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Abstract. Heavy-rainfall events in mountainous areas trig-
ger destructive landslides, which pose a risk to people and
infrastructure and significantly affect the landscape. Land-
slide locations are commonly mapped using optical satellite
imagery, but in some regions their timings are often poorly
constrained due to persistent cloud cover. Physical and em-
pirical models that provide insights into the processes behind
the triggered landsliding require information on both the spa-
tial extent and the timing of landslides. Here we demonstrate
that Sentinel-1 synthetic aperture radar amplitude time series
can be used to constrain landslide timing to within a few days
and present four techniques to accomplish this based on time
series of (i) the difference in amplitude between the landslide
and its surroundings, (ii) the spatial variability in amplitude
between pixels within the landslide, and (iii) geometric shad-
ows and (iv) geometric bright spots cast within the landslide.
We test these techniques on three inventories of landslides
of known timing, covering various settings and triggers, and
demonstrate that a method combining them allows 20 %–
30 % of landslides to be timed with an accuracy of 80 %. Ap-
plication of this method could provide an insight into land-
slide timings throughout events such as the Indian summer
monsoon, which triggers large numbers of landslides every
year and has until now been limited to annual-scale analy-
sis.

1 Introduction

Every year, many mountainous areas in tropical zones are
affected by destructive rainfall-induced landslide events that
pose a major risk to people and infrastructure (Petley, 2012).
With the advent of Earth observation from space, invento-
ries of these landslides are routinely compiled from optical
and multi-spectral satellite imagery (e.g. Marc et al., 2018;
Emberson et al., 2022). These data are then used to inform
hazard management, as inputs to physical, empirical and sta-
tistical models, and to assess the impact the event has had on
the landscape, for example by estimating the volume of sed-
iment eroded (Jones et al., 2021; Kirschbaum and Stanley,
2018; Ozturk et al., 2021; Wu et al., 2015).

Landslide early warning systems, susceptibility zonation
maps, nowcasts and hazard scenarios use information on the
size, location and timing of past landslides alongside in-
formation on the landscape conditions and triggering event
(Guzzetti et al., 2020). While optical satellite imagery pro-
vides information on the size and location of landslides,
cloud-free, daylight images are required. In unfavourable
weather conditions, there may be a delay of weeks or months
before cloud-free imagery over the whole area affected
by triggered landslides is acquired (Robinson et al., 2019;
Williams et al., 2018). This means that the timing of the
landslides is often poorly constrained by the optical satel-
lite imagery. In practice, this strongly limits or simply pre-
vents any attempt to relate landslide metrics and hydrome-
teorological metrics resulting from successive or long rain-
fall events, whether through empirical scalings (e.g. Marc
et al., 2018, 2019b) or physical modelling (e.g. Wilson and
Wieczorek, 1995; Baum et al., 2010). In many tropical set-
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tings, multiple successive typhoons are common, for exam-
ple typhoons Nesat, Haitang and Talim, which made landfall
within a 2-month period in 2017 in Taiwan (Janapati et al.,
2019). If no cloud-free optical satellite imagery is acquired
between such successive trigger events, the relationship be-
tween the hydrological impact of the storms and the trig-
gered landslides cannot be precisely established. Similarly,
the Indian summer monsoon (June–September) triggers hun-
dreds of landslides every year in the Nepal Himalaya and
cloud-free optical satellite imagery is unlikely to be available
throughout this period (Robinson et al., 2019). This limits
analysis of these landslides to the seasonal scale and prevents
association of individual landslides or spatio-temporal clus-
ters of landslides to specific peaks in rainfall (e.g. Marc et al.,
2019a; Jones et al., 2021). Studies based on optical satellite
images affected by cloud cover that attempt to map landslides
triggered by sequences of earthquakes and/or rainfall events
may also be unable to distinguish between different triggers
(e.g. Ferrario, 2019; Martha et al., 2017; Tanyaş et al., 2022).

Beyond remote sensing, several approaches have been
used to constrain landslide timing. Landslides that occur
close to inhabited areas or that damage important pieces of
infrastructure may be described in news reports or on so-
cial media (e.g. Kirschbaum et al., 2010; Franceschini et al.,
2022). Information on the timing of such landslides can also
be obtained from interviews with local residents (Bell et al.,
2021) and through citizen science initiatives (Sekajugo et al.,
2022). Rainfall intensity–duration thresholds have previously
been derived for landslides dated in this way (e.g. Dahal and
Hasegawa, 2008) and for landslides whose timings and prop-
erties are known through monitoring and field surveys (e.g.
Guzzetti et al., 2007; Ma et al., 2015). However, such in-
formation on landslide timing is unlikely to be available for
the majority of landslides in an inventory and is usually bi-
ased towards populated areas and areas accessible by road
(Sekajugo et al., 2022). Seismic records of landslides can
also provide highly precise information on their timings but
will mostly record large landslides and require multiple seis-
mic stations to allow timing of an individual, localised land-
slide (e.g. Yamada et al., 2012; Hibert et al., 2019) Current
methods of obtaining landslide timing information in the ab-
sence of cloud-free optical satellite images are therefore not
widely applicable.

Regularly acquired synthetic aperture radar (SAR) images,
for example those acquired by the European Space Agency
Sentinel-1 constellation, represent a new opportunity to ob-
tain landslide timing information for many landslides at a
regional scale. SAR images penetrate cloud cover, and the
Sentinel-1 satellites acquire images every 12 d on two tracks
over all land masses globally. Numerous studies have demon-
strated that SAR data can be used to detect the spatial distri-
bution of landslides in the case where their timing is already
known, for example in the case of earthquake-triggered land-
slides where it can be assumed that the landslides occurred
concurrently with ground shaking (Aimaiti et al., 2019; Bur-

rows et al., 2019, 2020; Ge et al., 2019; Konishi and Suga,
2019; Masato et al., 2020; Mondini et al., 2019; Yun et al.,
2015). SAR can be also used to monitor movements of slow-
moving landslides (e.g. Ao et al., 2020; Bekaert et al., 2020;
Hu et al., 2019; Kang et al., 2021; Solari et al., 2020). Mon-
dini et al. (2019) used SAR to establish the timing of a sin-
gle large landslide. However, to date SAR has not been used
to refine timing estimates of landslide inventories. Here we
present landslide timing methods based on the Sentinel-1
SAR dataset in Google Earth Engine that represent a step
towards this goal of improved landslide inventory temporal
resolution and could unlock new comparisons between mea-
sured or modelled hydrological time series and landslide oc-
currence.

