Articles | Volume 21, issue 9
Nat. Hazards Earth Syst. Sci., 21, 2849–2865, 2021
https://doi.org/10.5194/nhess-21-2849-2021
Nat. Hazards Earth Syst. Sci., 21, 2849–2865, 2021
https://doi.org/10.5194/nhess-21-2849-2021

Research article 17 Sep 2021

Research article | 17 Sep 2021

Investigating 3D and 4D variational rapid-update-cycling assimilation of weather radar reflectivity for a heavy rain event in central Italy

Vincenzo Mazzarella et al.

Related authors

A meteorological–hydrological regional ensemble forecast for an early-warning system over small Apennine catchments in Central Italy
Rossella Ferretti, Annalina Lombardi, Barbara Tomassetti, Lorenzo Sangelantoni, Valentina Colaiuda, Vincenzo Mazzarella, Ida Maiello, Marco Verdecchia, and Gianluca Redaelli
Hydrol. Earth Syst. Sci., 24, 3135–3156, https://doi.org/10.5194/hess-24-3135-2020,https://doi.org/10.5194/hess-24-3135-2020, 2020
Short summary
Comparison between 3D-Var and 4D-Var data assimilation methods for the simulation of a heavy rainfall case in central Italy
Vincenzo Mazzarella, Ida Maiello, Vincenzo Capozzi, Giorgio Budillon, and Rossella Ferretti
Adv. Sci. Res., 14, 271–278, https://doi.org/10.5194/asr-14-271-2017,https://doi.org/10.5194/asr-14-271-2017, 2017
Short summary
Hail storm hazard in urban areas: identification and probability of occurrence by using a single-polarization X-band weather radar
Vincenzo Capozzi, Errico Picciotti, Vincenzo Mazzarella, Giorgio Budillon, and Frank Silvio Marzano
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-177,https://doi.org/10.5194/hess-2016-177, 2016
Revised manuscript not accepted
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Using high-resolution regional climate models to estimate return levels of daily extreme precipitation over Bavaria
Benjamin Poschlod
Nat. Hazards Earth Syst. Sci., 21, 3573–3598, https://doi.org/10.5194/nhess-21-3573-2021,https://doi.org/10.5194/nhess-21-3573-2021, 2021
Short summary
An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions
Matthieu Plu, Barbara Scherllin-Pirscher, Delia Arnold Arias, Rocio Baro, Guillaume Bigeard, Luca Bugliaro, Ana Carvalho, Laaziz El Amraoui, Kurt Eschbacher, Marcus Hirtl, Christian Maurer, Marie D. Mulder, Dennis Piontek, Lennart Robertson, Carl-Herbert Rokitansky, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 21, 2973–2992, https://doi.org/10.5194/nhess-21-2973-2021,https://doi.org/10.5194/nhess-21-2973-2021, 2021
Short summary
A climatology of sub-seasonal temporal clustering of extreme precipitation in Switzerland and its links to extreme discharge
Alexandre Tuel and Olivia Martius
Nat. Hazards Earth Syst. Sci., 21, 2949–2972, https://doi.org/10.5194/nhess-21-2949-2021,https://doi.org/10.5194/nhess-21-2949-2021, 2021
Short summary
Impact of large wildfires on PM10 levels and human mortality in Portugal
Patricia Tarín-Carrasco, Sofia Augusto, Laura Palacios-Peña, Nuno Ratola, and Pedro Jiménez-Guerrero
Nat. Hazards Earth Syst. Sci., 21, 2867–2880, https://doi.org/10.5194/nhess-21-2867-2021,https://doi.org/10.5194/nhess-21-2867-2021, 2021
Short summary
Variability in lightning hazard over Indian region with respect to El Niño–Southern Oscillation (ENSO) phases
Avaronthan Veettil Sreenath, Sukumarapillai Abhilash, and Pattathil Vijaykumar
Nat. Hazards Earth Syst. Sci., 21, 2597–2609, https://doi.org/10.5194/nhess-21-2597-2021,https://doi.org/10.5194/nhess-21-2597-2021, 2021
Short summary

Cited articles

Ballard, S. P., Li, Z., Simonin, D., Buttery, H., Charlton-Perez, C., Gaussiat, N., and Hawkness-Smith, L.: Use of radar data in NWP-based nowcasting in the Met Office, in: Weather Radar and Hydrology, edited by: Moore, R. J., Cole, S. J., and Illingworth, A. J., IAHS Publ., 351, 336–341, 2012. 
Ballard, S. P., Li, Z., Simonin, D., and Caron, J.-F.: Performance of 4D-Var NWP-based nowcasting of precipitation at the Met Office for summer 2012, Q. J. Roy. Meteorol. Soc., 142, 472–487, https://doi.org/10.1002/qj.2665, 2016. 
Barker, D., Huang, X., Liu, Z., Auligné, T., Zhang, X., Rugg, S., Ajjaji, R., Bourgeois, A., Bray, J., Chen, Y., Demirtas, M., Guo, Y., Henderson, T., Huang, W., Lin, H., Michalakes, J., Rizvi, S., and Zhang, X.: The Weather Research and Forecasting model's Community Variational/Ensemble Data Assimilation System: WRFDA, B. Am. Meteorol. Soc., 93, 831–843, https://doi.org/10.1175/BAMS-D-11-00167.1, 2012. 
Buizza, R. and Palmer, T. N.: Impact of ensemble size on ensemble prediction, Mon. Weather Rev., 126, 2503–2518, 1998. 
Download
Short summary
Forecasting precipitation over the Mediterranean basin is still a challenge. In this context, data assimilation techniques play a key role in improving the initial conditions and consequently the timing and position of the precipitation forecast. For the first time, the ability of a cycling 4D-Var to reproduce a heavy rain event in central Italy, as well as to provide a comparison with the largely used cycling 3D-Var, is evaluated in this study.
Altmetrics
Final-revised paper
Preprint