the larger earthquake magnitude in 2021, to the more central location of the fault segment ruptured in 2021 with respect to coastal zones, and/or to possible climatic preconditioning of slope failures in the 2021 affected area.
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022, https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary
Short summary
On 7 February 2021, a large rock–ice avalanche occurred in Chamoli, Indian Himalaya. The resulting debris flow swept down the nearby valley, leaving over 200 people dead or missing. We use a range of satellite datasets to investigate how the collapse area changed prior to collapse. We show that signs of instability were visible as early 5 years prior to collapse. However, it would likely not have been possible to predict the timing of the event from current satellite datasets.
Bastian van den Bout, Chenxiao Tang, Cees van Westen, and Victor Jetten
Nat. Hazards Earth Syst. Sci., 22, 3183–3209, https://doi.org/10.5194/nhess-22-3183-2022, https://doi.org/10.5194/nhess-22-3183-2022, 2022
Short summary
Short summary
Natural hazards such as earthquakes, landslides, and flooding do not always occur as stand-alone events. After the 2008 Wenchuan earthquake, a co-seismic landslide blocked a stream in Hongchun. Two years later, a debris flow breached the material, blocked the Min River, and resulted in flooding of a small town. We developed a multi-process model that captures the full cascade. Despite input and process uncertainties, probability of flooding was high due to topography and trigger intensities.
Lucas Pelascini, Philippe Steer, Maxime Mouyen, and Laurent Longuevergne
Nat. Hazards Earth Syst. Sci., 22, 3125–3141, https://doi.org/10.5194/nhess-22-3125-2022, https://doi.org/10.5194/nhess-22-3125-2022, 2022
Short summary
Short summary
Landslides represent a major natural hazard and are often triggered by typhoons. We present a new 2D model computing the respective role of rainfall infiltration, atmospheric depression and groundwater in slope stability during typhoons. The results show rainfall is the strongest factor of destabilisation. However, if the slope is fully saturated, near the toe of the slope or during the wet season, rainfall infiltration is limited and atmospheric pressure change can become the dominant factor.
Anne Felsberg, Jean Poesen, Michel Bechtold, Matthias Vanmaercke, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 22, 3063–3082, https://doi.org/10.5194/nhess-22-3063-2022, https://doi.org/10.5194/nhess-22-3063-2022, 2022
Short summary
Short summary
In this study we assessed global landslide susceptibility at the coarse 36 km spatial resolution of global satellite soil moisture observations to prepare for a subsequent combination of the two. Specifically, we focus therefore on the susceptibility of hydrologically triggered landslides. We introduce ensemble techniques, common in, for example, meteorology but not yet in the landslide community, to retrieve reliable estimates of the total prediction uncertainty.
Txomin Bornaetxea, Ivan Marchesini, Sumit Kumar, Rabisankar Karmakar, and Alessandro Mondini
Nat. Hazards Earth Syst. Sci., 22, 2929–2941, https://doi.org/10.5194/nhess-22-2929-2022, https://doi.org/10.5194/nhess-22-2929-2022, 2022
Short summary
Short summary
One cannot know if there is a landslide or not in an area that one has not observed. This is an obvious statement, but when landslide inventories are obtained by field observation, this fact is seldom taken into account. Since fieldwork campaigns are often done following the roads, we present a methodology to estimate the visibility of the terrain from the roads, and we demonstrate that fieldwork-based inventories are underestimating landslide density in less visible areas.
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022, https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assessment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMAP) that can assess the shallow-landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
Chuxuan Li, Alexander L. Handwerger, Jiali Wang, Wei Yu, Xiang Li, Noah J. Finnegan, Yingying Xie, Giuseppe Buscarnera, and Daniel E. Horton
Nat. Hazards Earth Syst. Sci., 22, 2317–2345, https://doi.org/10.5194/nhess-22-2317-2022, https://doi.org/10.5194/nhess-22-2317-2022, 2022
Short summary
Short summary
In January 2021 a storm triggered numerous debris flows in a wildfire burn scar in California. We use a hydrologic model to assess debris flow susceptibility in pre-fire and postfire scenarios. Compared to pre-fire conditions, postfire conditions yield dramatic increases in peak water discharge, substantially increasing debris flow susceptibility. Our work highlights the hydrologic model's utility in investigating and potentially forecasting postfire debris flows at regional scales.
Saskia de Vilder, Chris Massey, Biljana Lukovic, Tony Taig, and Regine Morgenstern
Nat. Hazards Earth Syst. Sci., 22, 2289–2316, https://doi.org/10.5194/nhess-22-2289-2022, https://doi.org/10.5194/nhess-22-2289-2022, 2022
Short summary
Short summary
This study calculates the fatality risk posed by landslides while visiting Franz Josef Glacier and Fox Glacier valleys, New Zealand, for nine different scenarios, where the variables of the risk equation were adjusted to determine the range in risk values and associated uncertainty. The results show that it is important to consider variable inputs that change through time, such as the increasing probability of an earthquake and the impact of climate change on landslide characteristics.
Yiwei Zhang, Jianping Chen, Qing Wang, Chun Tan, Yongchao Li, Xiaohui Sun, and Yang Li
Nat. Hazards Earth Syst. Sci., 22, 2239–2255, https://doi.org/10.5194/nhess-22-2239-2022, https://doi.org/10.5194/nhess-22-2239-2022, 2022
Short summary
Short summary
The disaster prevention and mitigation of debris flow is a very important scientific problem. Our model is based on geographic information system (GIS), combined with grey relational, data-driven and fuzzy logic methods. Through our results, we believe that the streamlining of factors and scientific classification should attract attention from other researchers to optimize a model. We also propose a good perspective to make better use of the watershed feature parameters.