2 Data and methods

In order to obtain information on event timings for land-
slides triggered by sequences of earthquakes or rainfall or by
long rainfall events, we propose a two-step process, whereby
landslide locations are mapped as polygons using optical or
multi-spectral satellite imagery and the timings of individual
landslides are then obtained from SAR time series. In this pa-
per we address the second of these steps. We use Sentinel-1
time series over inventories of landslides whose timings are
already known to test potential landslide timing methods.

2.1 Case studies

We used three published polygon inventories of landslides
whose timings are known a priori to test and develop land-
slide timing methods. All three inventories are located in
vegetated areas, which is generally the ideal condition for
widespread landslide mapping based on multi-spectral satel-
lite imagery.

We used two inventories of landslides triggered by short
rainfall events, whose timing is therefore known to within
a few days (rainfall time series are available in the Supple-
ment): first, landslides triggered in Hiroshima, Japan, by a
heavy-rainfall event which took place from 28 June to 9 July
2018, which were mapped using a combination of drone and
aerial imagery (inventory from The Association of Japanese
Geographers, 2019). The majority of landslides triggered by
this event are believed to have occurred during peaks in rain-
fall intensity on 6–7 July (Hashimoto et al., 2020).

Second, we used landslides triggered by Cyclone Idai in
Zimbabwe between 15–19 March 2019. This inventory was
compiled as part of the study of Emberson et al. (2022) using
post-event PlanetScope optical satellite images acquired on
20 and 24 March. Media reports on this event suggest that
the majority of landsliding occurred between 15–17 March
(BBC News, 2019; Ministry of Information and Broadcast-
ing, 2019; OCHA, 2019).
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The third inventory used to test our methods was com-
piled by Roback et al. (2017) for the Mw 7.8 Gorkha, Nepal,
earthquake, which occurred on 25 April 2015. The Nepal Hi-
malaya is an area which experiences long periods of cloud
cover and large numbers of rainfall-triggered landslides an-
nually due to the monsoon and the country’s steep topogra-
phy. The steep topography of Nepal also makes it particu-
larly challenging for SAR applications as it leads to distor-
tion of the SAR imagery. It is thus important to test land-
slide timing methods in this environment, but inventories of
rainfall-triggered landslides of known timing are not avail-
able. Therefore we instead used earthquake-triggered land-
slides. Since the inventory of Roback et al. (2017) covers a
large area (28 000 km2), with different areas having differ-
ent Sentinel-1 coverage, we focussed on triggered landslides
within three valleys: Trishuli, Bhote Kosi and Buri Gandaki.
These valleys experience large numbers of rainfall-triggered
landslides every year (Marc et al., 2019a).

All inventories were filtered to remove landslides smaller
than 2000 m2. Since the Sentinel-1 Ground Range Detected
(GRD) dataset has a pixel size of 10× 10 m, this should re-
sult in a minimum of 20 SAR pixels within each landslide.
This resulted in inventories of 543 landslides for the Hi-
roshima event and 383 for Zimbabwe. In Nepal, an additional
step was required; the Mw 7.8 mainshock on 25 April was
followed by other possible landslide triggers including the
Mw 7.3 Dolakha aftershock on 12 May as well as the annual
monsoon, whose onset was around 9 June (Williams et al.,
2018). Therefore, we also removed all landslides specified by
Roback et al. (2017) to have been triggered by an aftershock
or by rainfall and used only those triggered by the mainshock
in our analysis. This left 650 landslides in Trishuli, 1554
in Bhote Kosi and 922 in Buri Gandaki. The Dolakha af-
tershock is known to have triggered further landsliding (see
Marc et al., 2019a), and Roback et al. (2017) noted that in
some areas, no cloud-free optical satellite images were avail-
able between the mainshock and this aftershock, making it
difficult to differentiate between these two triggers. How-
ever of the three valleys we consider here, landslides asso-
ciated with this aftershock have only been observed in Bhote
Kosi, which was the closest to the epicentre (Martha et al.,
2017). Of the co-seismic landslides in Bhote Kosi, 97 % were
recorded as identifiable in imagery acquired prior to the af-
tershock and can therefore be associated definitively with the
mainshock (Roback et al., 2017). Furthermore, since the co-
event pair of SAR images for Bhote Kosi (24 April–18 May
2015) spans both the Gorkha earthquake on 25 April and the
Dolakha aftershock on 12 May, these two trigger events are
blended into a single time window by our methods in Bhote
Kosi.

2.2 Theory: SAR backscatter and landslides

A SAR satellite actively illuminates the Earth’s surface with
microwave energy and records the phase and amplitude of

the returned signal. The difference in phase between two im-
ages acquired over the same area at different times can be
used to track the movement of the Earth’s surface, for ex-
ample movement on a fault during an earthquake, while the
amplitude describes the strength of the backscattered SAR
signal. The power of the signal transmitted Pr and received
Pt by the sensor are described by Eq. (1), where λ is the
wavelength, G2 is the two-way antenna gain and R is the
slant range (Small et al., 2004).

Pr =
λ2

(4π)3
·

∫
Area

PtG
2x0

R4 dA (1)

This equation is solved to obtain x0, the backscatter coef-
ficient, which can be σ 0, γ 0 or β0 depending on whether the
integration is carried out in the ground (ellipsoid) plane, the
plane perpendicular to the look direction or the slant-range
plane respectively (Small et al., 2004). Different studies have
demonstrated that all three of these backscatter coefficients
can be applied to detect vegetation removal due to landslides
and other processes such as deforestation and wildfires (e.g.
Ban et al., 2020; Belenguer-Plomer et al., 2019; Bouvet et al.,
2018; Esposito et al., 2020; Hernandez et al., 2021; Konishi
and Suga, 2018; Mondini, 2017; Mondini et al., 2019; Mo-
tohka et al., 2014). Here we used γ 0.

SAR backscatter is dependent on a number of factors, in-
cluding the polarisation and wavelength used by the SAR
system, the local slope orientation relative to the SAR sen-
sor, and the roughness and dielectric properties (e.g. soil
moisture, presence of vegetation) of the material that the
microwave energy interacts with at the Earth’s surface.
Sentinel-1 acquires C-band SAR data with a wavelength
around 5.5 cm in two polarisations: “VV” (vertical polar-
isation) and “VH” (cross polarisation). We tested both of
these polarisations but found VV to perform better than VH
so present only the results for VV (results for VH can be
found in the Supplement). VV data have also been acquired
more consistently throughout the lifetime of Sentinel-1 than
VH data. In general, for vertically polarised SAR images,
rougher surfaces result in increased backscatter, as does in-
creased soil moisture. However, the relationship between
these properties and the SAR amplitude is not simple: rough-
ness has a stronger effect in locations with a high incidence
angle (Baghdadi et al., 2016; Dubois et al., 1995), while
changes in soil moisture have a larger effect at low incidence
angles (Baghdadi et al., 2016).

