Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-533-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-533-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A regional spatiotemporal analysis of large magnitude snow avalanches using tree rings
US Geological Survey Northern Rocky Mountain Science Center, 215 Mather Dr., West Glacier, Montana, MT 59936, USA
Snow and Avalanche Lab, Department of Earth Sciences, Montana State
University, Bozeman, Montana, MT 59717, USA
Jordy Hendrikx
Snow and Avalanche Lab, Department of Earth Sciences, Montana State
University, Bozeman, Montana, MT 59717, USA
Daniel Stahle
US Geological Survey Northern Rocky Mountain Science Center, 215 Mather Dr., West Glacier, Montana, MT 59936, USA
Gregory Pederson
US Geological Survey Northern Rocky Mountain Science Center, 215 Mather Dr., West Glacier, Montana, MT 59936, USA
Karl Birkeland
USDA Forest Service National Avalanche Center, Bozeman, Montana, MT 59771, USA
Snow and Avalanche Lab, Department of Earth Sciences, Montana State
University, Bozeman, Montana, MT 59717, USA
Daniel Fagre
US Geological Survey Northern Rocky Mountain Science Center, 215 Mather Dr., West Glacier, Montana, MT 59936, USA
Related authors
Erich H. Peitzsch, Justin T. Martin, Ethan M. Greene, Nicolas Eckert, Adrien Favillier, Jason Konigsberg, Nickolas Kichas, Daniel K. Stahle, Karl W. Birkeland, Kelly Elder, and Gregory T. Pederson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2217, https://doi.org/10.5194/egusphere-2025-2217, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Snow avalanches pose substantial risks to communities and public safety in Colorado. We studied tree growth patterns impacted by avalanches from 1698 to 2020 alongside meteorological data. We found variations in avalanche frequency revealing a decline in regional avalanche activity and shifts in the causes of these types of large and widespread avalanche events. This knowledge can enhance avalanche safety measures and infrastructure design.
Zachary S. Miller, Erich H. Peitzsch, Eric A. Sproles, Karl W. Birkeland, and Ross T. Palomaki
The Cryosphere, 16, 4907–4930, https://doi.org/10.5194/tc-16-4907-2022, https://doi.org/10.5194/tc-16-4907-2022, 2022
Short summary
Short summary
Snow depth varies across steep, complex mountain landscapes due to interactions between dynamic natural processes. Our study of a winter time series of high-resolution snow depth maps found that spatial resolutions greater than 0.5 m do not capture the complete patterns of snow depth spatial variability at a couloir study site in the Bridger Range of Montana, USA. The results of this research have the potential to reduce uncertainty associated with snowpack and snow water resource analysis.
Erich H. Peitzsch, Justin T. Martin, Ethan M. Greene, Nicolas Eckert, Adrien Favillier, Jason Konigsberg, Nickolas Kichas, Daniel K. Stahle, Karl W. Birkeland, Kelly Elder, and Gregory T. Pederson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2217, https://doi.org/10.5194/egusphere-2025-2217, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Snow avalanches pose substantial risks to communities and public safety in Colorado. We studied tree growth patterns impacted by avalanches from 1698 to 2020 alongside meteorological data. We found variations in avalanche frequency revealing a decline in regional avalanche activity and shifts in the causes of these types of large and widespread avalanche events. This knowledge can enhance avalanche safety measures and infrastructure design.
Zachary S. Miller, Erich H. Peitzsch, Eric A. Sproles, Karl W. Birkeland, and Ross T. Palomaki
The Cryosphere, 16, 4907–4930, https://doi.org/10.5194/tc-16-4907-2022, https://doi.org/10.5194/tc-16-4907-2022, 2022
Short summary
Short summary
Snow depth varies across steep, complex mountain landscapes due to interactions between dynamic natural processes. Our study of a winter time series of high-resolution snow depth maps found that spatial resolutions greater than 0.5 m do not capture the complete patterns of snow depth spatial variability at a couloir study site in the Bridger Range of Montana, USA. The results of this research have the potential to reduce uncertainty associated with snowpack and snow water resource analysis.