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci., 22, 2219–2237, https://doi.org/10.5194/nhess-22-2219-2022, https://doi.org/10.5194/nhess-22-2219-2022, 2022
Short summary
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
Ivo Fustos-Toribio, Nataly Manque-Roa, Daniel Vásquez Antipan, Mauricio Hermosilla Sotomayor, and Viviana Letelier Gonzalez
Nat. Hazards Earth Syst. Sci., 22, 2169–2183, https://doi.org/10.5194/nhess-22-2169-2022, https://doi.org/10.5194/nhess-22-2169-2022, 2022
Short summary
Short summary
We develop for the first time a rainfall-induced landslide early warning system for the south of Chile. We used forecast precipitation values at different scales using mesoscale models to evaluate the probability of landslides using statistical models. We showed the feasibility of implementing these models in future, supporting stakeholders and decision-makers.
Katrin M. Nissen, Stefan Rupp, Thomas M. Kreuzer, Björn Guse, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 22, 2117–2130, https://doi.org/10.5194/nhess-22-2117-2022, https://doi.org/10.5194/nhess-22-2117-2022, 2022
Short summary
Short summary
A statistical model is introduced which quantifies the influence of individual potential triggering factors and their interactions on rockfall probability in central Europe. The most important factor is daily precipitation, which is most effective if sub-surface moisture levels are high. Freeze–thaw cycles in the preceding days can further increase the rockfall hazard. The model can be applied to climate simulations in order to investigate the effect of climate change on rockfall probability.
Andreas Schimmel, Velio Coviello, and Francesco Comiti
Nat. Hazards Earth Syst. Sci., 22, 1955–1968, https://doi.org/10.5194/nhess-22-1955-2022, https://doi.org/10.5194/nhess-22-1955-2022, 2022
Short summary
Short summary
The estimation of debris flow velocity and volume is a fundamental task for the development of early warning systems and other mitigation measures. This work provides a first approach for estimating the velocity and the total volume of debris flows based on the seismic signal detected with simple, low-cost geophones installed along the debris flow channel. The developed method was applied to seismic data collected at three test sites in the Alps: Gadria and Cancia (IT) and Lattenbach (AT).
Judith Uwihirwe, Markus Hrachowitz, and Thom Bogaard
Nat. Hazards Earth Syst. Sci., 22, 1723–1742, https://doi.org/10.5194/nhess-22-1723-2022, https://doi.org/10.5194/nhess-22-1723-2022, 2022
Short summary
Short summary
This research tested the value of regional groundwater level information to improve landslide predictions with empirical models based on the concept of threshold levels. In contrast to precipitation-based thresholds, the results indicated that relying on threshold models exclusively defined using hydrological variables such as groundwater levels can lead to improved landslide predictions due to their implicit consideration of long-term antecedent conditions until the day of landslide occurrence.
Andrea Manconi, Alessandro C. Mondini, and the AlpArray working group
Nat. Hazards Earth Syst. Sci., 22, 1655–1664, https://doi.org/10.5194/nhess-22-1655-2022, https://doi.org/10.5194/nhess-22-1655-2022, 2022
Short summary
Short summary
Information on when, where, and how landslide events occur is the key to building complete catalogues and performing accurate hazard assessments. Here we show a procedure that allows us to benefit from the increased density of seismic sensors installed on ground for earthquake monitoring and from the unprecedented availability of satellite radar data. We show how the procedure works on a recent sequence of landslides that occurred at Piz Cengalo (Swiss Alps) in 2017.
Andrew Mitchell, Sophia Zubrycky, Scott McDougall, Jordan Aaron, Mylène Jacquemart, Johannes Hübl, Roland Kaitna, and Christoph Graf
Nat. Hazards Earth Syst. Sci., 22, 1627–1654, https://doi.org/10.5194/nhess-22-1627-2022, https://doi.org/10.5194/nhess-22-1627-2022, 2022
Short summary
Short summary
Debris flows are complex, surging movements of sediment and water. Discharge observations from well-studied debris-flow channels were used as inputs for a numerical modelling study of the downstream effects of chaotic inflows. The results show that downstream impacts are sensitive to inflow conditions. Inflow conditions for predictive modelling are highly uncertain, and our method provides a means to estimate the potential variability in future events.
Tom Birien and Francis Gauthier
EGUsphere, https://doi.org/10.5194/egusphere-2022-326, https://doi.org/10.5194/egusphere-2022-326, 2022
Short summary
Short summary
On highly fractured rockwall such as those found in northern Gaspésie, most rockfalls are triggered by weather conditions. This study highlights that in winter, rockfall frequency is 12 times higher during a superficial thaw than during a cold period in which temperature remains below 0 °C. In summer, rockfall frequency is 22 times higher during a heavy rainfall event than during a period mainly dry. This knowledge could be used to implement a risk management strategy.
Marc Peruzzetto, Yoann Legendre, Aude Nachbaur, Thomas J. B. Dewez, Yannick Thiery, Clara Levy, and Benoit Vittecoq
EGUsphere, https://doi.org/10.5194/egusphere-2022-153, https://doi.org/10.5194/egusphere-2022-153, 2022
Short summary
Short summary
Volcanic edifices result from successive construction and dismantling phases. Thus, the geological units forming the volcano display complex geometries. We show that such geometries can be reconstructed thanks to aerial views, topographic surveys and photogrammetric models. In our case study of the Samperre Cliff (Martinique, Lesser Antilles), it allows to link destabilizations from a rocky cliff to the existence of a filled paleo valley, and estimate a potentially unstable volume.