Landslides alter the local topography (and therefore the lo-
cal incidence angle) of the landscape through the movement
of material and remove vegetation, which alters the dielec-
tric properties and roughness of the Earth’s surface. For this
reason, landslides can result in both increases and decreases
in amplitude. In fact within a single landslide, the amplitude
of some pixels may increase while some decrease (e.g. Mon-
dini, 2017).
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2.3 SAR data and preprocessing

To construct our SAR amplitude time series, we used the
Google Earth Engine Sentinel-1 GRD dataset. Google Earth
Engine is a freely accessible, cloud-based platform that
allows users to access Sentinel-1 data without the tech-
nical expertise and computational facilities otherwise re-
quired to process SAR data. It also provides access to other
datasets used in this study, such as Sentinel-2 and the Shuttle
Radar Topography Mission (SRTM) digital elevation model
(DEM). The Sentinel-1 GRD data are preprocessed follow-
ing the workflow of Filipponi (2019) to obtain the backscat-
ter coefficient σ 0 at a resolution of 20× 22 m in radar co-
ordinates. The data are then resampled onto a 10 m grid in
projected coordinates. We then applied the module of Voll-
rath et al. (2020) using the 30 m SRTM DEM to carry out
an angular radiometric slope correction based on the volume
scattering model of Hoekman and Reiche (2015). This has
the effect of converting from σ 0 (normalised in the ellipsoid
plane) to γ 0 (normalised in the plane perpendicular to the lo-
cal satellite look direction). The aim of this step is to reduce
the effects of topography on the SAR backscatter. In prelimi-
nary testing, we found that γ 0 performed better than σ 0. The
module of Vollrath et al. (2020) also provides a shadow and
layover mask that can be used to remove areas that are not
imaged by the satellite due to the viewing angle and local to-
pography. This masking step is important for landslide stud-
ies as they are likely to be carried out in areas of steep topog-
raphy.

For each of our three events, we defined “pre-event”, “co-
event” and “post-event” periods (shown for each event in
Fig. 1d). The length of the co-event period was defined as
6 months based on the intended application to the Nepal
monsoon, in which landslides may occur between May and
October. However, for the three Nepal inventories, this was
reduced to 5 months in order to allow a sufficient number of
pre-event images to be acquired following the satellite launch
in 2014 and sufficient post-event images to be acquired be-
fore the end of July since few Sentinel-1 images are available
over Nepal in August and September 2015. The lengths of
the pre-event and post-event time series were selected to be
long enough to calculate statistics such as the mean without
requiring the processing of unnecessary images. These pre-
event and post-event image stacks are required in some of the
techniques outlined in Sect. 2.

Unfortunately, insufficient data were acquired on the as-
cending orbit over Buri Gandaki and Bhote Kosi in Nepal, so
we only present results based on the descending track data
for these two inventories. In Fig. 1d and throughout the pa-
per, we refer to SAR data according to the event and satellite
orbit direction; for example, the ascending track over Zim-
babwe will be referred to as Zasc. Any date for which SAR
imagery only covered part of the inventory was omitted from
the time series.

2.4 Four techniques to retrieve landslide timing from
SAR amplitude time series

Here, we present four potential techniques for analysing
Sentinel-1 GRD time series and identifying the image pair
spanning the landslide date. Figures showing these four tech-
niques applied to three example landslides can be found in
the Supplement.

2.4.1 Technique 1: landslide–background difference

We expect a landslide to result in a permanent change in an
amplitude time series. However, factors other than landslides
can also result in amplitude change. In particular, the rain-
fall that triggers the landslides will alter the soil and canopy
moisture content and so may also alter the amplitude of the
returned signal. To overcome this, we calculate a background
amplitude signal for each landslide. First, we calculated a
buffer region between 30 and 500 m around each landslide
(Fig. 2a). Then we filtered this buffer to remove any pixels
that lie within other landslide polygons and pixels that are
dissimilar to those within the landslide. In order to assess
pixel similarity, we calculated three variables from pre-event
satellite imagery. First, we calculated the greenest pixel com-
posite of the normalised difference vegetation index (NDVI)
from Sentinel-2 (or, where this was unavailable, Landsat 8)
images acquired in the year prior to each event. Pixels with
similar NDVI values are expected to have similar land cover.
For every pixel j through a stack of N pre-event images, we
used, second, the mean amplitude Amean,j (Eq. 2) and, third,
the amplitude variability 1Amean,j (Eq. 3). Pre-event am-
plitude and amplitude variability have previously been used
by Spaans and Hooper (2016) to identify statistically similar
pixels in SAR images. This allows us to remove pixels that
are unlikely to exhibit similar behaviour to those within the
landslide, for example pixels located on the opposite side of
a ridge, in a river or with different surface cover.

Amean,j =
1
N

N∑
i=1

Ai,j (2)

1Amean,j =
1
N

N∑
i=1
(Amean,j −Ai,j ) (3)

For each landslide, we calculate the median amplitude in
the landslide polygon and for these background pixels for
every image in the co-event time series. A step change in the
difference between the median landslide amplitude and the
median background amplitude is then used as an indicator of
landslide timing. As previously described, landslides can re-
sult in both increases and decreases in SAR amplitude. Thus
we accept both a step increase and a step decrease in this
metric as indicators of landslide timing.
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Figure 1. (a–c) Locations of the five inventories of triggered landslides used in this study to test landslide timings. (a, b) landslide locations
from The Association of Japanese Geographers (2019) and Emberson et al. (2022) are shown by white circles. (c) Three subsets of the
inventory of Roback et al. (2017) are shown for the Buri Gandaki, Trishuli and Bhote Kosi valleys by blue, white and pink circles respectively.
(d) SAR image acquisition timings before, during and after a defined co-event window of ∼ 6 months relative to the real event timing. The
orbit number of each track is given in brackets.

