Articles | Volume 21, issue 9
https://doi.org/10.5194/nhess-21-2849-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2849-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigating 3D and 4D variational rapid-update-cycling assimilation of weather radar reflectivity for a heavy rain event in central Italy
Vincenzo Mazzarella
CORRESPONDING AUTHOR
CIMA Research Foundation, Savona 17100, Italy
CETEMPS, Department of Physical and Chemical
Sciences, University of L'Aquila, L'Aquila 67100, Italy
Rossella Ferretti
CETEMPS, Department of Physical and Chemical
Sciences, University of L'Aquila, L'Aquila 67100, Italy
Errico Picciotti
CETEMPS, Department of Physical and Chemical
Sciences, University of L'Aquila, L'Aquila 67100, Italy
Frank Silvio Marzano
CETEMPS, Department of Physical and Chemical
Sciences, University of L'Aquila, L'Aquila 67100, Italy
Department of Information Engineering, Sapienza University of Rome,
Rome 00185, Italy
Related authors
Diego S. Carrió, Vincenzo Mazzarella, and Rossella Ferretti
Nat. Hazards Earth Syst. Sci., 25, 2999–3026, https://doi.org/10.5194/nhess-25-2999-2025, https://doi.org/10.5194/nhess-25-2999-2025, 2025
Short summary
Short summary
Populated coastal regions in the Mediterranean are known to be severely affected by extreme weather events that are initiated over maritime regions. These weather events are known to pose a serious problem in terms of numerical predictability. Different data assimilation techniques are used in this study with the main aim of enhancing short-range forecasts of two challenging severe weather events.
Diego S. Carrió, Vincenzo Mazzarella, and Rossella Ferretti
Nat. Hazards Earth Syst. Sci., 25, 2999–3026, https://doi.org/10.5194/nhess-25-2999-2025, https://doi.org/10.5194/nhess-25-2999-2025, 2025
Short summary
Short summary
Populated coastal regions in the Mediterranean are known to be severely affected by extreme weather events that are initiated over maritime regions. These weather events are known to pose a serious problem in terms of numerical predictability. Different data assimilation techniques are used in this study with the main aim of enhancing short-range forecasts of two challenging severe weather events.
Edoardo Raparelli, Paolo Tuccella, Valentina Colaiuda, and Frank S. Marzano
The Cryosphere, 17, 519–538, https://doi.org/10.5194/tc-17-519-2023, https://doi.org/10.5194/tc-17-519-2023, 2023
Short summary
Short summary
We evaluate the skills of a single-layer (Noah) and a multi-layer (Alpine3D) snow model, forced with the Weather Research and Forecasting model, to reproduce snowpack properties observed in the Italian central Apennines. We found that Alpine3D reproduces the observed snow height and snow water equivalent better than Noah, while no particular model differences emerge on snow cover extent. Finally, we observed that snow settlement is mainly due to densification in Alpine3D and to melting in Noah.
Ayham Alyosef, Domenico Cimini, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Marianna Biscarini, Luca Milani, Antonio Martellucci, Sabrina Gentile, Saverio T. Nilo, Francesco Di Paola, Ayman Alkhateeb, and Filomena Romano
Atmos. Meas. Tech., 14, 2737–2748, https://doi.org/10.5194/amt-14-2737-2021, https://doi.org/10.5194/amt-14-2737-2021, 2021
Short summary
Short summary
Telecommunication is based on the propagation of radio signals through the atmosphere. The signal power diminishes along the path due to atmospheric attenuation, which needs to be estimated to be accounted for. In a study funded by the European Space Agency, we demonstrate an innovative method improving atmospheric attenuation estimates from ground-based radiometric measurements by 10–30 %. More accurate atmospheric attenuation estimates imply better telecommunication services in the future.