Fabian Walter, Elias Hodel, Erik Mannerfelt, Nicolas Ackermann, Kristen Cook, Michael Dietze, Livia Estermann, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
EGUsphere, https://doi.org/10.5194/egusphere-2022-156, https://doi.org/10.5194/egusphere-2022-156, 2022
Short summary
Short summary
Debris flows are dangerous sediment-water mixtures in steep terrain. Their formation takes place in poorly accessible terrain, where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments, which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments providing important information for landscape evolution and the likelihood of future debris flows.
Sansar Raj Meena, Silvia Puliero, Kushanav Bhuyan, Mario Floris, and Filippo Catani
Nat. Hazards Earth Syst. Sci., 22, 1395–1417, https://doi.org/10.5194/nhess-22-1395-2022, https://doi.org/10.5194/nhess-22-1395-2022, 2022
Short summary
Short summary
The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and machine learning algorithms.
Pierpaolo Distefano, David J. Peres, Pietro Scandura, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 22, 1151–1157, https://doi.org/10.5194/nhess-22-1151-2022, https://doi.org/10.5194/nhess-22-1151-2022, 2022
Short summary
Short summary
In the communication, we introduce the use of artificial neural networks (ANNs) for improving the performance of rainfall thresholds for landslide early warning. Results show how ANNs using rainfall event duration and mean intensity perform significantly better than a classical power law based on the same variables. Adding peak rainfall intensity as input to the ANN improves performance even more. This further demonstrates the potentialities of the proposed machine learning approach.
Robert Emberson, Dalia B. Kirschbaum, Pukar Amatya, Hakan Tanyas, and Odin Marc
Nat. Hazards Earth Syst. Sci., 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022, https://doi.org/10.5194/nhess-22-1129-2022, 2022
Short summary
Short summary
Understanding where landslides occur in mountainous areas is critical to support hazard analysis as well as understand landscape evolution. In this study, we present a large compilation of inventories of landslides triggered by rainfall, including several that are described here for the first time. We analyze the topographic characteristics of the landslides, finding consistent relationships for landslide source and deposition areas, despite differences in the inventories' locations.
Alexander L. Handwerger, Mong-Han Huang, Shannan Y. Jones, Pukar Amatya, Hannah R. Kerner, and Dalia B. Kirschbaum
Nat. Hazards Earth Syst. Sci., 22, 753–773, https://doi.org/10.5194/nhess-22-753-2022, https://doi.org/10.5194/nhess-22-753-2022, 2022
Short summary
Short summary
Rapid detection of landslides is critical for emergency response and disaster mitigation. Here we develop a global landslide detection tool in Google Earth Engine that uses satellite radar data to measure changes in the ground surface properties. We find that we can detect areas with high landslide density within days of a triggering event. Our approach allows the broader hazard community to utilize these state-of-the-art data for improved situational awareness of landslide hazards.
Qiwen Lin, Yufeng Wang, Yu Xie, Qiangong Cheng, and Kaifeng Deng
Nat. Hazards Earth Syst. Sci., 22, 639–657, https://doi.org/10.5194/nhess-22-639-2022, https://doi.org/10.5194/nhess-22-639-2022, 2022
Short summary
Short summary
Fracturing and fragmentation of rock blocks are important and universal phenomena during the movement of rock avalanches (large and long-run-out rockslide-debris avalanches). The movement of a fragmenting rock block is simulated by the discrete element method, aiming to quantify the fracturing and fragmentation effect of the block in propagation. The fracturing and fragmentation processes and their influences on energy transformation in the system are described in detail.
Napoleon Gudino-Elizondo, Matthew W. Brand, Trent W. Biggs, Alejandro Hinojosa-Corona, Álvaro Gómez-Gutiérrez, Eddy Langendoen, Ronald Bingner, Yongping Yuan, and Brett F. Sanders
Nat. Hazards Earth Syst. Sci., 22, 523–538, https://doi.org/10.5194/nhess-22-523-2022, https://doi.org/10.5194/nhess-22-523-2022, 2022
Short summary
Short summary
Mass movement hazards in the form of gullies and landslides pose significant risks in urbanizing areas yet are poorly documented. This paper presents observations and modeling of mass movement events over a 5-year period in Tijuana, Mexico. Three major events were observed, and all were linked to water resources infrastructure failures (WRIFs), namely leaks and breaks in water supply pipes. Modeling shows that WRIF-based erosion was also a non-negligible contributor to the total sediment budget.
David G. Milledge, Dino G. Bellugi, Jack Watt, and Alexander L. Densmore
Nat. Hazards Earth Syst. Sci., 22, 481–508, https://doi.org/10.5194/nhess-22-481-2022, https://doi.org/10.5194/nhess-22-481-2022, 2022
Short summary
Short summary
Earthquakes can trigger thousands of landslides, causing severe and widespread damage. Efforts to understand what controls these landslides rely heavily on costly and time-consuming manual mapping from satellite imagery. We developed a new method that automatically detects landslides triggered by earthquakes using thousands of free satellite images. We found that in the majority of cases, it was as skilful at identifying the locations of landslides as the manual maps that we tested it against.
Sohrab Sharifi, Michael T. Hendry, Renato Macciotta, and Trevor Evans
Nat. Hazards Earth Syst. Sci., 22, 411–430, https://doi.org/10.5194/nhess-22-411-2022, https://doi.org/10.5194/nhess-22-411-2022, 2022
Short summary
Short summary
This study is devoted to comparing the effectiveness of three different filters for noise reduction of instruments. It was observed that the Savitzky–Golay and Gaussian-weighted moving average filters outperform the simple moving average. Application of these two filters in real-time landslide monitoring leads to timely detection of acceleration moment and better preservation of information regarding displacement and velocity.