2.4.2 Technique 2: pixel variability

Ban et al. (2020) observed that in forested and grassland ar-
eas, the removal of vegetation due to forest fires led to an
increase in the variability in vertically polarised Sentinel-1
γ0 between neighbouring pixels. Since landslides result in a
similar denudation of vegetated areas, we expect that similar
effects may occur. Therefore, we calculated the standard de-
viation of γ 0 within each landslide polygon and used a step
increase in this as a potential indicator of landslide timing
(e.g. Fig. 2d).

2.4.3 Technique 3: geometric shadows

Since SAR is acquired obliquely (with an ellipsoid incidence
angle of 31–44◦ for the data used here), steep changes in
scatterer surface height can result in geometric shadows. The
wavelength of Sentinel-1 means that energy is primarily scat-
tered from the canopy in forested areas, which means that
shadows can be cast at the edges of deforested areas if these
edges run approximately perpendicular to the satellite look
direction (Fig. 2b). Bouvet et al. (2018) developed a method
for automatically detecting deforested areas based on these

geometric shadows. Since landslides remove vegetation, we
expect that shadows should also be cast at the edges of land-
slides and that the appearance of new shadows could be used
as an indicator of landslide timing. Furthermore, the three-
dimensional shape of the landslide could result in shadows
cast within the landslide itself, for example if the landslide
has a steep scar. This effect has previously been observed
within a large landslide in Nepal by Ao et al. (2020). It is
worth noting that, while Bouvet et al. (2018) applied their
methods in areas of gentle slopes, the area of a shadow cast
by an object of a given height is dependent on slope and as-
pect: trees of the same height will cast a larger shadow on
slopes facing away from the sensor than on those facing to-
wards it. Therefore, we expect this technique to be more suc-
cessful for slopes that face away from the sensor.

In comparisons of multiple inventories of the same event
prepared by different people or groups, there are often small
discrepancies in the exact size, shape and location of each
landslide (Milledge et al., 2022; Pokharel et al., 2021). Spa-
tial mismatches between landslide polygon locations could
lead to pixels on the edges of landslides being excluded from
the analysis. Since shadow pixels are most likely to lie at the
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Figure 2. (a, b) Plan and lateral views of a landslide and satellite, showing how background and shadow regions are formed in this study.
(c–f) Example time series for a single landslide from the Hiroshima dataset using SAR data from Sentinel-1 Track 090D for Techniques 1–4
respectively (Sect. 2.4). Blue bar shows the duration of the rainfall event during which the landslide was triggered. Grey shows the convolution
between the time series and a step function.

edges of the landslide polygons, it is important not to ex-
clude the edge of a landslide from the analysis. Therefore
we extended the area covered by each landslide polygon by
20 m (2 SAR pixels) where this did not lead to intersection
with another landslide in the inventory. We then identified
pixels whose amplitude decreased within this enlarged poly-
gon as shadows. Bouvet et al. (2018) identified shadow pix-
els as those whose γ0 value decreased by ≥ 4.5 dB during
the deforestation event. We tested values between 3 and 6 dB
and also found that a threshold of 4.5 dB performed best. We
calculated the mean γ0 value for every pixel from the pre-
event and post-event image stacks and assigned those that de-
creased by≥ 4.5 dB as shadow pixels. The co-event time se-
ries of these shadow pixels was then analysed, and a step de-
crease in the median shadow γ0 relative to the median back-
ground γ0 (Sect. 2.4.1) was used as an indicator of landslide
timing.

2.4.4 Technique 4: geometric bright spots

As well as shadows, the new geometry created by a land-
slide scar may result in bright spots on the far side of the
scar, which are due to double-bounce scattering of the mi-
crowave energy between the exposed soil and vertical objects
such as tree trunks and focussing of the energy scattered from

the 3D surface into a small area in the radar coordinate sys-
tem (Villard and Borderies, 2007; Fig. 2b). Similarly to the
geometric-shadow technique, we applied a 20 m buffer to the
landslide polygon, identified pixels that had undergone a sig-
nificant increase in mean γ0 between the pre-event and post-
event image stacks, and assigned these as “bright”. Here we
found that the optimum γ0 increase threshold was 5 dB. The
co-event time series of these bright pixels was then analysed,
and a step increase between median bright γ0 and the me-
dian background γ0 (Sect. 2.4.1) was used as an indicator of
landslide timing.

2.5 Identification of landslide date pairs

Here we detail how the four techniques described above are
used to retrieve landslide timings both individually and in
combination. The variable associated with each technique is
calculated for each landslide for every SAR image during
the co-event period (Fig. 2c–f). For each technique, we ex-
pect that the landslide should cause a step change in the time
series, allowing us to identify the date pair spanning the land-
slide timing. In order to identify this step change, we take the
co-event time series and subtract from it its mean value to
obtain a co-event time series centred on zero. Then we con-
volve this series with a step function composed of a series of
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−1 and 1 s that is twice its length. The output of this convo-
lution is a series that, after truncation to the same length as
the original co-event time series, should contain a peak (in
the case of a step increase) or trough (in the case of a step
decrease) at the location of the strongest step change in the
time series.

The size of the peak or trough depends on the magnitude
of the increase or decrease, the level of noise elsewhere in the
time series, and the length of the co-event time series (ndates).
A bigger peak or trough for a time series of the same length
indicates a larger step change and less noise and is therefore
a more reliable indicator of landslide timing. We therefore
apply a peak size threshold to remove unreliable landslide
timing estimates. To select this threshold for each technique,
we use the F1 measure, a statistic that combines both preci-
sion and recall. This F1 measure was calculated for a range
of peak thresholds using the confusion matrix defined in Ta-
ble 1 (Fig. 3). Based on this, we require a peak of 0.4×ndates
for the landslide–background technique, 0.2× ndates for the
pixel variability technique, 0.75× ndates for the geometric-
shadow technique and 1.25×ndates for the geometric-bright-
spot technique. We also assessed whether the level of noise
in the time series for each technique (estimated from the vari-
ability in pre-event and post-event time series) could be used
to indicate whether a timing estimate was likely to be correct,
but we found this to be less reliable than the convolution peak
size.

After identifying landslide timings using each technique
individually, we combined these, assigning a date pair to a
landslide if it was selected by at least two of our four tech-
niques. As previously described, a 20 m buffer was applied
to each landslide polygon for Techniques 3 and 4 in order
to allow for some spatial mismatch between the landslide
polygons and the SAR imagery. This was not done for Tech-
niques 1 and 2 as including non-landslide pixels unnecessar-
ily would have the effect of muting the step change in the
time series for these techniques. However, for landslides that
have not been assigned a timing at this stage, we now repeat
the above process using this 20 m buffer for Techniques 1
and 2 as well. This step increases the number of landslides
assigned a timing by around 5 %.