Cited articles
Ballard, S. P., Li, Z., Simonin, D., Buttery, H., Charlton-Perez, C.,
Gaussiat, N., and Hawkness-Smith, L.: Use of radar data in NWP-based
nowcasting in the Met Office, in: Weather Radar and Hydrology, edited by: Moore, R. J., Cole, S. J., and Illingworth, A. J., IAHS Publ., 351, 336–341, 2012.
Ballard, S. P., Li, Z., Simonin, D., and Caron, J.-F.: Performance of 4D-Var
NWP-based nowcasting of precipitation at the Met Office for summer 2012,
Q. J. Roy. Meteorol. Soc., 142, 472–487, https://doi.org/10.1002/qj.2665, 2016.
Barker, D., Huang, X., Liu, Z., Auligné, T., Zhang, X., Rugg, S., Ajjaji, R., Bourgeois, A., Bray, J., Chen, Y., Demirtas, M., Guo, Y., Henderson, T., Huang, W., Lin, H., Michalakes, J., Rizvi, S., and Zhang, X.: The Weather Research and Forecasting model's Community Variational/Ensemble Data Assimilation System: WRFDA, B. Am. Meteorol. Soc., 93, 831–843, https://doi.org/10.1175/BAMS-D-11-00167.1, 2012.
Buizza, R. and Palmer, T. N.: Impact of ensemble size on ensemble prediction, Mon. Weather Rev., 126, 2503–2518, 1998.
Caumont, O., Ducrocq, V., Wattrelot, E., Jaubert, G., and Pradier-Vabre, S.:
1D + 3DVar assimilation of radar reflectivity data: A proof of concept,
Tellus A, 62, 173–187, 2009.
Chang, W., Chung, K., Fillion, L., and Baek, S.: Radar Data Assimilation in
the Canadian High-Resolution Ensemble Kalman Filter System: Performance and
Verification with Real Summer Cases, Mon. Weather Rev., 142, 2118–2138,
https://doi.org/10.1175/MWR-D-13-00291.1, 2014.
Chen, F. and Dudhia, J.: Coupling an advanced land-surface/hydrology model
with the Penn State/NCAR MM5 modeling system. Part I: model description and
implementation, Mon. Weather Rev., 129, 569–585, 2001.
Chu, K., Xiao, Q., and Liu, C.: Experiments of the WRF three-/four-dimensional variational (3/4DVAR) data assimilation in the
forecasting of Antarctic cyclones, Meteorol. Atmos. Phys., 120, 145–156, https://doi.org/10.1007/s00703-013-0243-y, 2013.
Courtier, P., Thépaut, J.-N., and Hollingsworth, A.: A strategy for
operational implementation of 4D-Var, using an incremental approach. Q. J. Roy. Meteorol. Soc., 120, 1367–1387, 1994.
Dowell, D. C., Wicker, L. J., and Snyder, C.: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses, Mon. Weather Rev., 139, 272–294, 2011.
Federico, S., Torcasio, R. C., Avolio, E., Caumont, O., Montopoli, M.,
Baldini, L., Vulpiani, G., and Dietrich, S.: The impact of lightning and radar reflectivity factor data assimilation on the very short-term rainfall
forecasts of RAMS@ISAC: application to two case studies in Italy, Nat. Hazards Earth Syst. Sci., 19, 1839–1864, https://doi.org/10.5194/nhess-19-1839-2019, 2019.
Ferretti, R., Pichelli, E., Gentile, S., Maiello, I., Cimini, D., Davolio,
S., Miglietta, M. M., Panegrossi, G., Baldini, L., Pasi, F., Marzano, F.S.,
Zinzi, A., Mariani, S., Casaioli, M., Bartolini, G., Loglisci, N., Montani,
A., Marsigli, C., Manzato, A., Pucillo, A., Ferrario, M. E., Colaiuda, V., and Rotunno, R.: Overview of the first HyMeX Special Observation Period over
Italy: observations and model results, Hydrol. Earth Syst. Sci., 18, 1953–1977, https://doi.org/10.5194/hess-18-1953-2014, 2014.
