Articles | Volume 21, issue 7
https://doi.org/10.5194/nhess-21-2001-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2001-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intense windstorms in the northeastern United States
Department of Earth and Atmospheric Sciences, Cornell University,
Ithaca, New York, USA
Rebecca J. Barthelmie
Sibley School of Mechanical and Aerospace Engineering, Cornell
University, Ithaca, New York, USA
Kevin I. Hodges
Environmental System Science Centre, University of Reading, Reading,
United Kingdom
Department of Earth and Atmospheric Sciences, Cornell University,
Ithaca, New York, USA
Related authors
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024, https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary
Short summary
A historic derecho in the USA is presented. The 29 June 2012 derecho caused more than 20 deaths and millions of US dollars of damage. We use a regional climate model to understand how model fidelity changes under different initial conditions. We find changes drive different convective conditions, resulting in large variation in the simulated hazards. The variation using different reanalysis data shows that framing these results in the context of contemporary and future climate is a challenge.
Kelsey B. Thompson, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-37, https://doi.org/10.5194/wes-2025-37, 2025
Revised manuscript accepted for WES
Short summary
Short summary
Wind turbines in offshore lease areas (LA) along the eastern U.S. may be impacted by hurricanes. Regional simulations with atmosphere-only and coupled atmosphere-ocean-wave regional models well reproduce historical hurricanes and indicate no exceedance of 50 m s-1 wind speeds in the LA and only brief periods with low power production. Coupled simulations lead to more intense hurricanes possibly indicating that previous atmosphere-only simulations underestimate the risk to offshore wind turbines.
Lorenzo Sangelantoni, Stefano Tibaldi, Leone Cavicchia, Enrico Scoccimarro, Pier Luigi Vidale, Kevin Hodges, Vivien Mavel, Mattia Almansi, Chiara Cagnazzo, and Samuel Almond
EGUsphere, https://doi.org/10.5194/egusphere-2024-4157, https://doi.org/10.5194/egusphere-2024-4157, 2025
Preprint archived
Short summary
Short summary
We introduce a new dataset of European windstorms linked to extratropical cyclones, spanning whole ERA5 reanalysis period (1940–present). Developed under Copernicus Climate Change Service, the dataset provides standardized, high-quality information on windstorm tracks and footprints for industries like insurance and risk management. Preliminary findings show an increase in cold-season windstorms and their impacts in parts of Europe. Tracking methods contribute to uncertainties in key statistics.
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024, https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary
Short summary
A historic derecho in the USA is presented. The 29 June 2012 derecho caused more than 20 deaths and millions of US dollars of damage. We use a regional climate model to understand how model fidelity changes under different initial conditions. We find changes drive different convective conditions, resulting in large variation in the simulated hazards. The variation using different reanalysis data shows that framing these results in the context of contemporary and future climate is a challenge.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Henri Rossi Pinheiro, Kevin Ivan Hodges, and Manoel Alonso Gan
Weather Clim. Dynam., 5, 881–894, https://doi.org/10.5194/wcd-5-881-2024, https://doi.org/10.5194/wcd-5-881-2024, 2024
Short summary
Short summary
Cut-off lows (COLs) are weather systems with varied structures and lifecycles, from upper atmospheric to deep vortices. Deep, strong COLs are common around Australia and the southwestern Pacific in autumn and spring, while shallow, weak COLs occur more in summer near the Equator. Jet streams play a crucial role in COL development, with different jets influencing its depth and strength. The study also emphasizes the need for better representation of diabatic processes in reanalysis data.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Ville Vakkari, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 9, 821–840, https://doi.org/10.5194/wes-9-821-2024, https://doi.org/10.5194/wes-9-821-2024, 2024
Short summary
Short summary
Knowing the wind speed across the rotor of a wind turbine is key in making good predictions of the power production. However, models struggle to capture both the speed and the shape of the wind profile. Using machine learning methods based on the model data, we show that the predictions can be improved drastically. The work focuses on three coastal sites, spread over the Northern Hemisphere (the Baltic Sea, the North Sea, and the US Atlantic coast) with similar results for all sites.
Rebecca Foody, Jacob Coburn, Jeanie A. Aird, Rebecca J. Barthelmie, and Sara C. Pryor
Wind Energ. Sci., 9, 263–280, https://doi.org/10.5194/wes-9-263-2024, https://doi.org/10.5194/wes-9-263-2024, 2024
Short summary
Short summary
Using lidar-derived wind speed measurements at approx. 150 m height at onshore and offshore locations, we quantify the advantages of deploying wind turbines offshore in terms of the amount of electrical power produced and the higher reliability and predictability of the electrical power.
Christoffer Hallgren, Jeanie A. Aird, Stefan Ivanell, Heiner Körnich, Rebecca J. Barthelmie, Sara C. Pryor, and Erik Sahlée
Wind Energ. Sci., 8, 1651–1658, https://doi.org/10.5194/wes-8-1651-2023, https://doi.org/10.5194/wes-8-1651-2023, 2023
Short summary
Short summary
Low-level jets (LLJs) are special types of non-ideal wind profiles affecting both wind energy production and loads on a wind turbine. However, among LLJ researchers, there is no consensus regarding which definition to use to identify these profiles. In this work, we compare two different ways of identifying the LLJ – the falloff definition and the shear definition – and argue why the shear definition is better suited to wind energy applications.