Alex Garcés, Gerardo Zegers, Albert Cabré, Germán Aguilar, Aldo Tamburrino, and Santiago Montserrat
Nat. Hazards Earth Syst. Sci., 22, 377–393, https://doi.org/10.5194/nhess-22-377-2022, https://doi.org/10.5194/nhess-22-377-2022, 2022
Short summary
Short summary
We propose a workflow to model the response of an alluvial fan located in the Atacama Desert during an extreme storm event. For this alluvial fan, five different deposits were identified and associated with different debris flow surges. Using a commercial software program, our workflow concatenates these surges into one model. This study depicts the significance of the mechanical classification of debris flows to reproduce how an alluvial fan controls the tributary–river junction connectivity.
Jim S. Whiteley, Arnaud Watlet, J. Michael Kendall, and Jonathan E. Chambers
Nat. Hazards Earth Syst. Sci., 21, 3863–3871, https://doi.org/10.5194/nhess-21-3863-2021, https://doi.org/10.5194/nhess-21-3863-2021, 2021
Short summary
Short summary
This work summarises the contribution of geophysical imaging methods to establishing and operating local landslide early warning systems, demonstrated through a conceptual framework. We identify developments in geophysical monitoring equipment, the spatiotemporal resolutions of these approaches and methods to translate geophysical to geotechnical information as the primary benefits that geophysics brings to slope-scale early warning.
Vipin Kumar, Léna Cauchie, Anne-Sophie Mreyen, Mihai Micu, and Hans-Balder Havenith
Nat. Hazards Earth Syst. Sci., 21, 3767–3788, https://doi.org/10.5194/nhess-21-3767-2021, https://doi.org/10.5194/nhess-21-3767-2021, 2021
Short summary
Short summary
The SE Carpathians belong to one of the most active seismic regions of Europe. In recent decades, extreme rainfall events have also been common. These natural processes result in frequent landslides, particularly of a debris flow type. Despite such regimes, the region has been little explored to understand the response of the landslides in seismic and rainfall conditions. This study attempts to fill this gap by evaluating landslide responses under seismic and extreme-rainfall regimes.
Karel Martínek, Kryštof Verner, Tomáš Hroch, Leta A. Megerssa, Veronika Kopačková, David Buriánek, Ameha Muluneh, Radka Kalinová, Miheret Yakob, and Muluken Kassa
Nat. Hazards Earth Syst. Sci., 21, 3465–3487, https://doi.org/10.5194/nhess-21-3465-2021, https://doi.org/10.5194/nhess-21-3465-2021, 2021
Short summary
Short summary
This study combines field geological and geohazard mapping with remote sensing data. Geostatistical analysis evaluated precipitation, land use, vegetation density, rock mass strength, and tectonics. Contrasting tectonic and climatic setting of the Main Ethiopian Rift and uplifted Ethiopian Plateau have major impacts on the distribution of landslides.
Lauren Zweifel, Maxim Samarin, Katrin Meusburger, and Christine Alewell
Nat. Hazards Earth Syst. Sci., 21, 3421–3437, https://doi.org/10.5194/nhess-21-3421-2021, https://doi.org/10.5194/nhess-21-3421-2021, 2021
Short summary
Short summary
Mountainous grassland areas can be severely affected by soil erosion, such as by shallow landslides. With an automated mapping approach we are able to locate shallow-landslide sites on aerial images for 10 different study sites across Swiss mountain regions covering a total of 315 km2. Using a statistical model we identify important explanatory variables for shallow-landslide occurrence for the individual sites as well as across all regions, which highlight slope, aspect and terrain roughness.
Ivo Janos Fustos-Toribio, Bastian Morales-Vargas, Marcelo Somos-Valenzuela, Pablo Moreno-Yaeger, Ramiro Muñoz-Ramirez, Ines Rodriguez Araneda, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci., 21, 3015–3029, https://doi.org/10.5194/nhess-21-3015-2021, https://doi.org/10.5194/nhess-21-3015-2021, 2021
Short summary
Short summary
Links between debris flow and volcanic evolution are an open question in the southern Andes. We modelled the catastrophic debris flow using field data, a geotechnical approach and numerical modelling of the Petrohué event (Chile, 2017). Our results indicated new debris-flow-prone zones. Finally, we propose considering connections between volcanoes and debris flow in the southern Andes.
Katy Burrows, David Milledge, Richard J. Walters, and Dino Bellugi
Nat. Hazards Earth Syst. Sci., 21, 2993–3014, https://doi.org/10.5194/nhess-21-2993-2021, https://doi.org/10.5194/nhess-21-2993-2021, 2021
Short summary
Short summary
When cloud cover obscures optical satellite imagery, there are two options remaining for generating information on earthquake-triggered landslide locations: (1) models which predict landslide locations based on, e.g., slope and ground shaking data and (2) satellite radar data, which penetrates cloud cover and is sensitive to landslides. Here we show that the two approaches can be combined to give a more consistent and more accurate model of landslide locations after an earthquake.
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, https://doi.org/10.5194/nhess-21-2773-2021, 2021
Short summary
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Jason Goetz, Robin Kohrs, Eric Parra Hormazábal, Manuel Bustos Morales, María Belén Araneda Riquelme, Cristián Henríquez, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 21, 2543–2562, https://doi.org/10.5194/nhess-21-2543-2021, https://doi.org/10.5194/nhess-21-2543-2021, 2021
Short summary
Short summary
Debris flows are fast-moving landslides that can cause incredible destruction to lives and property. Using the Andes of Santiago as an example, we developed tools to finetune and validate models predicting likely runout paths over large regions. We anticipate that our automated approach that links the open-source R software with SAGA-GIS will make debris-flow runout simulation more readily accessible and thus enable researchers and spatial planners to improve regional-scale hazard assessments.