Holt Hancock, Jordy Hendrikx, Markus Eckerstorfer, and Siiri Wickström
The Cryosphere, 15, 3813–3837, https://doi.org/10.5194/tc-15-3813-2021, https://doi.org/10.5194/tc-15-3813-2021, 2021
Short summary
Short summary
We investigate how snow avalanche activity in central Spitsbergen, Svalbard, is broadly controlled by atmospheric circulation. Avalanche activity in this region is generally associated with atmospheric circulation conducive to increased precipitation, wind speeds, and air temperatures near Svalbard during winter storms. Our results help place avalanche activity on Spitsbergen in the wider context of Arctic environmental change and provide a foundation for improved avalanche forecasting here.
Andrew R. Schauer, Jordy Hendrikx, Karl W. Birkeland, and Cary J. Mock
Nat. Hazards Earth Syst. Sci., 21, 757–774, https://doi.org/10.5194/nhess-21-757-2021, https://doi.org/10.5194/nhess-21-757-2021, 2021
Short summary
Short summary
Our research links upper atmospheric circulation patterns to a destructive and difficult-to-predict type of snow avalanche in the western United States. At each of our study sites, we find unique circulation patterns that tend to occur at the beginning of the winter season during years with major avalanche activity. We also find specific patterns that occur frequently in the days leading to major avalanche events. This work will enable practitioners to better anticipate these challenging events.
Cited articles
Armstrong, B. R.: A quantitative analysis of avalanche hazard on U.S. Highway 550, southwestern Colorado, in: Proceedings of the Western Snow
Conference, 14–16 April 2017, St. George, Utah, 95–104, 1981.
Ballesteros-Canovas, J. A., Trappmann, D., Madrigal-Gonzalez, J., Eckert, N., and Stoffel, M.: Climate warming enhances snow avalanche risk in the Western Himalayas, Proc. Natl. Acad. Sci. USA, 115, 3410–3415,
https://doi.org/10.1073/pnas.1716913115, 2018.
Bebi, P., Kulakowski, D., and Rixen, C.: Snow avalanche disturbances in forest ecosystems-State of research and implications for management, Forest
Ecol. Manage., 257, 1883–1892, https://doi.org/10.1016/j.foreco.2009.01.050, 2009.
Birkeland, K. W.: Spatial patterns of snow stability throughout a small
mountain range, J. Glaciol., 47, 176–186, https://doi.org/10.3189/172756501781832250, 2001.
Blöschl, G.: Scaling issues in snow hydrology, Hydrol. Process., 13,
2149–2175, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8,
1999.
Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: A review, Hydrol. Process., 9, 251–290, https://doi.org/10.1002/hyp.3360090305, 1995.
Bryant, C. L., Butler, D. R., and Vitek, J. D.: A statistical analysis of tree-ring dating in conjunction with snow avalanches – comparison of on-path versus off-path responses, Environ. Geol. Water Sci., 14, 53–59,
https://doi.org/10.1007/BF01740585, 1989.
Burrows, C. J. and Burrows, V. L.: Procedures for the study of snow avalanche chronology using growth layers of woody plants, Occasional Paper No. 23, Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 56 pp., 1976.
Butler, D. R.: Snow avalanche path terrain and vegetation, Glacier National
Park, Montana, Arct. Alp. Res., 11, 17–32, https://doi.org/10.2307/1550456, 1979.
Butler, D. R. and Malanson, G. P.: A history of high-magnitude snow avalanches, southern Glacier National Park, Montana, U.S.A., Mt. Res. Dev., 5, 175–182, https://doi.org/10.2307/3673256, 1985a.
Butler, D. R. and Malanson, G. P.: A reconstruction of snow-avalanche
characteristics in Montana, U.S.A., using vegetative indicators, J. Glaciol., 31, 185–187, https://doi.org/10.3189/S0022143000006444, 1985b.