The final step is to combine the predictions from the
ascending (satellite moving northwards and looking east)
and descending (moving southwards and looking west) SAR
tracks. By carrying out the process described above using
both the ascending and the descending track SAR time se-
ries, we can obtain two sets of timings for a given landslide
inventory, which can then be combined. This has several ad-
vantages. First, landslides that are not assigned a date pair
using data from one track may be better timed by the second,
increasing the number of landslides that can be assigned a
date pair. In particular, landslides that are masked due to fore-
shortening or layover may be better imaged in the other track.
Second, the acquisition dates of the two tracks are slightly
offset, so a landslide that is assigned a date pair by both tracks

is timed more precisely. For example, a correctly timed land-
slide in our Zimbabwe inventory should be timestamped as
7–19 March 2019 by the descending track time series and
12–24 March 2019 by the ascending track time series. From
both together, the landslide would be timed as 12–19 March
2019, improving the precision from 12 to 7 d. This more pre-
cise date is also more likely to be correct since it is derived
from two sets of independent observations of the landslide.

3 Results

The number of landslides assigned the correct date pair and
the number of landslides assigned any date pair are shown
for each of the techniques described in Sect. 2.1 in Table 2,
followed by the combined result for each track and the com-
bined result from both tracks for each event. Individually,
none of the techniques is sufficiently accurate and consistent
to provide useful information on landslide timing. However,
when compared to a random baseline calculated from 1

ndates
(the percentage of landslides we would expect to be assigned
the correct date pair by a method with no skill assigning a
random date pair), all individual techniques consistently per-
form better than this baseline. Not all landslides are assigned
a date by every technique, for example if no geometric shad-
ows are cast within the landslide polygons.

3.1 Combining techniques

As previously described, we combined the four individual
techniques by taking whichever date pair was predicted the
most often for each landslide. Since it is not possible for
both a step increase and a step decrease in the landslide–
background technique to predict the same date, the maximum
number of times the same date can be predicted is four. The
number of landslides assigned a date pair by at least two tech-
niques, at least three techniques and all four techniques and
the number of these date pairs that are correct are shown in
Table 2. The strong reduction in the number of timed land-
slides when going from an individual technique to two, three
and then four techniques in combination underlines the fact
that the nature of the change in amplitude varies widely be-
tween landslides. However, landslides dated by two or more
techniques are correctly dated much more often. Across all
eight tracks, 503 landslides are assigned a date pair by two
or more techniques, of which 399 (79 %) are correct. A to-
tal of 99 landslides are assigned a date pair by three or more
techniques, of which 92 (93 %) are correct; Fig. 4 shows the
number of times each date pair in the co-event series is se-
lected by > two, > three and four techniques.

3.2 Combining tracks

As described in Sect. 2.5, for each event, we used the ascend-
ing and descending tracks to generate a broader and more
robust set of date pairs. When requiring the same date pairs
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Table 1. Confusion matrix for determining how convolution peak size relates to whether a landslide timing is likely to be correct.

Peak synchronous with trigger
event

Peak asynchronous with
trigger event

Peak > threshold (timestamped) True positive False positive
Peak < threshold (masked) False negative True negative

Figure 3. F1 scores for a range of peak thresholds for the landslide–background (a and b correspond to step increase and decrease respec-
tively), pixel variability (c), geometric-shadow (d) and geometric-bright-spot (e) techniques. Vertical black lines show selected thresholds.

from at least two techniques on either of the two tracks in
Hiroshima, Zimbabwe and Trishuli, we assigned date pairs
to 31 %, 30 % and 20 % of the landslides respectively. Of
these assigned date pairs, 79 % were correct in Hiroshima,
73 % in Zimbabwe and 85 % in Trishuli (“total” in Table 2).
These assigned dates can be divided into two subgroups:
landslides timed by two techniques on one track only (“2Te,
1Tr”, Table 2) and landslides assigned timings by three or
more techniques across both tracks (“>3Te”, Table 2). Al-
though they represent a smaller group (5 %–10 % of the land-
slides from each inventory), the latter were assigned the cor-
rect date more often (89 %–94 % of the time). We also tested
the case where landslides were timestamped based on over-
lapping date pairs being selected by one technique from each
track, but we found that this yielded too many incorrect tim-
ings to be useful.

4 Discussion

Here, we first evaluate the success and limits of our method
as a function of landslide characteristics, namely size, veg-
etation and slope aspect, and as a function of co-event time

series length. Then we discuss reasons for landslides lack-
ing assigned timings or, worse, with incorrect timings. Fi-
nally we consider the potential of applying interferometric
SAR (InSAR) coherence time series approaches to landslide
timing. Note that throughout the discussion, we use “the
method” to refer to our algorithm that combines assigned
timings from multiple techniques and both ascending and de-
scending track SAR (Sect. 2.5, “Asc & desc (total)” in Ta-
ble 2).

4.1 Factors affecting landslide timing detection ability

We assessed the performance of our landslide timing method
as a function of the landslide characteristics, in terms of pre-
event vegetation and landslide area. We also analysed the ef-
fect of slope aspect on the four individual landslide timing
techniques. For future applications, this helps to determine
the environments where the method can be expected to work.
It also provides an insight into potential biases in terms of
the subset of a landslide inventory that can be assigned tim-
ings using our method. Finally, we assessed the effect that
the length of the co-event period has on the performance of
our method since this may vary for future applications.
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Table 2. For each case study, the total number of landslides, the number that are masked due to foreshortening or layover in the SAR images,
and amplitude timing results for the four techniques described in Sect. 2. For each technique and combination of techniques, we give the
number of correctly assigned date pairs against the total number of assigned date pairs. Where timings were obtained from combinations of
techniques (Te) or tracks (Tr), the number of these is specified in brackets.