Christian Zangerl, Annemarie Schneeberger, Georg Steiner, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 21, 2461–2483, https://doi.org/10.5194/nhess-21-2461-2021, https://doi.org/10.5194/nhess-21-2461-2021, 2021
Short summary
Short summary
The Köfels rockslide in the Ötztal Valley (Austria) represents the largest known extremely rapid rockslide in metamorphic rock masses in the Alps and was formed in the early Holocene. Although many hypotheses for the conditioning and triggering factors were discussed in the past, until now no scientifically accepted explanatory model has been found. This study provides new data and numerical modelling results to better understand the cause and triggering factors of this gigantic natural event.
Nan Wang, Luigi Lombardo, Marj Tonini, Weiming Cheng, Liang Guo, and Junnan Xiong
Nat. Hazards Earth Syst. Sci., 21, 2109–2124, https://doi.org/10.5194/nhess-21-2109-2021, https://doi.org/10.5194/nhess-21-2109-2021, 2021
Short summary
Short summary
This study exploits 66 years of flash flood disasters across China.
The conclusions are as follows. The clustering procedure highlights distinct spatial and temporal patterns of flash flood disasters at different scales. There are distinguished seasonal, yearly and even long-term persistent flash flood behaviors of flash flood disasters. Finally, the decreased duration of clusters in the recent period indicates a possible activation induced by short-duration extreme rainfall events.
Xun Wang, Marco Otto, and Dieter Scherer
Nat. Hazards Earth Syst. Sci., 21, 2125–2144, https://doi.org/10.5194/nhess-21-2125-2021, https://doi.org/10.5194/nhess-21-2125-2021, 2021
Short summary
Short summary
We applied a high-resolution, gridded atmospheric data set combined with landslide inventories to investigate the atmospheric triggers, define triggering thresholds, and characterize the climatic disposition of landslides in Kyrgyzstan and Tajikistan. Our results indicate the crucial role of snowmelt in landslide triggering and prediction in Kyrgyzstan and Tajikistan, as well as the added value of climatic disposition derived from atmospheric triggering conditions.
Andrea Abbate, Monica Papini, and Laura Longoni
Nat. Hazards Earth Syst. Sci., 21, 2041–2058, https://doi.org/10.5194/nhess-21-2041-2021, https://doi.org/10.5194/nhess-21-2041-2021, 2021
Short summary
Short summary
In this paper the relation between the intensity of meteorological events and the magnitude of triggered geo-hydrological issues was examined. A back analysis was developed across a region of the central Alps. The meteorological triggers were interpreted using two approaches: the first using local rain gauge data and a new one considering meteorological reanalysis maps. The results obtained were compared and elaborated for defining a magnitude of each geo-hydrological event.
Isidro Cantarino, Miguel Angel Carrion, Jose Sergio Palencia-Jimenez, and Víctor Martínez-Ibáñez
Nat. Hazards Earth Syst. Sci., 21, 1847–1866, https://doi.org/10.5194/nhess-21-1847-2021, https://doi.org/10.5194/nhess-21-1847-2021, 2021
Short summary
Short summary
Risk ratio (RR), developed in this paper, stands out as a robust indicator for finding the relationship between residential construction and its associated landslide risk. It proved especially useful for municipalities on the Mediterranean coast, since it differentiates between those that take on a higher risk and those that do not. Our research establishes valuable criteria to find how suitable a specific local entity's risk management is and explore what causes the incidence of landslide risk.
Marta Martinengo, Daniel Zugliani, and Giorgio Rosatti
Nat. Hazards Earth Syst. Sci., 21, 1769–1784, https://doi.org/10.5194/nhess-21-1769-2021, https://doi.org/10.5194/nhess-21-1769-2021, 2021
Short summary
Short summary
Rainfall thresholds are relations between rainfall intensity and duration on which the forecast of the possible occurrence of a debris flow can be based. To check the robustness of a physically based stony debris flow rainfall threshold, in this work we developed a procedure to estimate the effects of various sources of error on the determination of the threshold parameters. Results show that these effects are limited and therefore show the good robustness of the threshold estimate.
Anne-Laure Argentin, Jörg Robl, Günther Prasicek, Stefan Hergarten, Daniel Hölbling, Lorena Abad, and Zahra Dabiri
Nat. Hazards Earth Syst. Sci., 21, 1615–1637, https://doi.org/10.5194/nhess-21-1615-2021, https://doi.org/10.5194/nhess-21-1615-2021, 2021
Short summary
Short summary
This study relies on topography to simulate the origin and displacement of potentially river-blocking landslides. It highlights a continuous range of simulated landslide dams that go unnoticed in the field due to their small scale. The computation results show that landslide-dammed lake volume can be estimated from upstream drainage area and landslide volume, thus enabling an efficient hazard assessment of possible landslide-dammed lake volume – and flooding magnitude in case of dam failure.
Clàudia Abancó, Georgina L. Bennett, Adrian J. Matthews, Mark Anthony M. Matera, and Fibor J. Tan
Nat. Hazards Earth Syst. Sci., 21, 1531–1550, https://doi.org/10.5194/nhess-21-1531-2021, https://doi.org/10.5194/nhess-21-1531-2021, 2021
Short summary
Short summary
In 2018 Typhoon Mangkhut triggered thousands of landslides in the Itogon region (Philippines). An inventory of 1101 landslides revealed that landslides mostly occurred in slopes covered by wooded grassland in clayey materials, predominantly facing E-SE. Satellite rainfall and soil moisture data associated with Typhoon Mangkhut and the previous months in 2018 were analyzed. Results showed that landslides occurred during high-intensity rainfall that coincided with the highest soil moisture values.
Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 21, 1467–1471, https://doi.org/10.5194/nhess-21-1467-2021, https://doi.org/10.5194/nhess-21-1467-2021, 2021
Short summary
Short summary
This is a perspective based on personal experience on whether a large number of landslides caused by a single trigger (e.g. an earthquake, an intense rainfall, a rapid snowmelt event) or by multiple triggers in a period can be predicted, in space and time, considering the consequences of slope failures.