Butler, D. R. and Sawyer, C. F.: Dendrogeomorphology and high-magnitude snow avalanches: a review and case study, Nat. Hazards Earth Syst. Sci., 8, 303–309, https://doi.org/10.5194/nhess-8-303-2008, 2008.
Butler, D. R., Malanson, G. P., and Oelfke, J. G.: Tree-ring analysis and
natural hazard chronologies: minimum sample sizes and index values, Prof.
Geogr., 39, 41–47, https://doi.org/10.1111/j.0033-0124.1987.00041.x, 1987.
Carrara, P. E.: The determination of snow avalanche frequency through
tree-ring analysis and historical records, Geol. Soc. Am. Bull., 90,
773–780, https://doi.org/10.1130/0016-7606(1979)90<773:TDOSAF>2.0.CO;2, 1979.
Casteller, A., Stoeckli, V., Villalba, R., and Mayer, A. C.: An evaluation of
dendroecological indicators of snow avalanches in the Swiss Alps, Arct.
Antarct. Alp. Res., 39, 218–228, https://doi.org/10.1657/1523-0430(2007)39[218:AEODIO]2.0.CO;2, 2007.
Casteller, A., Villalba, R., Araneo, D., and Stöckli, V.: Reconstructing
temporal patterns of snow avalanches at Lago del Desierto, southern Patagonian Andes, Cold Reg. Sci. Technol., 67, 68–78,
https://doi.org/10.1016/j.coldregions.2011.02.001, 2011.
Chesley-Preston, T.: Patterns of natural avalanche activity associated with
new snow water equivalence and upper atmospheric wind direction and speed in
the mountains surrounding Gothic, Colorado, Master of Science, Department of
Earth Sciences, Montana State University, Bozeman, Montana, 75 pp., 2010.
Colorado Avalanche Information Center: Statistics and Reporting, available at:
http://avalanche.state.co.us/accidents/statistics-and-reporting/, last
access: 8 June 2020.
Corona, C., Lopez Saez, J., Stoffel, M., Bonnefoy, M., Richard, D., Astrade,
L., and Berger, F.: How much of the real avalanche activity can be captured
with tree rings? An evaluation of classic dendrogeomorphic approaches and
comparison with historical archives, Cold Reg. Sci. Technol., 74–75, 31–42,
https://doi.org/10.1016/j.coldregions.2012.01.003, 2012.
de Bouchard d'Aubeterre, G., Favillier, A., Mainieri, R., Lopez Saez, J.,
Eckert, N., Saulnier, M., Peiry, J. L., Stoffel, M., and Corona, C.: Tree-ring reconstruction of snow avalanche activity: Does avalanche path
selection matter?, Sci. Total Environ., 684, 496–508,
https://doi.org/10.1016/j.scitotenv.2019.05.194, 2019.
Dube, S., Filion, L., and Hetu, B.: Tree-Ring Reconstruction of
High-Magnitude Snow Avalanches in the Northern Gaspe Peninsula, Quebec,
Canada, Arct. Antarct. Alp. Res., 36, 555–564, https://doi.org/10.1657/1523-0430(2004)036[0555:TROHSA]2.0.CO;2, 2004.
Favillier, A., Guillet, S., Morel, P., Corona, C., Lopez Saez, J., Eckert,
N., Ballesteros Cánovas, J. A., Peiry, J.-L., and Stoffel, M.:
Disentangling the impacts of exogenous disturbances on forest stands to
assess multi-centennial tree-ring reconstructions of avalanche activity in
the upper Goms Valley (Canton of Valais, Switzerland), Quatern. Geochronol.,
42, 89–104, https://doi.org/10.1016/j.quageo.2017.09.001, 2017.
