Articles | Volume 21, issue 9
https://doi.org/10.5194/nhess-21-2849-2021
https://doi.org/10.5194/nhess-21-2849-2021
Research article
 | 
17 Sep 2021
Research article |  | 17 Sep 2021

Investigating 3D and 4D variational rapid-update-cycling assimilation of weather radar reflectivity for a heavy rain event in central Italy

Vincenzo Mazzarella, Rossella Ferretti, Errico Picciotti, and Frank Silvio Marzano

Related authors

High-Resolution Data Assimilation for Two Maritime Extreme Weather Events: A comparison between 3DVar and EnKF
Diego Saúl Carrió, Vincenzo Mazzarella, and Rossella Ferretti
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-177,https://doi.org/10.5194/nhess-2024-177, 2024
Preprint under review for NHESS
Short summary
A meteorological–hydrological regional ensemble forecast for an early-warning system over small Apennine catchments in Central Italy
Rossella Ferretti, Annalina Lombardi, Barbara Tomassetti, Lorenzo Sangelantoni, Valentina Colaiuda, Vincenzo Mazzarella, Ida Maiello, Marco Verdecchia, and Gianluca Redaelli
Hydrol. Earth Syst. Sci., 24, 3135–3156, https://doi.org/10.5194/hess-24-3135-2020,https://doi.org/10.5194/hess-24-3135-2020, 2020
Short summary
Comparison between 3D-Var and 4D-Var data assimilation methods for the simulation of a heavy rainfall case in central Italy
Vincenzo Mazzarella, Ida Maiello, Vincenzo Capozzi, Giorgio Budillon, and Rossella Ferretti
Adv. Sci. Res., 14, 271–278, https://doi.org/10.5194/asr-14-271-2017,https://doi.org/10.5194/asr-14-271-2017, 2017
Short summary
Hail storm hazard in urban areas: identification and probability of occurrence by using a single-polarization X-band weather radar
Vincenzo Capozzi, Errico Picciotti, Vincenzo Mazzarella, Giorgio Budillon, and Frank Silvio Marzano
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-177,https://doi.org/10.5194/hess-2016-177, 2016
Revised manuscript not accepted
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Reconstructing hail days in Switzerland with statistical models (1959–2022)
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024,https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024,https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024,https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Intense rains in Israel associated with the train effect
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024,https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024,https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary

Cited articles

Ballard, S. P., Li, Z., Simonin, D., Buttery, H., Charlton-Perez, C., Gaussiat, N., and Hawkness-Smith, L.: Use of radar data in NWP-based nowcasting in the Met Office, in: Weather Radar and Hydrology, edited by: Moore, R. J., Cole, S. J., and Illingworth, A. J., IAHS Publ., 351, 336–341, 2012. 
Ballard, S. P., Li, Z., Simonin, D., and Caron, J.-F.: Performance of 4D-Var NWP-based nowcasting of precipitation at the Met Office for summer 2012, Q. J. Roy. Meteorol. Soc., 142, 472–487, https://doi.org/10.1002/qj.2665, 2016. 
Barker, D., Huang, X., Liu, Z., Auligné, T., Zhang, X., Rugg, S., Ajjaji, R., Bourgeois, A., Bray, J., Chen, Y., Demirtas, M., Guo, Y., Henderson, T., Huang, W., Lin, H., Michalakes, J., Rizvi, S., and Zhang, X.: The Weather Research and Forecasting model's Community Variational/Ensemble Data Assimilation System: WRFDA, B. Am. Meteorol. Soc., 93, 831–843, https://doi.org/10.1175/BAMS-D-11-00167.1, 2012. 
Buizza, R. and Palmer, T. N.: Impact of ensemble size on ensemble prediction, Mon. Weather Rev., 126, 2503–2518, 1998. 
Caumont, O., Ducrocq, V., Wattrelot, E., Jaubert, G., and Pradier-Vabre, S.: 1D + 3DVar assimilation of radar reflectivity data: A proof of concept, Tellus A, 62, 173–187, 2009. 
Download
Short summary
Forecasting precipitation over the Mediterranean basin is still a challenge. In this context, data assimilation techniques play a key role in improving the initial conditions and consequently the timing and position of the precipitation forecast. For the first time, the ability of a cycling 4D-Var to reproduce a heavy rain event in central Italy, as well as to provide a comparison with the largely used cycling 3D-Var, is evaluated in this study.
Altmetrics
Final-revised paper
Preprint