Hiroshima Zimbabwe Trishuli Buri Gandaki Bhote Kosi

Orbit direction Desc Asc Desc Asc Desc Asc Desc Desc

Total landslides 543 383 650 922 1554
Non-masked 543 540 383 383 485 474 592 894

Individual techniques

Landslide–background inc 44/177 37/97 39/67 27/72 37/74 39/123 76/186 88/269
Landslide–background dec 56/182 121/226 41/172 55/147 80/160 54/236 53/152 100/264
Pixel variability 101/258 101/167 79/158 52/112 84/194 73/169 100/227 53/152
Geometric shadows 50/144 143/192 35/60 48/75 47/70 35/42 19/20 43/62
Geometric bright spots 35/89 50/68 28/43 10/11 59/89 47/90 45/70 20/42

Combined techniques, single track

Combined (> 2Te) 55/71 91/105 40/52 39/43 52/66 37/43 40/54 45/69
Combined (> 3Te) 14/16 31/32 11/11 2/2 18/18 7/7 4/6 7/7
Combined (4Te) 1/1 5/5 0/0 0/0 2/2 3/3 0/0 0/0

Combined techniques, combined tracks (final method)

Asc & desc (total) 135/171 82/113 110/130 – –
Asc & desc (2Te, 1Tr) 80/111 76/95 80/108 – –
Asc & desc (> 3Te) 55/60 17/18 30/32 – –

Random baseline (1/ndates) 7 % 17 % 10 % 7 % 8 % 8 % 8 % 14 %

4.1.1 Vegetation

In order to assess the effect that vegetation cover has on the
method we propose here, we compared the number of cor-
rectly timed, incorrectly timed and untimed landslides with
different values of the pre-event NDVI (Fig. 5a–c). We took
the maximum NDVI value for each pixel in the year pre-
ceding the event and used Sentinel-2 data for Zimbabwe and
Hiroshima and Landsat 8 for Trishuli. In all three invento-
ries, the majority of mapped landslides occurred in vegetated
areas (0.6< NDVI< 0.8). In all three cases, a landslide in
a more vegetated area was more likely to be assigned a date
and this date was more likely to be correct.

4.1.2 Area

Another factor that could potentially affect the applicability
of our method is landslide area. Figure 5d–f show the distri-
bution of landslides against landslide area. In Zimbabwe and
Hiroshima, a higher proportion of larger landslides were as-
signed a date pair, and in all three cases a higher proportion of
the date pairs assigned to larger landslides were correct. We
limited our testing to landslides whose area was greater than
2000 m2. Since our techniques rely on landslides containing
multiple SAR pixels in order to calculate the statistics such
as the standard deviation, there is likely to be a lower limit on

the area of landslides that can be timed that was not reached
here.

4.1.3 Aspect

The effect of aspect on landslide timing ability is more com-
plicated than that of vegetation and area since it is likely
to vary between the ascending and descending track SAR.
Therefore, in Fig. 6, we show the ascending and descend-
ing track predictions for each individual technique for Zim-
babwe (results are similar for Hiroshima and Trishuli). The
different techniques we propose in Sect. 2 have different re-
lationships with aspect. For the landslide–background differ-
ence technique, it appears that landslides on slopes facing
towards the sensor are more likely to experience a step in-
crease, while slopes facing away from the sensor are more
likely to experience a step decrease. For the pixel variabil-
ity and geometric-bright-spot techniques, aspect does not ap-
pear to have a strong effect on how likely a landslide is to
be assigned the correct time. For the geometric-shadow tech-
nique, a higher proportion of landslides are assigned a date
(and therefore exhibit a shadow) on slopes facing away from
the sensor. This was expected since the same height differ-
ence will cast a larger shadow on a slope facing away from
the sensor than one facing towards it (Bouvet et al., 2018).
Dates assigned by the geometric-shadow technique also ap-
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Figure 4. Histograms showing the predicted landslide timings for each event and SAR track when four techniques are used in combination.

Figure 5. The distribution of total landslides (white), landslides assigned a time (light green) and landslides assigned the correct time (dark
green) for different values of pre-event NDVI (greenest value in the year preceding the event) (a–c) and landslide area (d–f). Predictions
were obtained from combining ascending and descending track SAR (Sect. 3.2).
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pear more likely to be correct for slopes facing away from
the sensor on Zasc, but this pattern is less clear on Zdesc.
Thus a path for future improvement to our method may be
to apply a variable detection threshold as a function of slope
aspect, particularly for the landslide–background difference
technique.

4.1.4 Co-event time period duration

We defined a co-event period of 6 months when testing the
landslide timing methods in this paper. This time period was
selected to be roughly the duration of the Nepal monsoon.
However, some applications, for example the case of suc-
cessive storms, may not require such a long window. It is
therefore useful to assess how the length of this time win-
dow affects the accuracy of predictions. In order to assess
this, we took the tracks with the most complete time series
(Zasc, Hdesc, Trdesc and BGdesc) and assessed their perfor-
mance over 2–8-month periods. Figure 7 shows the percent-
age of assigned timings that are correct based on at least two
techniques for each track at each time period.

On three of the four tracks, particularly BGdesc and Hdesc,
the accuracy decreased as the co-event period was de-
creased. This was especially observed for periods of less than
5 months. We suggest that noise may be less attenuated in a
shorter time series, resulting in increased numbers of false
positives. This may explain the relatively poor performance
in Bhote Kosi compared to the other case study areas, since
comparatively few images were available for this case study
(Fig. 4). The loss of accuracy is recovered when the co-event
period is further decreased to 2 months, possibly due to the
comparatively small number of possibly wrong date pairs
available within a 2-month period. Thus for future studies
that aim to constrain the timings of rainfall-triggered land-
slides, we recommend defining a long co-event period (6–
7 months), but for studies that aim to distinguish landslides
triggered by a rapid succession of triggers (e.g. the events
studied by Tanyaş et al., 2022), a co-event period of 2 months
or less may be better.

4.2 Why do some landslides have no timing estimation?

In all our case studies, a large proportion of landslides are not
assigned any date pair by our method. Some of these land-
slides, primarily in Nepal, lie in areas of foreshortening or
layover in the SAR images and so were removed from the
analysis (Sect. 2.3). This represents between 25 % and 43 %
of the landslides on each track in Nepal, so if these masked
landslides are ignored, the method sensitivity in Nepal is sim-
ilar to the less steep landscapes of Zimbabwe and Japan. Be-
yond this, landslides that are not assigned a date pair are a
direct result of the target criteria of our method: a signifi-
cant step change in at least two of the techniques outlined
in Sect. 2.4. We showed in Sect. 2.5 that imposing a thresh-
old on the convolution function peak was essential to reach a

usable specificity, but this will also have required some cor-
rect timings to be discarded. Thus time series with a high
degree of noise or where the landslide results in only a small
step change in the metric will not produce a date pair. Fi-
nally, although we attempted to account for any spatial mis-
match between polygon locations and SAR imagery by ex-
panding the boundaries of each polygon by 20 m in every di-
rection (Sect. 2.5), any spatial disagreement beyond this scale
is likely to lead to landslides not being assigned a timing.

