Articles | Volume 22, issue 4
https://doi.org/10.5194/nhess-22-1469-2022
https://doi.org/10.5194/nhess-22-1469-2022
Research article
 | 
26 Apr 2022
Research article |  | 26 Apr 2022

Machine-learning blends of geomorphic descriptors: value and limitations for flood hazard assessment across large floodplains

Andrea Magnini, Michele Lombardi, Simone Persiano, Antonio Tirri, Francesco Lo Conti, and Attilio Castellarin

Related authors

Informativeness of teleconnections in local and regional frequency analysis of rainfall extremes
Andrea Magnini, Valentina Pavan, and Attilio Castellarin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3261,https://doi.org/10.5194/egusphere-2024-3261, 2024
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary

Related subject area

Hydrological Hazards
Post-wildfire sediment source and transport modeling, empirical observations, and applied mitigation: an Arizona, USA, case study
Edward R. Schenk, Alex Wood, Allen Haden, Gabriel Baca, Jake Fleishman, and Joe Loverich
Nat. Hazards Earth Syst. Sci., 25, 727–745, https://doi.org/10.5194/nhess-25-727-2025,https://doi.org/10.5194/nhess-25-727-2025, 2025
Short summary
Causes of the exceptionally high number of fatalities in the Ahr valley, Germany, during the 2021 flood
Belinda Rhein and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 581–589, https://doi.org/10.5194/nhess-25-581-2025,https://doi.org/10.5194/nhess-25-581-2025, 2025
Short summary
Large-scale flood risk assessment in data-scarce areas: an application to Central Asia
Paola Ceresa, Gianbattista Bussi, Simona Denaro, Gabriele Coccia, Paolo Bazzurro, Mario Martina, Ettore Fagà, Carlos Avelar, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Zhanar Raimbekova, Kanatbek Abdrakhmatov, Sitora Mirzokhonova, Vakhitkhan Ismailov, and Vladimir Belikov
Nat. Hazards Earth Syst. Sci., 25, 403–428, https://doi.org/10.5194/nhess-25-403-2025,https://doi.org/10.5194/nhess-25-403-2025, 2025
Short summary
Multi-scale hydraulic graph neural networks for flood modelling
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025,https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
The role of antecedent conditions in translating precipitation events into extreme floods at the catchment scale and in a large-basin context
Maria Staudinger, Martina Kauzlaric, Alexandre Mas, Guillaume Evin, Benoit Hingray, and Daniel Viviroli
Nat. Hazards Earth Syst. Sci., 25, 247–265, https://doi.org/10.5194/nhess-25-247-2025,https://doi.org/10.5194/nhess-25-247-2025, 2025
Short summary

Cited articles

Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., and Thielen, J.: Operational early warning systems for water-related hazards in Europe, Environ. Sci. Policy, 21, 35–49, https://doi.org/10.1016/j.envsci.2012.01.008, 2012. a
Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., and Feyen, L.: Advances in pan-European flood hazard mapping, Hydrol. Process., 28, 4067–4077, https://doi.org/10.1002/hyp.9947, 2014. a, b
Arabameri, A., Rezaei, K., Cerdá, A., Conoscenti, C., and Kalantari, Z.: A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran, Sci. Total Environ., 660, 443–458, https://doi.org/10.1016/j.scitotenv.2019.01.021, 2019. a, b, c, d, e, f, g
Bartholmes, J. C., Thielen, J., Ramos, M. H., and Gentilini, S.: The european flood alert system EFAS – Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts, Hydrol. Earth Syst. Sci., 13, 141–153, https://doi.org/10.5194/hess-13-141-2009, 2009. a
Bellos, V. and Tsakiris, G.: A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques, J. Hydrol., 540, 331–339, https://doi.org/10.1016/j.jhydrol.2016.06.040, 2016. a
Download
Short summary
We retrieve descriptors of the terrain morphology from a digital elevation model of a 105 km2 study area and blend them through decision tree models to map flood susceptibility and expected water depth. We investigate this approach with particular attention to (a) the comparison with a selected single-descriptor approach, (b) the goodness of decision trees, and (c) the performance of these models when applied to data-scarce regions. We find promising pathways for future research.
Share
Altmetrics
Final-revised paper
Preprint