Articles | Volume 21, issue 8
Nat. Hazards Earth Syst. Sci., 21, 2543–2562, 2021
https://doi.org/10.5194/nhess-21-2543-2021
Nat. Hazards Earth Syst. Sci., 21, 2543–2562, 2021
https://doi.org/10.5194/nhess-21-2543-2021

Research article 25 Aug 2021

Research article | 25 Aug 2021

Optimizing and validating the Gravitational Process Path model for regional debris-flow runout modelling

Jason Goetz et al.

Related authors

Evaluating the destabilization susceptibility of active rock glaciers in the French Alps
Marco Marcer, Charlie Serrano, Alexander Brenning, Xavier Bodin, Jason Goetz, and Philippe Schoeneich
The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019,https://doi.org/10.5194/tc-13-141-2019, 2019
Short summary

Related subject area

Landslides and Debris Flows Hazards
Geographic-information-system-based topographic reconstruction and geomechanical modelling of the Köfels rockslide
Christian Zangerl, Annemarie Schneeberger, Georg Steiner, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 21, 2461–2483, https://doi.org/10.5194/nhess-21-2461-2021,https://doi.org/10.5194/nhess-21-2461-2021, 2021
Short summary
Spatiotemporal clustering of flash floods in a changing climate (China, 1950–2015)
Nan Wang, Luigi Lombardo, Marj Tonini, Weiming Cheng, Liang Guo, and Junnan Xiong
Nat. Hazards Earth Syst. Sci., 21, 2109–2124, https://doi.org/10.5194/nhess-21-2109-2021,https://doi.org/10.5194/nhess-21-2109-2021, 2021
Short summary
Atmospheric triggering conditions and climatic disposition of landslides in Kyrgyzstan and Tajikistan at the beginning of the 21st century
Xun Wang, Marco Otto, and Dieter Scherer
Nat. Hazards Earth Syst. Sci., 21, 2125–2144, https://doi.org/10.5194/nhess-21-2125-2021,https://doi.org/10.5194/nhess-21-2125-2021, 2021
Short summary
Analysis of meteorological parameters triggering rainfall-induced landslide: a review of 70 years in Valtellina
Andrea Abbate, Monica Papini, and Laura Longoni
Nat. Hazards Earth Syst. Sci., 21, 2041–2058, https://doi.org/10.5194/nhess-21-2041-2021,https://doi.org/10.5194/nhess-21-2041-2021, 2021
Short summary
Landslide risk management analysis on expansive residential areas – case study of La Marina (Alicante, Spain)
Isidro Cantarino, Miguel Angel Carrion, Jose Sergio Palencia-Jimenez, and Víctor Martínez-Ibáñez
Nat. Hazards Earth Syst. Sci., 21, 1847–1866, https://doi.org/10.5194/nhess-21-1847-2021,https://doi.org/10.5194/nhess-21-1847-2021, 2021
Short summary

Cited articles

Aaron, J., McDougall, S., and Nolde, N.: Two methodologies to calibrate landslide runout models, Landslides, 16, 907–920, https://doi.org/10.1007/s10346-018-1116-8, 2019. 
Aleotti, P. and Chowdhury, R.: Landslide hazard assessment: summary review and new perspectives, B. Eng. Geol. Environ., 58, 21–44, https://doi.org/10.1007/s100640050066, 1999. 
Angillieri, M. Y. E.: Debris flow susceptibility mapping using frequency ratio and seed cells, in a portion of a mountain international route, Dry Central Andes of Argentina, CATENA, 189, 104504, https://doi.org/10.1016/j.catena.2020.104504, 2020. 
Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., and Reichenbach, P.: Impact of mapping errors on the reliability of landslide hazard maps, Nat. Hazards Earth Syst. Sci., 2, 3–14, https://doi.org/10.5194/nhess-2-3-2002, 2002. 
ASF DAAC: ALOS PALSAR Radiometric Terrain Corrected high resolution digital elevation model: Includes Material © JAXA/METI, https://doi.org/10.5067/Z97HFCNKR6VA, 2011. 
Download
Short summary
Debris flows are fast-moving landslides that can cause incredible destruction to lives and property. Using the Andes of Santiago as an example, we developed tools to finetune and validate models predicting likely runout paths over large regions. We anticipate that our automated approach that links the open-source R software with SAGA-GIS will make debris-flow runout simulation more readily accessible and thus enable researchers and spatial planners to improve regional-scale hazard assessments.
Altmetrics
Final-revised paper
Preprint