Lack of trees (i.e. low NDVI) and unfavourable slope as-
pect relative to the SAR sensor are likely to suppress any
shadow or bright pixels associated with a landslide and may
also reduce the change in median amplitude, hampering de-
tection of landslide timing. Landslides that effect sparsely
vegetated areas, for example barren or agricultural lands, or
areas that have previously been deforested or eroded are thus
less likely to be assigned a timing by our method. Noise in
the time series may be related to either natural or anthro-
pogenic changes to the ground properties (e.g. agricultural
practices, particularly on the hillslopes of Nepal).

Future refinement of the method may increase the num-
ber of landslides assigned a timing. Possible means of ac-
complishing this include finding robust and systematic links
between landslide setting and optimal thresholds for the in-
dividual techniques (as suggested by Figs. 5, 6). This would
allow metric thresholds to be adapted to the setting of each
landslide polygon. To address the problem of noise within
the time series that masks the landslide timing signal, fu-
ture work may involve adding a first step to our algorithm
in which pixels exhibiting high levels of temporal variability
are excluded from the landslide and background areas. Fi-
nally, our method may be improved by the development of
other metrics, for example based on VH-polarised SAR data
or InSAR coherence time series, which have previously been
used to detect landslides in forested and arid zones respec-
tively (Cabré et al., 2020; Handwerger et al., 2022).

4.3 Possible causes of incorrect landslide timings

In all of our case studies, our method assigns the wrong date
pairs to a small number of timed landslides. There are sev-
eral possible reasons for this. There may be real changes in
the time series that are not landslides, for example snowfall
or snowmelt, change in vegetation, change in soil moisture,
or human activity. Activities related to the landslide, for ex-
ample the removal of material from a blocked road, may also
contribute to this. Random noise in the SAR signal may also
result in false landslide timings. We note that for future appli-
cations, the timing confidence within a landslide population
can be separated into landslides timed by three or more tech-
niques and those timed by only two techniques (Table 2).

Another possibility is that delayed or multi-stage failure
occurred for some landslides. Our method is designed to de-
tect only a single failure. In the case where multi-stage fail-
ure results in more than one step change in the time series,
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Figure 6. The distribution of total landslides (white), landslides assigned a time (light green) and landslides assigned the correct time (dark
green) over aspect for each technique using ascending and descending track SAR over the Zimbabwe dataset.

the convolution in Sect. 2.5 will detect only the largest step
change. Though it is beyond the scope of this study, in theory
it would be possible to assess if the time series contain a sec-
ond peak of similar magnitude to the largest one in order to
assess possible multi-stage failure or landslide reactivation.

Delayed failure seems particularly likely for Zimbabwe
and Hiroshima, where a large proportion of the incorrect
landslide timings are made up of the date pair immediately
after the rainfall event (Fig. 4d, e, h). It is possible that some
of the landslides in these inventories did not fail immediately
during the rainfall but instead failed after a delay of a few
days due to rising pore pressure following rainfall infiltration
within the hillslope (Iverson, 2000). This is particularly pos-
sible in the case of Zdesc, where the end of the rainfall event
on 19 March 2019 coincides with the acquisition of the first

post-event image, so only a short delay would be required for
the landslide to occur during the time window immediately
after the rainfall (19–31 March 2019) rather than during the
time window that spans the rainfall (7–19 March 2019). If
these landslides are counted as correct in our analysis, the
combined success rate in Zimbabwe is increased from 73 %
to 82 %, bringing it in line with Hiroshima and Trishuli (Ta-
ble 2), while for landslides timed by three or more techniques
(“> 3Te” in Table 2), the success rate is increased from 89 %
to 94 %.

Although the Gorkha earthquake was followed by a large
aftershock (12 May) and by the monsoon (approximate onset
9 June; Williams et al., 2018), we are more confident of the
true date of the landslides for this event. It is possible that
some landslides could have been either triggered or reacti-
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Figure 7. The percentage of landslide timings that are correct when
assigned by > two of the techniques described in Sect. 2.4 for a
range of co-event time periods.

vated by monsoon rainfall. However, none of the incorrect
landslide timings in Nepal are in June, making this unlikely
(Fig. 4a–c, f).

4.4 InSAR coherence

Interferometric SAR (InSAR) coherence is a measure of the
signal quality of an interferogram (an image used to measure
ground deformation formed from two SAR images acquired
over the same area at different times). InSAR coherence is
sensitive to changes at the ground surface between the ac-
quisition of the two SAR images: areas where the scatterers
have changed significantly have high levels of noise in an
interferogram and so a low coherence. Coherence is there-
fore sensitive to landslides and has previously been used to
detect landslide densities or individual large landslides (Bur-
rows et al., 2019, 2020; Goorabi, 2020; Yun et al., 2015).

The coherence of each pixel in an interferogram can be
estimated from the similarity in amplitude and phase change
between the two SAR images for small groups of neighbour-
ing pixels. Coherence surfaces and the phase data required
for their calculation are not available through Google Earth
Engine. However, coherence for Track 19 in Nepal has pre-
viously been calculated by Burrows et al. (2019), covering
the Buri Gandaki and Trishuli inventories tested here. This
allows us to compare techniques of landslide timing based
on SAR amplitude and InSAR coherence for these two case
studies.

Burrows et al. (2019) processed the data at the same res-
olution as that used here (20× 22 m) and used a 3× 3 mov-
ing window to estimate coherence, so the coherence surface
has a resolution of 60× 66 m. Similarly to the landslide–
background technique, we obtained the median coherence of
pixels within each landslide through time and the median co-
herence of pixels within a 60–500 m buffer of each landslide
polygon to give a background coherence. We then examined

Figure 8. Time series of the ratio between landslide coherence and
background coherence for a single landslide in Trishuli (horizontal
black lines). Vertical blue line shows earthquake timing.

the ratio between the landslide and background coherence
through time. Using this ratio performed better than using
the landslide coherence alone, probably because other fac-
tors, such as the length of time between the two images used
to form the interferogram, can also effect coherence. Figure 8
shows the median coherence ratio of a single landslide for
different image pairs through time. This demonstrates two
effects that we expect to see. First, the coherence that spans
the landslide timing is low. This drop in coherence has previ-
ously been used to detect landslide locations (Burrows et al.,
2019; Goorabi, 2020; Yun et al., 2015). However Sentinel-1
often has a low background coherence in vegetated areas due
to its wavelength, which can make any coherence decrease
due to a landslide difficult to detect. Second, the coherence
of post-event image pairs is higher than pre-event image pairs
due to the removal of vegetation by the landslide (previously
used by Burrows et al., 2020). Based on these two observa-
tions, we propose two landslide timing detection techniques
based on InSAR coherence time series.