Favillier, A., Guillet, S., Trappmann, D., Morel, P., Lopez-Saez, J., Eckert, N., Zenhäusern, G., Peiry, J.-L., Stoffel, M., and Corona, C.: Spatio-temporal maps of past avalanche events derived from tree-ring analysis: A case study in the Zermatt valley (Valais, Switzerland), Cold
Reg. Sci. Technol., 154, 9–22, https://doi.org/10.1016/j.coldregions.2018.06.004, 2018.
Germain, D., Filion, L., and Hétu, B.: Snow avalanche activity after fire and logging disturbances, northern Gaspé Peninsula, Quebec, Canada, Can. J. Earth Sci., 42, 2103–2116, https://doi.org/10.1139/e05-087, 2005.
Germain, D., Filion, L., and Hétu, B.: Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada, Climatic Change, 92, 141–167, https://doi.org/10.1007/s10584-008-9439-4, 2009.
Germain, D., Hétu, B., and Filion, L.: Tree-ring based reconstruction of
past snow avalanche events and risk assessment in Northern Gaspé Peninsula (Québec, Canada), in: Tree Rings and Natural Hazards – A
State-of-the-Art, Advances in Global Change Research, edited by: Stoffel, M., Bollschweiler, M., Butler, D. R., and Luckman, B. H., Springer, London, 51–73, 2010.
Google: Imagery of study area, northwest Montana], using R statistical package ggmap, available at: https://cran.r-project.org/web/packages/ggmap/ggmap.pdf, last access: 4 February 2020.
Gratton, M., Germain, D., and Boucher, É.: Meteorological triggering
scenarios of tree-ring-based snow avalanche occurrence on scree slopes in a
maritime climate, Eastern Canada, Phys. Geogr., 41, 3–20, https://doi.org/10.1080/02723646.2019.1573622, 2019.
Greene, E., Birkeland, K. W., Elder, K., McCammon, I., Staples, M., and Sharaf, D.: Snow, weather, and avalanches: Observation guidelines for
avalanche programs in the United States, 3rd Edn., American Avalanche Association, Victor, ID, 104 pp., 2016.
Grissino-Mayer, H.: Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA, Tree-Ring Res., 57, 205–221, 2001.
Hebertson, E. G. and Jenkins, M. J.: Historic climate factors associated with major avalanche years on the Wasatch Plateau, Utah, Cold Reg. Sci. Technol., 37, 315–332, https://doi.org/10.1016/S0165-232x(03)00073-9, 2003.
Hendrikx, J., Murphy, M., and Onslow, T.: Classification trees as a tool for
operational avalanche forecasting on the Seward Highway, Alaska, Cold Reg. Sci. Technol., 97, 113–120, https://doi.org/10.1016/j.coldregions.2013.08.009, 2014.
Holmes, R. L.: Analysis of tree rings and fire scars to establish fire history, Tree-Ring Bull., 43, 51–67, 1983.
Kogelnig-Mayer, B., Stoffel, M., Schneuwly-Bollschweiler, M., Hübl, J.,
and Rudolf-Miklau, F.: Possibilities and Limitations of Dendrogeomorphic
Time-Series Reconstructions on Sites Influenced by Debris Flows and Frequent
Snow Avalanche Activity, Arct. Antarct. Alp. Res., 43, 649–658,
https://doi.org/10.1657/1938-4246-43.4.649, 2011.
Korpela, M., Wickham, H., Jackson, S.: ggmap v3.0.0 – Spatial Visualization
with ggplot2, available at: https://github.com/dkahle/ggmap (last access: 21 July 2020), 2019.
Köse, N., Aydın, A., Akkemik, Ü., Yurtseven, H., and Güner, T.: Using tree-ring signals and numerical model to identify the snow avalanche tracks in Kastamonu, Turkey, Nat. Hazards, 54, 435–449,
https://doi.org/10.1007/s11069-009-9477-x, 2010.
Malevich, S. B., Guiterman, C. H., and Margolis, E. Q.: burnr: Fire history
analysis and graphics in R, Dendrochronologia, 49, 9–15,
https://doi.org/10.1016/j.dendro.2018.02.005, 2018.