Ferretti, R., Lombardi, A., Tomassetti, B., Sangelantoni, L., Colaiuda, V.,
Mazzarella, V., Maiello, I., Verdecchia, M., and Redaelli, G.: A meteorological–hydrological regional ensemble forecast for an early-warning
system over small Apennine catchments in Central Italy, Hydrol. Earth Syst.
Sci., 24, 3135–3156, https://doi.org/10.5194/hess-24-3135-2020, 2020.
Gao, J. and Stensrud, D. J.: Assimilation of Reflectivity Data in a Convective-Scale, Cycled 3DVAR Framework with Hydrometeor Classification, J.
Atmos. Sci., 69, 1054–1065, https://doi.org/10.1175/JAS-D-11-0162.1, 2012.
Gao, J.-D., Xue, M., Brewster, K., and Droegemeier, K. K.: A
three-dimensional variational data analysis method with recursive filter for
Doppler radars, J. Atmos. Ocean. Tech., 21, 457–469, 2004.
Gastaldo, T., Poli, V., Marsigli, C., Alberoni, P. P., and Paccagnella, T.:
Data assimilation of radar reflectivity volumes in a LETKF scheme, Nonlin.
Processes Geophys., 25, 747–764, https://doi.org/10.5194/npg-25-747-2018, 2018.
Gastaldo, T., Poli, V., Marsigli, C., Cesari, D., Alberoni, P. P., and Paccagnella, T.: Assimilation of radar reflectivity volumes in a pre-operational framework, Q. J. Roy. Meteorol. Soc., 147, 1031–1054, https://doi.org/10.1002/qj.3957, 2021.
Gilmore, M. S., Straka, J. M., and Rasmussen, E. N.: Precipitation and
evolution sensitivity in simulated deep convective storms: Comparisons
between liquid-only and simple ice and liquid phase microphysics, Mon. Weather Rev., 132, 1897–1916, 2004.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707,
https://doi.org/10.1029/2006GL025734, 2006.
Giorgi, F., Im, E.-S., Coppola, E., Diffenbaugh, N. S., Gao, X. J., Mariotti, L., and Shi, Y.: Higher Hydroclimatic Intensity with Global Warming, J. Climate, 24, 5309–5324, https://doi.org/10.1175/2011JCLI3979.1, 2011.
Gustafsson, N., Janjić, T., Schraff, C., Leuenberger, D., Weissman, M., Reich, H., Brousseau, P., Montmerle, T., Wattrelot, E., Bučánek, A., Mile, M., Hamdi, R., Lindskog, M., Barkmeijer, J., Dahlbom, M., Macpherson, B., Ballard, S., Inverarity, G., Carley, J., Alexander, C., Dowell, D., Liu, S., Ikuta, Y., and Fujita, T.: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres, Q. J. Roy. Meteorol. Soc., 144, 1218–1256, https://doi.org/10.1002/qj.3179, 2018.
Ha, J., Kim, H., and Lee, D.: Observation and numerical simulations with
radar and surface data assimilation for heavy rainfall over central Korea,
Adv. Atmos. Sci., 28, 573–590, https://doi.org/10.1007/s00376-010-0035-y, 2011.
Hanachi, C., Bénaben, F., and Charoy, F. (Eds.): The Dewetra Platform: A
Multi-perspective Architecture for Risk Management during Emergencies, in:
Information Systems for Crisis Response and Management in Mediterranean
Countries, Springer International Publishing, Cham, Switzerland, 165–177, 2014.
Hong, S. Y. and Lim, J. O. J.: The WRF single-moment 6-class microphysics
scheme (WSM6), Asia-Pacif. J. Atmos. Sci., 42, 129–151, 2006.
Huang, X. Y., Xiao, Q., Barker, D. M., Zhang, X., Michalakes, J., Huang, W.,
Henderson, T., Bray, J., Chen, Y., Ma, Z., Dudhia, J., Guo, Y., Zhang, X.,
Won, D. J., Lin, H. C., and Kuo, Y. H.: Four-Dimensional Variational Data
Assimilation for WRF: Formulation and Preliminary Results, Mon. Weather Rev.,
137, 299–314, 2009.
Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: Further
Developments of the Convection, Viscous Sublayer, and Turbulence Closure
Schemes, Mon. Weather Rev., 122, 927–945,
https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994.
Jones, P. W.: First- and Second-Order Conservative Remapping Schemes for
Grids in Spherical Coordinates, Mon. Weather Rev., 127, 2204–2210, 1999.
Lagasio, M., Silvestro, F., Campo, L., and Parodi, A.: Predictive Capability
of a High-Resolution Hydrometeorological Forecasting Framework Coupling WRF
Cycling 3DVAR and Continuum, J. Hydrometeorol., 20, 1307–1337,
https://doi.org/10.1175/JHM-D-18-0219.1, 2019.
Lee, J.-H., Lee, H.-H., Choi, Y., Kim, H.-W., and Lee, D.-K.: Radar data
assimilation for the simulation of mesoscale convective systems, Adv. Atmos. Sci., 27, 1025–1042, https://doi.org/10.1007/s00376-010-9162-8, 2010.
Lee, J.-W., Min, K.-H., Lee, Y.-H., and Lee, G.: X-Net-Based Radar Data
Assimilation Study over the Seoul Metropolitan Area, Remote Sens., 12, 893 https://doi.org/10.3390/rs12050893, 2020.
Lin, Y.-L., Farley, R. D., and Orville, H. D.: Bulk parameterization of the
snow field in a cloud model, J. Clim. Appl. Meteorol., 22, 1065–1092, 1983.
Liu, Z. Q. and Rabier, F.: The potential of high-density observations for numerical weather prediction: A study with simulated observations, Q. J. Roy. Meteorol. Soc., 129, 3013–3035, https://doi.org/10.1256/qj.02.170, 2003.
Llasat, M. C., Llasat-Botija, M., Prat, M. A., Porcu, F., Price, C., Mugnai, A., Lagouvardos, K., Kotroni, V., Katsanos, D., Michaelides, S., Yair, Y., Savvidou, K., and Nicolaides, K.: High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database, Adv. Geosci., 23, 47–55, https://doi.org/10.5194/adgeo-23-47-2010, 2010.
Maiello, I., Ferretti, R., Gentile, S., Montopoli, M., Picciotti, E., Marzano, F. S., and Faccani, C.: Impact of radar data assimilation for the
simulation of a heavy rainfall case in central Italy using WRF–3DVAR,
Atmos. Meas. Tech., 7, 2919–2935, https://doi.org/10.5194/amt-7-2919-2014, 2014.
Maiello, I., Gentile, S., Ferretti, R., Baldini, L., Roberto, N., Picciotti,
E., Alberoni, P. P., and Marzano, F. S.: Impact of multiple radar reflectivity data assimilation on the numerical simulation of a flash flood event during the HyMeX campaign. Hydrol. Earth Syst. Sci., 21, 5459–5476,
https://doi.org/10.5194/hess-21-5459-2017, 2017.
Mason, I.: A model for assessment of weather forecasts, Aust. Meteorol. Mag.,
30, 291–303, 1982.
Mass, C. F., Ovens, D., Westrick, K., and Colle, B. A.: Does Increasing Horizontal Resolution Produce More Skillful Forecasts?, B. Am. Meteorol. Soc., 83, 407-430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2, 2002.
Mazzarella, V., Maiello, I., Capozzi, V., Budillon, G., and Ferretti, R.:
Comparison between 3D-Var and 4D-Var data assimilation methods for the
simulation of a heavy rainfall case in central Italy, Adv. Sci. Res., 14,
271–278, https://doi.org/10.5194/asr-14-271-2017, 2017.
Mazzarella, V., Maiello, I., Ferretti, R., Capozzi, V., Picciotti, E., Alberoni, P. P., Marzano, F. S., and Budillon, G.: Reflectivity and velocity radar data assimilation for two flash flood events in central Italy: A comparison between 3D and 4D variational methods, Q. J. Roy. Meteorol. Soc., 146, 348–366, https://doi.org/10.1002/qj.3679, 2020.