– Technique C1. A step increase in the coherence ratio
corresponds to the first post-event image pair.

– Technique C2. A temporary decrease in the coherence
ratio corresponds to the co-event image pair. For each
coherence pair, this temporary decrease is calculated
from the sum of the decrease in the coherence ratio from
the previous image pair to this one and the increase in
the coherence ratio from this image to the next (adapted
from the 1C_sum method of Burrows et al., 2020).

Overall, the coherence-based techniques have a lower suc-
cess rate than the amplitude-based techniques (Table 2), indi-
cating that incorporating these data would decrease the speci-
ficity of our method. However, it is worth noting that of
the 47 landslides correctly timed across the two events us-
ing the C1 and C2 techniques combined, only 3 had already

https://doi.org/10.5194/nhess-22-2637-2022 Nat. Hazards Earth Syst. Sci., 22, 2637–2653, 2022



2650 K. Burrows et al.: A step towards understanding the controls on monsoon-triggered landsliding

Table 3. The ratio of correct / assigned landslide timings for the two
coherence-based techniques.

Trdesc BGdesc

Technique C1 54/154 (36 %) 59/169 (35 %)
Technique C2 82/312 (26 %) 96/396 (24 %)
Combined 27/57 (47 %) 20/56 (36 %)

Non-masked landslides 485 592

been timed using the combined amplitude-based techniques
in Sect. 3.1, suggesting that the incorporation of coherence
techniques could increase sensitivity if these could be made
more reliable.

Currently, only the Sentinel-1 SAR constellation acquires
SAR data with sufficient coverage and acquisition frequency
for widespread use in landslide timing studies. These data
are acquired at the C-band, which usually has low coherence
in vegetated areas. L-band data are better suited to InSAR-
coherence-based landslide detection in vegetated areas (Bur-
rows et al., 2020). The planned NASA-ISRO SAR (NISAR)
mission has a similar acquisition strategy to Sentinel and will
acquire L-band SAR data. It will be worth reassessing the po-
tential of InSAR coherence time series for landslide timing
detection following the launch of this satellite.

5 Conclusions and future perspectives

In the case of long or successive rainfall events, landslide in-
ventories compiled from optical satellite imagery are often
poorly constrained in time, making it difficult to associate
them with specific triggering conditions. Here we present a
method of using Sentinel-1 SAR amplitude time series in
Google Earth Engine to identify the timing of triggered land-
slides to within a few days. We find that by combining mul-
tiple techniques and ascending and descending track SAR,
it is possible to assign timings to up to 30 % of landslides
in an inventory with an accuracy of 80 %. A small number
of landslides (5 %–10 %) can be timed with an accuracy of
> 90 %. Here we applied our method to optically derived
landslide inventories, but it could also be applied to datasets
from other sources, for example those based on lidar scans
or high-resolution optical images that allow landslide vol-
umes to be estimated (Bernard et al., 2021). The precision of
our method, which in most cases is 12 d, should be sufficient
in the case of multiple successive storms or earthquakes to
attribute landslides to a given event (Ferrario, 2019; Jana-
pati et al., 2019; Tanyaş et al., 2022). For monsoon land-
slide timings, this precision is not sufficient for construction
of intensity–duration or intensity–antecedent rainfall thresh-
olds at the hourly scale typical in the literature (e.g. Bogaard
and Greco, 2018). However, thresholds based on weekly
rainfall would be achievable and of interest for understand-

ing triggering conditions in the Himalayan region. Further-
more, it should allow us to establish whether landslides occur
in temporal clusters that relate to specific peaks in rainfall
or are distributed throughout the monsoon. These two end-
members would have very different implications in terms of
hydrological and slope stability modelling and thus on hazard
evaluation. Application of our method to the Indian summer
monsoon should also allow us to better constrain whether
landslides systematically occur with a specific delay after the
onset of the monsoon and/or simultaneously with reported
flooding or bursts of intense rainfall (Gabet et al., 2004).

Our method assigns timings to only 30 % of landslides
in an inventory; thus timing information is not obtained for
the majority of landslides. Therefore, while our method pro-
vides a valuable insight into landslide timings during long
or successive rainfall events, further work could allow us to
obtain a more comprehensive view. First, our method may
be refined by future studies, for example through variable
metric thresholds adapted to the setting of each landslide
or by incorporating both amplitude and coherence time se-
ries. Second, remote sensing approaches such as we present
here could be combined, where available, with other meth-
ods of establishing landslide timing, for example reports of
individual landslides or seismic data (Bell et al., 2021; Hib-
ert et al., 2019; Yamada et al., 2012). Finally, we also expect
that both the precision and the number of landslides that can
be assigned timings may increase in the future as more SAR
data become available, for example from the planned NISAR
constellation. Overall, our method represents a step towards
improved temporal resolution for triggered landslide inven-
tories. This could further our understanding of monsoon-
induced landsliding in the Nepal Himalaya and elsewhere.

Code and data availability. Sentinel-1 GRD, Sentinel-2 and Land-
sat imagery were accessed here through Google Earth Engine.
Sentinel-1 and Sentinel-2 data are provided with open access
by ESA Copernicus (https://scihub.copernicus.eu/dhus/#/home,
Copernicus, 2022). Landsat imagery is provided by the US Geolog-
ical Survey (https://earthexplorer.usgs.gov/, U.S Geological Survey,
2022). Landslide polygons were obtained from Roback et al. (2017)
for Nepal (available at https://doi.org/10.5066/F7DZ06F9), The
Association of Japanese Geographers (2019) (http://ajg-disaster.
blogspot.com/2018/07/3077.html) for Hiroshima and Emberson
et al. (2022) (https://doi.org/10.5194/nhess-22-1129-2022) for Zim-
babwe. Google Earth Engine and Python codes developed as
part of this paper are available on GitHub at https://github.com/
KABurrows/Supplement-to-nhess-2022-21 (last access: July 2022)
and https://doi.org/10.5281/zenodo.6984291 (Burrows, 2022). Im-
ages were produced using Python Matplotlib (Hunter, 2007)
(https://doi.org/10.1109/MCSE.2007.55) and PyGMT (Uieda et al.,
2021) (https://doi.org/10.5281/zenodo.5607255) software.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-22-2637-2022-supplement.
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