Cited articles
Aimaiti, Y., Liu, W., Yamazaki, F., and Maruyama, Y.: Earthquake-Induced
Landslide Mapping for the 2018 Hokkaido Eastern Iburi Earthquake Using
PALSAR-2 Data, Remote Sensing, 11, 2351, https://doi.org/10.3390/rs11202351, 2019. a
Baghdadi, N., Choker, M., Zribi, M., Hajj, M. E., Paloscia, S., Verhoest,
N. E., Lievens, H., Baup, F., and Mattia, F.: A new empirical model for radar
scattering from bare soil surfaces, Remote Sensing, 8, 920, https://doi.org/10.3390/rs8110920, 2016. a, b
Baum, R. L., Godt, J. W., and Savage, W. Z.: Estimating the timing and location
of shallow rainfall-induced landslides using a model for transient,
unsaturated infiltration, J. Geophys. Res.-Ea. Surf.,
115, F03013, https://doi.org/10.1029/2009JF001321, 2010. a
BBC News: Cyclone Idai: Zimbabwe school hit by landslide,
https://www.bbc.com/news/world-africa-47602399 (last access: 5 November 2021), news report 17 March 2019, 2019. a
Bekaert, D. P., Handwerger, A. L., Agram, P., and Kirschbaum, D. B.:
InSAR-based detection method for mapping and monitoring slow-moving
landslides in remote regions with steep and mountainous terrain: An
application to Nepal, Remote Sens. Environ., 249, 111983, https://doi.org/10.1016/j.rse.2020.111983, 2020. a
Belenguer-Plomer, M. A., Tanase, M. A., Fernandez-Carrillo, A., and Chuvieco,
E.: Burned area detection and mapping using Sentinel-1 backscatter
coefficient and thermal anomalies, Remote Sens. Environ., 233,
111345, https://doi.org/10.1016/j.rse.2019.111345, 2019. a
Bell, R., Fort, M., Götz, J., Bernsteiner, H., Andermann, C., Etzlstorfer,
J., Posch, E., Gurung, N., and Gurung, S.: Major geomorphic events and
natural hazards during monsoonal precipitation 2018 in the Kali Gandaki
Valley, Nepal Himalaya, Geomorphology, 372, 107451, https://doi.org/10.1016/j.geomorph.2020.107451, 2021. a, b
Bernard, T. G., Lague, D., and Steer, P.: Beyond 2D landslide inventories and their rollover: synoptic 3D inventories and volume from repeat lidar data, Earth Surf. Dynam., 9, 1013–1044, https://doi.org/10.5194/esurf-9-1013-2021, 2021. a
Bogaard, T. and Greco, R.: Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds, Nat. Hazards Earth Syst. Sci., 18, 31–39, https://doi.org/10.5194/nhess-18-31-2018, 2018. a
Burrows, K.: KABurrows/Supplement-to-nhess-2022-21: v1.0 (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.6984291, 2022. a
Cabré, A., Remy, D., Aguilar, G., Carretier, S., and Riquelme, R.: Mapping
rainstorm erosion associated with an individual storm from InSAR coherence
loss validated by field evidence for the Atacama Desert, Earth Surf.
Proc. Landf., 45, 2091–2106, https://doi.org/10.1002/esp.4868, 2020. a
Copernicus: Copernicus Sentinel data, Copernicus [data set], https://scihub.copernicus.eu/dhus/#/home, last access: August 2022. a
Dahal, R. K. and Hasegawa, S.: Representative rainfall thresholds for
landslides in the Nepal Himalaya, Geomorphology, 100, 429–443, 2008. a
Dubois, P. C., Van Zyl, J., and Engman, T.: Measuring soil moisture with
imaging radars, IEEE T. Geosci. Remote, 33,
915–926, 1995. a
Emberson, R., Kirschbaum, D. B., Amatya, P., Tanyas, H., and Marc, O.: Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories, Nat. Hazards Earth Syst. Sci., 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022, 2022. a, b, c, d
Esposito, G., Marchesini, I., Mondini, A. C., Reichenbach, P., Rossi, M., and Sterlacchini, S.: A spaceborne SAR-based procedure to support the detection of landslides, Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020, 2020. a
Filipponi, F.: Sentinel-1 GRD preprocessing workflow, in: Multidisciplinary
Digital Publishing Institute Proceedings, MDPI, vol. 18, p. 11, https://doi.org/10.3390/ECRS-3-06201, 2019. a
Franceschini, R., Rosi, A., Catani, F., and Casagli, N.: Exploring a landslide
inventory created by automated web data mining: the case of Italy,
Landslides, 19, 841–853, 2022. a
Gabet, E. J., Burbank, D. W., Putkonen, J. K., Pratt-Sitaula, B. A., and Ojha,
T.: Rainfall thresholds for landsliding in the Himalayas of Nepal,
Geomorphology, 63, 131–143, 2004. a
Ge, P., Gokon, H., Meguro, K., and Koshimura, S.: Study on the Intensity and
Coherence Information of High-Resolution ALOS-2 SAR Images for Rapid Massive
Landslide Mapping at a Pixel Level, Remote Sens., 11, 2808, https://doi.org/10.3390/rs11232808, 2019. a
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rainfall thresholds
for the initiation of landslides in central and southern Europe, Meteorol. Atmos. Phys., 98, 239–267, 2007. a
Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I.,
Rossi, M., and Melillo, M.: Geographical landslide early warning systems,
Earth-Sci. Rev., 200, 102973, https://doi.org/10.1016/j.earscirev.2019.102973, 2020. a
Handwerger, A. L., Huang, M.-H., Jones, S. Y., Amatya, P., Kerner, H. R., and Kirschbaum, D. B.: Generating landslide density heatmaps for rapid detection using open-access satellite radar data in Google Earth Engine, Nat. Hazards Earth Syst. Sci., 22, 753–773, https://doi.org/10.5194/nhess-22-753-2022, 2022. a
Hashimoto, R., Tsuchida, T., Moriwaki, T., and Kano, S.: Hiroshima Prefecture
geo-disasters due to Western Japan Torrential rainfall in July 2018, Soils
and Foundations, 60, 283–299, 2020. a
Hernandez, N. D., Pastrana, A. A., Garcia, L. C., de Leon, J. C. V., Alvarez,
A. Z., Morales, L. D., Nemiga, X. A., and Posadas, G. D.: Co-seismic
landslide detection after M 7.4 earthquake on June 23, 2020, in Oaxaca,
Mexico, based on rapid mapping method using high and medium resolution
synthetic aperture radar (SAR) images, Landslides, 18, 3833–3844, 2021. a
Hoekman, D. H. and Reiche, J.: Multi-model radiometric slope correction of SAR
images of complex terrain using a two-stage semi-empirical approach, Remote
Sens. Environ., 156, 1–10, 2015. a
Hu, X., Bürgmann, R., Lu, Z., Handwerger, A. L., Wang, T., and Miao, R.:
Mobility, thickness, and hydraulic diffusivity of the slow-moving Monroe
landslide in California revealed by L-band satellite radar interferometry,
J. Geophys. Res.-Sol. Ea., 124, 7504–7518, 2019. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci.
Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Iverson, R. M.: Landslide triggering by rain infiltration, Water Resour.
Res., 36, 1897–1910, 2000. a
Kang, Y., Lu, Z., Zhao, C., Xu, Y., Kim, J.-w., and Gallegos, A. J.: InSAR
monitoring of creeping landslides in mountainous regions: A case study in
Eldorado National Forest, California, Remote Sens. Environ., 258,
112400, https://doi.org/10.1016/j.rse.2021.112400, 2021. a
Kirschbaum, D. and Stanley, T.: Satellite-based assessment of
rainfall-triggered landslide hazard for situational awareness, Earth's
Future, 6, 505–523, 2018. a
Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A.: A global
landslide catalog for hazard applications: method, results, and limitations,
Nat. Hazards, 52, 561–575, 2010. a
Konishi, T. and Suga, Y.: Landslide detection using COSMO-SkyMed images: a
case study of a landslide event on Kii Peninsula, Japan, Eur. J.
Remote Sens., 51, 205–221, 2018. a
Konishi, T. and Suga, Y.: Landslide detection with ALOS-2/PALSAR-2 data using
convolutional neural networks: a case study of 2018 Hokkaido Eastern Iburi
earthquake, in: Proc. of SPIE Vol, SPIE digital library, vol. 11154, 111540H–1, https://doi.org/10.1117/12.2531695, 2019. a
Ma, T., Li, C., Lu, Z., and Bao, Q.: Rainfall intensity–duration thresholds
for the initiation of landslides in Zhejiang Province, China, Geomorphology,
245, 193–206, 2015. a
Marc, O., Stumpf, A., Malet, J.-P., Gosset, M., Uchida, T., and Chiang, S.-H.: Initial insights from a global database of rainfall-induced landslide inventories: the weak influence of slope and strong influence of total storm rainfall, Earth Surf. Dynam., 6, 903–922, https://doi.org/10.5194/esurf-6-903-2018, 2018. a, b
Marc, O., Behling, R., Andermann, C., Turowski, J. M., Illien, L., Roessner, S., and Hovius, N.: Long-term erosion of the Nepal Himalayas by bedrock landsliding: the role of monsoons, earthquakes and giant landslides, Earth Surf. Dynam., 7, 107–128, https://doi.org/10.5194/esurf-7-107-2019, 2019a. a, b, c
Marc, O., Gosset, M., Saito, H., Uchida, T., and Malet, J.-P.: Spatial patterns
of storm-induced landslides and their relation to rainfall anomaly maps,
Geophys. Res. Lett., 46, 11167–11177, 2019b. a
Masato, O., Abe, T., Takeo, T., and Masanobu, S.: Landslide detection in
mountainous forest areas using polarimetry and interferometric coherence,
Earth Planet. Space, 72, https://doi.org/10.1186/s40623-020-01191-5, 2020. a
Milledge, D. G., Bellugi, D. G., Watt, J., and Densmore, A. L.: Automated determination of landslide locations after large trigger events: advantages and disadvantages compared to manual mapping, Nat. Hazards Earth Syst. Sci., 22, 481–508, https://doi.org/10.5194/nhess-22-481-2022, 2022. a
Ministry of Information, P. and Broadcasting, Z.: Twitter,
https://twitter.com/InfoMinZW/status/1107121417773035521 (last access: 5 November 2021), tweet
@infoMinZW, 17 March 2019, 2019. a
Mondini, A. C.: Measures of spatial autocorrelation changes in multitemporal
SAR images for event landslides detection, Remote Sens., 9, 554, https://doi.org/10.3390/rs9060554, 2017. a, b
Mondini, A. C., Santangelo, M., Rocchetti, M., Rossetto, E., Manconi, A., and
Monserrat, O.: Sentinel-1 SAR amplitude imagery for rapid landslide
detection, Remote Sens., 11, 760, https://doi.org/10.3390/rs11070760, 2019. a, b, c
Motohka, T., Shimada, M., Uryu, Y., and Setiabudi, B.: Using time series
PALSAR gamma nought mosaics for automatic detection of tropical
deforestation: A test study in Riau, Indonesia, Remote Sens.