Martin, J. P. and Germain, D.: Dendrogeomorphic reconstruction of snow avalanche regime and triggering weather conditions: A classification tree
model approach, Prog. Phys. Geogr., 40, 1–22, https://doi.org/10.1177/0309133315625863, 2016.
Mears, A. I.: Snow-Avalanche Hazard Analysis for Land-use Planning and
Engineering, Colorado Geological Survey Bulletin 49, Colorado Geological Survey, Colorado, 55 pp., 1992.
Meseşan, F., Gavrilă, I. G., and Pop, O. T.: Calculating snow-avalanche return period from tree-ring data, Nat. Hazards, 94, 1081–1098, https://doi.org/10.1007/s11069-018-3457-y, 2018.
Mock, C. J. and Birkeland, K. W.: Snow avalanche climatology of the western
United States mountain ranges, B. Am. Meteorol. Soc., 81, 2367–2392,
https://doi.org/10.1175/1520-0477(2000)081<2367:SACOTW>2.3.CO;2, 2000.
Mock, C. J., Carter, K. C., and Birkeland, K. W.: Some Perspectives on
Avalanche Climatology, Ann. Am. Assoc. Geogr., 107, 299–308, https://doi.org/10.1080/24694452.2016.1203285, 2016.
Muntán, E., Garcia, C., Oller, P., Marti, G., Garcia, A., and Gutierrez,
E.: Reconstructing snow avalanches in the Southeastern Pyrenees, Nat. Hazards
Earth Syst. Sci., 9, 1599–1612, https://doi.org/10.5194/nhess-9-1599-2009, 2009.
NOAA – National Centers for Environmental Information: ITRDB – International Tree Ring Data Bank, available at, available at:
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring,
last access: 1 March 2018.
Ott, R. L. and Longnecker, M. T.: An Introduction to Statistical Methods and Data Analysis, 7th Edn., Cengage Learning, Boston, MA, 1296 pp., 2016.
Peitzsch, E. H., Stahle, D. K., Fagre, D. B., Clark, A. M., Pederson, G. T.,
Hendrikx, J., and Birkeland, K. W.: Tree ring dataset for a regional avalanche chronology in northwest Montana, 1636–2017, US Geological Survey, US Geological Survey data release, https://doi.org/10.5066/P9TLHZAI, 2019.
Pop, O. T., Munteanu, A., Flaviu, M., Gavrilă, I.-G., Timofte, C., and
Holobâcă, I.-H.: Tree-ring-based reconstruction of high-magnitude snow avalanches in Piatra Craiului Mountains (Southern Carpathians, Romania), Geograf. Ann. A, 100, 99–115, https://doi.org/10.1080/04353676.2017.1405715, 2018.
Potter, N.: Tree-ring dating of snow avalanche tracks and the geomorphic activity of avalanches, Northern Absaroka Mountains, Wyoming, Geol. S. Am.
S., 123, 141–165, 1969.
Rayback, S. A.: A dendrogeomorphological analysis of snow avalanches in the
Colorado Front Range, USA, Phys. Geogr., 19, 502–515, https://doi.org/10.1080/02723646.1998.10642664, 1998.
Reardon, B. A., Pederson, G. T., Caruso, C. J., and Fagre, D. B.: Spatial
reconstructions and comparisons of historic snow avalanche frequency and
extent using tree rings in Glacier National Park, Montana, U.S.A., Arct.
Antarct. Alp. Res., 40, 148–160, https://doi.org/10.1657/1523-0430(06-069)[REARDON]2.0.CO;2, 2008.
Schläppy, R., Jomelli, V., Grancher, D., Stoffel, M., Corona, C., Brunstein, D., Eckert, N., and Deschatres, M.: A New Tree-Ring-Based,
Semi-Quantitative Approach for the Determination of Snow Avalanche Events: use of Classification Trees for Validation, Arct. Antarct. Alp. Res., 45,
383–395, https://doi.org/10.1657/1938-4246-45.3.383, 2013.