Min, K.-H. and Kim, Y.-H.: Assimilation of null-echo from radar data for QPF, in: Proceedings of the 17th WRF Users' Workshop, 27 June–1 July 2016, Boulder, CO, USA, 2016.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, 1997.
myDEWETRA: Monitoraggio, previsione, prevenzione, available at: http://www.mydewetra.org/, last access: 15 July 2021.
Parrish, D. F. and Derber, J. C.: The National Meteorological Center's spectral statistical-interpolation analysis system, Mon. Weather Rev., 120, 1747–1763, 1992.
Petracca, M., D'Adderio, L. P., Porcù, F., Vulpiani, G., Sebastianelli,
S., and Puca, S.: Validation of GPM Dual-Frequency Precipitation Radar (DPR)
Rainfall Products over Italy, J. Hydrometeorol., 19, 907–925, 2018.
Roberts, N. M.: The impact of a change to the use of the convection scheme to high resolution simulations of convective events (stage 2 report from the storm scale numerical modelling project), Met Office Tech. Rep. 407, 30 pp.,
2003.
Roberts, N. M. and Lean, H. W.: Scale-selective verification of rainfall
accumulations from high-resolution forecasts of convective events, Mon. Weather Rev., 136, 78–97, 2008.
Romine, G. S., Schwartz, C. S., Snyder, C., Anderson, J. L., and Weisman, M. L.: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts, Mon. Weather Rev., 141, 1263–1284, 2013.
Schwitalla, T. and Wulfmeyer, V.: Radar data assimilation experiments using
the IPM WRF Rapid Update Cycle, Meteorol. Z., 23, 79–102, 2014.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D., and Huang, X.-Y.: A Description of the Advanced Research WRF Version 4, NCAR Tech. Note NCAR/TN-556+STR, 145 pp., Boulder, Colorado, https://doi.org/10.5065/1dfh-6p97, 2019.
Smith, P. L., Myers, C. G., and Orville, H. D.: Radar reflectivity factor
calculations in numerical cloud models using bulk parameterization of
precipitation processes, J. Appl. Meteorol., 14, 1156–1165,
https://doi.org/10.1175/1520-0450(1975)014<1156:RRFCIN>2.0.CO;2, 1975.
Smith, T. L., Benjamin, S. G., Brown, J. M., Weygandt, S., Smirnova, T., and
Schwartz, B.: Convection forecasts from the hourly updated, 3-km High
Resolution Rapid Refresh (HRRR) model. Preprints, in: 24th Conf. on Severe Local Storms, 11.1, Amer. Meteor. Soc., Savannah, GA, 2008.
Stanešić, A. and Brewster, K. A.: Impact of radar data assimilation
on the numerical simulation of a severe storm in Croatia, Meteorol. Z., 25, 37–53, 2016.
Stensrud, D. J., Xue, M., Wicker, L. J., Kelleher, K. E., Foster, M. P.,
Schaefer, J. T., Schneider, R. S., Benjamin, S. G., Weygandt, S. S., Ferree,
J. T., and Tuell, J. P.: Convective-Scale Warn-on-Forecast System, B. Am. Meteorol. Soc., 90, 1487–1500, doi10.1175/2009BAMS2795.1, 2009.
Stephan, K., Klink, S., and Schraff, C.: Assimilation of radar derived rain
rates into the convective scale model COSMO-DE at DWD, Q. J. Roy. Meteorol. Soc., 134, 1315–1326, 2008.
Storer, N. L., Gill, P. G., and Williams, P. D.: Multi-Model ensemble
predictions of aviation turbulence, Meteorol Appl., 26, 416–428,
https://doi.org/10.1002/met.1772, 2019.
Sun, J. and Wang, H.: Radar data assimilation with WRF 4DVar. Part II:
comparison with 3D-Var for a squall line over the US Great Plains, Mon.