Environ., 155, 79–88, 2014. a
OCHA: Cyclone Idai hits Zimbambe, causing flash flooding, death and
destruction of livelihoods,
https://www.unocha.org/story/cyclone-idai-hits-zimbambe-causing-flash-flooding-death-and-destruction-livelihoods (last access: 5 November 2021),
news report 17th March 2019, 2019. a
Ozturk, U., Saito, H., Matsushi, Y., Crisologo, I., and Schwanghart, W.: Can
global rainfall estimates (satellite and reanalysis) aid landslide
hindcasting?, Landslides, 18, 3119–3133, 2021. a
Petley, D.: Global patterns of loss of life from landslides, Geology, 40,
927–930, 2012. a
Pokharel, B., Alvioli, M., and Lim, S.: Assessment of earthquake-induced
landslide inventories and susceptibility maps using slope unit-based logistic
regression and geospatial statistics, Sci. Rep., 11, 1–15, 2021. a
Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F., Champlain, D., and Godt, J. W.: Map data of landslides triggered by the 25 April 2015 Mw 7.8 Gorkha, Nepal earthquake, U.S. Geological Survey data release [data set], https://doi.org/10.5066/F7DZ06F9, 2017. a, b, c, d, e, f, g
Sekajugo, J., Kagoro-Rugunda, G., Mutyebere, R., Kabaseke, C., Namara, E.,
Dewitte, O., Kervyn, M., and Jacobs, L.: Can citizen scientists provide a
reliable geo-hydrological hazard inventory? An analysis of biases,
sensitivity and precision for the Rwenzori Mountains, Uganda, Environ.
Res. Lett., 17, 045011, https://doi.org/10.1088/1748-9326/ac5bb5, 2022. a, b
Solari, L., Del Soldato, M., Raspini, F., Barra, A., Bianchini, S., Confuorto,
P., Casagli, N., and Crosetto, M.: Review of Satellite Interferometry for
Landslide Detection in Italy, Remote Sens., 12, 1351, https://doi.org/10.3390/rs12081351, 2020. a
Spaans, K. and Hooper, A.: InSAR processing for volcano monitoring and other
near-real time applications, J. Geophys. Res.-Sol. Ea.,
121, 2947–2960, 2016. a
Tanyaş, H., Hill, K., Mahoney, L., Fadel, I., and Lombardo, L.: The
world's second-largest, recorded landslide event: Lessons learnt from the
landslides triggered during and after the 2018 Mw 7.5 Papua New Guinea
earthquake, Eng. Geol., 297, 106504, https://doi.org/10.1016/j.enggeo.2021.106504, 2022. a, b, c
Uieda, L., Tian, D., Leong, W. J., Jones, M., Schlitzer, W., Toney, L., Grund,
M., Yao, J., Magen, Y., Materna, K., Newton, T., Anant, A., Ziebarth, M.,
Quinn, J., and Wessel, P.: PyGMT: A Python interface for the Generic
Mapping Tools, Zenodo [code], https://doi.org/10.5281/zenodo.5607255, 2021. a
U.S Geological Survey: Landsat 8 imagery, U.S Geological Survey [data set], https://earthexplorer.usgs.gov/, last access: August 2022. a
Villard, L. and Borderies, P.: Backscattering Border Effects for Forests at
C-band, PIERS, 3, 731–735, 2007. a
Vollrath, A., Mullissa, A., and Reiche, J.: Angular-based radiometric slope
correction for Sentinel-1 on google earth engine, Remote Sens., 12, 1867, https://doi.org/10.3390/rs12111867,
2020. a, b
Williams, J. G., Rosser, N. J., Kincey, M. E., Benjamin, J., Oven, K. J., Densmore, A. L., Milledge, D. G., Robinson, T. R., Jordan, C. A., and Dijkstra, T. A.: Satellite-based emergency mapping using optical imagery: experience and reflections from the 2015 Nepal earthquakes, Nat. Hazards Earth Syst. Sci., 18, 185–205, https://doi.org/10.5194/nhess-18-185-2018, 2018. a, b, c
Wilson, R. C. and Wieczorek, G. F.: Rainfall Thresholds for the Initiation
of Debris Flows at La Honda, California, Environ.
Eng. Geosci. I, 1, 11–27, https://doi.org/10.2113/gseegeosci.I.1.11, 1995. a
Wu, Y.-M., Lan, H.-X., Gao, X., Li, L.-P., and Yang, Z.-H.: A simplified
physically based coupled rainfall threshold model for triggering landslides,
Eng. Geol., 195, 63–69, 2015. a
Yamada, M., Matsushi, Y., Chigira, M., and Mori, J.: Seismic recordings of
landslides caused by Typhoon Talas (2011), Japan, Geophys. Res.
Lett., 39, L13301, https://doi.org/10.1029/2012GL052174, 2012. a, b
Yun, S.-H., Hudnut, K., Owen, S., Webb, F., Simons, M., Sacco, P., Gurrola, E., Manipon, G., Liang, C., Fielding, E., Milillo, P., Hua, H., and Coletta, A.: Rapid Damage Mapping for the 2015 Mw 7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO-SkyMed and ALOS-2 Satellites, Seismol. Res. Lett., 86, 1549–1556, 2015. a, b, c
Short summary
The locations of triggered landslides following a rainfall event can be identified in optical satellite images. However cloud cover associated with the rainfall means that these images cannot be used to identify landslide timing. Timings of landslides triggered during long rainfall events are often unknown. Here we present methods of using Sentinel-1 satellite radar data, acquired every 12 d globally in all weather conditions, to better constrain the timings of rainfall-triggered landslides.
The locations of triggered landslides following a rainfall event can be identified in optical...
Altmetrics
Final-revised paper
Preprint