Schläppy, R., Eckert, N., Jomelli, V., Stoffel, M., Grancher, D., Brunstein, D., Naaim, M., and Deschatres, M.: Validation of extreme snow
avalanches and related return periods derived from a statistical-dynamical
model using tree-ring techniques, Cold Reg. Sci. Technol., 99, 12–26,
https://doi.org/10.1016/j.coldregions.2013.12.001, 2014.
Schläppy, R., Jomelli, V., Eckert, N., Stoffel, M., Grancher, D.,
Brunstein, D., Corona, C., and Deschatres, M.: Can we infer avalanche–climate relations using tree-ring data? Case studies in the French Alps, Reg. Environ. Change, 16, 629–642, https://doi.org/10.1007/s10113-015-0823-0, 2015.
Schweizer, J.: Snow avalanche formation, Rev. Geophys., 41, 1016–1041, https://doi.org/10.1029/2002rg000123, 2003.
Schweizer, J., Kronholm, K., and Wiesinger, T.: Verification of regional
snowpack stability and avalanche danger, Cold Reg. Sci. Technol., 37, 277–288, https://doi.org/10.1016/s0165-232x(03)00070-3, 2003.
Shroder, J. F.: Dendrogeomorphological analysis of mass movement on Table
Cliffs Plateau, Utah, Quatern. Res., 9, 168–185, https://doi.org/10.1016/0033-5894(78)90065-0, 1978.
Šilhán, K. and Tichavský, R.: Snow avalanche and debris flow
activity in the High Tatras Mountains: New data from using dendrogeomorphic
survey, Cold Reg. Sci. Technol., 134, 45–53, https://doi.org/10.1016/j.coldregions.2016.12.002, 2017.
Skøien, J. O. and Blöschl, G.: Sampling scale effects in random fields and implications for environmental monitoring, Environ. Monit. Assess., 114, 521–552, https://doi.org/10.1007/s10661-006-4939-z, 2006.
Smith, L.: Indication of snow avalanche periodicity through interpretation
of vegetation patterns in the North Cascades, Washington, in: Methods of
Avalanche Control on Washington Mountain Highways: Third Annual Report,
Washington State Highway Commission Department of Highways, Olympia, Washington, USA, 187 pp., 1973.
Smith, M. J. and McClung, D. M.: Avalanche frequency and terrain
characteristics at Rogers' pass, British Columbia, Canada, J. Glaciol., 43,
165–171, https://doi.org/10.3189/S0022143000002926, 1997.
Stokes, M. A. and Smiley, T. L.: An Introduction to Tree-Ring Dating, The
University of Arizona Press, Tucson, 1996.
Teich, M., Bartelt, P., Grêt-Regamey, A., and Bebi, P.: Snow Avalanches in Forested Terrain: Influence of Forest Parameters, Topography, and Avalanche Characteristics on Runout Distance, Arct. Antarct. Alp. Res., 44,
509–519, https://doi.org/10.1657/1938-4246-44.4.509, 2012.
Voiculescu, M., Onaca, A., and Chiroiu, P.: Dendrogeomorphic reconstruction
of past snow avalanche events in Bâlea glacial valley – Făgăraş massif (Southern Carpathians), Romanian Carpathians, Quatern. Int., 415, 286–302, https://doi.org/10.1016/j.quaint.2015.11.115, 2016.
Short summary
We sampled 647 trees from 12 avalanche paths to investigate large snow avalanches over the past 400 years in the northern Rocky Mountains, USA. Sizable avalanches occur approximately every 3 years across the region. Our results emphasize the importance of sample size, scale, and spatial extent when reconstructing avalanche occurrence across a region. This work can be used for infrastructure planning and avalanche forecasting operations.
We sampled 647 trees from 12 avalanche paths to investigate large snow avalanches over the past...
Altmetrics
Final-revised paper
Preprint