Articles | Volume 21, issue 8
https://doi.org/10.5194/nhess-21-2407-2021
https://doi.org/10.5194/nhess-21-2407-2021
Research article
 | 
17 Aug 2021
Research article |  | 17 Aug 2021

Social sensing of high-impact rainfall events worldwide: a benchmark comparison against manually curated impact observations

Michelle D. Spruce, Rudy Arthur, Joanne Robbins, and Hywel T. P. Williams

Related authors

Social sensing a volcanic eruption: application to Kīlauea, 2018
James Hickey, James Young, Michelle Spruce, Ravi Pandit, Hywel Williams, Rudy Arthur, Wendy Stovall, and Matthew Head
Nat. Hazards Earth Syst. Sci., 25, 1681–1696, https://doi.org/10.5194/nhess-25-1681-2025,https://doi.org/10.5194/nhess-25-1681-2025, 2025
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Evaluation of machine learning approaches for large-scale agricultural drought forecasts to improve monitoring and preparedness in Brazil
Joseph W. Gallear, Marcelo Valadares Galdos, Marcelo Zeri, and Andrew Hartley
Nat. Hazards Earth Syst. Sci., 25, 1521–1541, https://doi.org/10.5194/nhess-25-1521-2025,https://doi.org/10.5194/nhess-25-1521-2025, 2025
Short summary
Soil moisture–atmosphere coupling strength over central Europe in the recent warming climate
Thomas Schwitalla, Lisa Jach, Volker Wulfmeyer, and Kirsten Warrach-Sagi
Nat. Hazards Earth Syst. Sci., 25, 1405–1424, https://doi.org/10.5194/nhess-25-1405-2025,https://doi.org/10.5194/nhess-25-1405-2025, 2025
Short summary
A data-driven framework for assessing climatic impact drivers in the context of food security
Marcos Roberto Benso, Roberto Fray Silva, Gabriela Chiquito Gesualdo, Antonio Mauro Saraiva, Alexandre Cláudio Botazzo Delbem, Patricia Angélica Alves Marques, José Antonio Marengo, and Eduardo Mario Mendiondo
Nat. Hazards Earth Syst. Sci., 25, 1387–1404, https://doi.org/10.5194/nhess-25-1387-2025,https://doi.org/10.5194/nhess-25-1387-2025, 2025
Short summary
Soil conditioner mixtures as an agricultural management alternative to mitigate drought impacts: a proof of concept
Juan F. Dueñas, Edda Kunze, Huiying Li, and Matthias C. Rillig
Nat. Hazards Earth Syst. Sci., 25, 1377–1386, https://doi.org/10.5194/nhess-25-1377-2025,https://doi.org/10.5194/nhess-25-1377-2025, 2025
Short summary
Compound winter low-wind and cold events impacting the French electricity system: observed evolution and role of large-scale circulation
François Collet, Margot Bador, Julien Boé, Laurent Dubus, and Bénédicte Jourdier
Nat. Hazards Earth Syst. Sci., 25, 843–856, https://doi.org/10.5194/nhess-25-843-2025,https://doi.org/10.5194/nhess-25-843-2025, 2025
Short summary

Cited articles

Aisha, T. S., Wok, S., Manaf, A. M. A., and Ismail, R.: Exploring the Use of Social Media During the 2014 Flood in Malaysia, Procedia - Soc. Behav. Sci., 211, 931–937, https://doi.org/10.1016/J.SBSPRO.2015.11.123, 2015. 
Arthur, R., Boulton, C. A., Shotton, H., and Williams, H. T. P.: Social sensing of floods in the UK, available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189327 (last access: 17 December 2020), 2018. 
Bossu, R., Fallou, L., Landès, M., Roussel, F., Julien-Laferrière, S., Roch, J., and Steed, R.: Rapid Public Information and Situational Awareness After the November 26, 2019, Albania Earthquake: Lessons Learned From the LastQuake System, Front. Earth Sci., 8, 235, https://doi.org/10.3389/feart.2020.00235, 2020. 
Boulton, C. A., Shotton, H., and Williams, H. T. P.: Using social media to detect and locate wildfires, in Tenth International AAAI Conference on Web and Social Media, AAAI, available at: https://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13204 (last access: 14 October 2019), 2016. 
Brouwer, T., Eilander, D., van Loenen, A., Booij, M. J., Wijnberg, K. M., Verkade, J. S., and Wagemaker, J.: Probabilistic flood extent estimates from social media flood observations, Nat. Hazards Earth Syst. Sci., 17, 735–747, https://doi.org/10.5194/nhess-17-735-2017, 2017. 
Download
Short summary
Despite increased use of impact-based weather warnings, the social impacts of extreme weather events lie beyond the reach of conventional meteorological observations and remain difficult to quantify. This study compares data collected from the social media platform Twitter with a manually curated database of high-impact rainfall events across the globe between January–June 2017. Twitter is found to be a good detector of impactful rainfall events and, therefore, a useful source of impact data.
Share
Altmetrics
Final-revised paper
Preprint