Weather Rev., 11, 2245–2264, https://doi.org/10.1175/MWR-D-12-00169.1, 2013.
Sun, J., Wang, H., Tong, W., Zhang, Y., Lin, C.-Y., and Xu, D.: Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting, Mon. Weather Rev., 144, 149–169, 2016.
Swets, J. A.: The relative operating characteristic in psychology, Science,
182, 990–1000, 1973.
Tong, W., Li, G., Sun, J., Tang, X., and Zhang, Y.: Design Strategies of an
Hourly Update 3DVAR Data Assimilation System for Improved Convective
Forecasting, Weather Forecast., 31, 1673–1695, https://doi.org/10.1175/WAF-D-16-0041.1, 2016.
Torcasio, R. C., Federico, S., Comellas Prat, A., Panegrossi, G., D'Adderio,
L. P., and Dietrich, S.: Impact of Lightning Data Assimilation on the Short-Term Precipitation Forecast over Central Mediterranean Sea, Remote Sens., 13, 682, https://doi.org/10.3390/rs13040682, 2021.
Vulpiani, G., Pagliara, P., Negri, M., Rossi, L., Gioia, A., Giordano, P., Alberoni, P. P., Cremonini, R., Ferraris, L., and Marzano, F. S.: The Italian radar network within the national early-warning system for multi-risks management, in: Proc. of Fifth European Conference on Radar in Meteorology and Hydrology, ERAD, Helsinki, Finland, 2008.
Wang, H., Sun, J., Fan, S., and Huang, X.-Y.: Indirect assimilation of radar
reflectivity with WRF 3D-Var and its impact on prediction of four summertime
convective events, J. Appl. Meteorol. Clim., 52, 889–902, 2013a.
Wang, H., Huang, X. Y., and Sun, J.: A comparison between the 3/4DVAR and
hybrid ensemble-VAR techniques for radar data assimilation, in: 35th Conference on Radar Meteorology, Breckenridge, 2013b.
Wang, H., Sun, J., Zhang, X., Huang, X., and Auligne, T.: Radar data
assimilation with WRF 4D-Var. Part I: system development and preliminary
testing, Mon. Weather Rev., 141, 2224–2244, 2013c.
Willett, K. M., Jones, P. D., Gillett, N. P., and Thorne, P. W.: Recent
changes in surface humidity: Development of the HadCRUH dataset, J. Climate,
21, 5364–5383, 2008.
WMO: No. 544, Manual on the global observing system volume I (annex V to the
WMO technical regulations) global aspects 2003 edition, World Meteorological Organization, Geneva, 2003.
Xiao, Q. and Sun, J.: Multiple-radar data assimilation and short-range
quantitative precipitation forecasting of a squall line observed during
IHOP_2002, Mon. Weather Rev., 135, 3381–3404, 2007.
Yano, J., Ziemiański, M. Z., Cullen, M., Termonia, P., Onvlee, J.,
Bengtsson, L., Carrassi, A., Davy, R., Deluca, A., Gray, S. L., Homar, V.,
Köhler, M., Krichak, S., Michaelides, S., Phillips, V. T. J., Soares, P.
M. M., and Wyszogrodzki, A. A.: Scientific Challenges of Convective-Scale
Numerical Weather Prediction, B. Am. Meteorol. Soc., 99, 699–710, https://doi.org/10.1175/BAMS-D-17-0125.1, 2018.
Short summary
Forecasting precipitation over the Mediterranean basin is still a challenge. In this context, data assimilation techniques play a key role in improving the initial conditions and consequently the timing and position of the precipitation forecast. For the first time, the ability of a cycling 4D-Var to reproduce a heavy rain event in central Italy, as well as to provide a comparison with the largely used cycling 3D-Var, is evaluated in this study.
Forecasting precipitation over the Mediterranean basin is still a challenge. In this context,...
Altmetrics
Final-revised paper
Preprint