Charlie C. Suitters, Oscar Martínez-Alvarado, Kevin I. Hodges, Reinhard K. H. Schiemann, and Duncan Ackerley
Weather Clim. Dynam., 4, 683–700, https://doi.org/10.5194/wcd-4-683-2023, https://doi.org/10.5194/wcd-4-683-2023, 2023
Short summary
Short summary
Atmospheric blocking describes large and persistent high surface pressure. In this study, the relationship between block persistence and smaller-scale systems is examined. Persistent blocks result from more interactions with small systems, but a block's persistence does not depend as strongly on the strength of these smaller features. This work is important because it provides more knowledge as to how blocks can be allowed to persist, which is something we still do not fully understand.
Elliott Michael Sainsbury, Reinhard K. H. Schiemann, Kevin I. Hodges, Alexander J. Baker, Len C. Shaffrey, Kieran T. Bhatia, and Stella Bourdin
Weather Clim. Dynam., 3, 1359–1379, https://doi.org/10.5194/wcd-3-1359-2022, https://doi.org/10.5194/wcd-3-1359-2022, 2022
Short summary
Short summary
Post-tropical cyclones (PTCs) can bring severe weather to Europe. By tracking and identifying PTCs in five global climate models, we investigate how the frequency and intensity of PTCs may change across Europe by 2100. We find no robust change in the frequency or intensity of Europe-impacting PTCs in the future. This study indicates that large uncertainties surround future Europe-impacting PTCs and provides a framework for evaluating PTCs in future generations of climate models.
Rafaela Jane Delfino, Gerry Bagtasa, Kevin Hodges, and Pier Luigi Vidale
Nat. Hazards Earth Syst. Sci., 22, 3285–3307, https://doi.org/10.5194/nhess-22-3285-2022, https://doi.org/10.5194/nhess-22-3285-2022, 2022
Short summary
Short summary
We showed the effects of altering the choice of cumulus schemes, surface flux options, and spectral nudging with a high level of sensitivity to cumulus schemes in simulating an intense typhoon. We highlight the advantage of using an ensemble of cumulus parameterizations to take into account the uncertainty in simulating typhoons such as Haiyan in 2013. This study is useful in addressing the growing need to plan and prepare for as well as reduce the impacts of intense typhoons in the Philippines.
Alexander F. Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Weather Clim. Dynam., 3, 1097–1112, https://doi.org/10.5194/wcd-3-1097-2022, https://doi.org/10.5194/wcd-3-1097-2022, 2022
Short summary
Short summary
Understanding the location and intensity of hazardous weather across the Arctic is important for assessing risks to infrastructure, shipping, and coastal communities. This study describes the typical lifetime and structure of intense winter and summer Arctic cyclones. Results show the composite development and structure of intense summer Arctic cyclones are different from intense winter Arctic and North Atlantic Ocean extra-tropical cyclones and from conceptual models.
Suzanne L. Gray, Kevin I. Hodges, Jonathan L. Vautrey, and John Methven
Weather Clim. Dynam., 2, 1303–1324, https://doi.org/10.5194/wcd-2-1303-2021, https://doi.org/10.5194/wcd-2-1303-2021, 2021
Short summary
Short summary
This research demonstrates, using feature identification and tracking, that anticlockwise rotating vortices at about 7 km altitude called tropopause polar vortices frequently interact with storms developing in the Arctic region, affecting their structure and where they occur. This interaction has implications for the predictability of Arctic weather, given the long lifetime but a relatively small spatial scale of these vortices compared with the density of the polar observation network.
Jeanie A. Aird, Rebecca J. Barthelmie, Tristan J. Shepherd, and Sara C. Pryor
Wind Energ. Sci., 6, 1015–1030, https://doi.org/10.5194/wes-6-1015-2021, https://doi.org/10.5194/wes-6-1015-2021, 2021
Short summary
Short summary
Low-level jets (LLJs) are pronounced maxima in wind speed profiles affecting wind turbine performance and longevity. We present a climatology of LLJs over Iowa using output from the Weather Research and Forecasting (WRF) model and determine the rotor plane conditions when they occur. LLJ characteristics are highly sensitive to the identification criteria applied, and different (unique) LLJs are extracted with each criterion. LLJ characteristics also vary with different model output resolution.
Cited articles
AMS: American Meteoroligical Society Glossary of Meteorology: available at: https://glossary.ametsoc.org/wiki/Rain (last access: 16 February 2021), 2012.
Angel, J. R. and Isard, S. A.: An Observational Study of the Influence of the Great Lakes on the Speed and Intensity of Passing Cyclones, Mon. Weather Rev., 125.9, 2228–2237, https://doi.org/10.1175/1520-0493(1997)125<2228:AOSOTI>2.0.CO;2, 1997.
Baldini, L. M., Baldini, J. U., McElwaine, J. N., Frappier, A. B., Asmerom,
Y., Liu, K.-b., Prufer, K. M., Ridley, H. E., Polyak, V., and Kennett, D.
J.: Persistent northward North Atlantic tropical cyclone track migration
over the past five centuries, Sci. Rep., 6, 37522, 2016.
Bao, M., Ding, Y., Sang, M., Li, D., Shao, C., and Yan, J.: Modeling and
evaluating nodal resilience of multi-energy systems under windstorms,
Appl. Energ., 270, 115136, https://doi.org/10.1016/j.apenergy.2020.115136, 2020.
Barthelmie, R. J., Dantuono, K., Renner, E., Letson, F. W., and Pryor, S.
C.: Extreme wind and waves in U.S. east coast offshore wind energy lease
areas, Energies, 14, 1053, https://doi.org/10.3390/en14041053, 2021.
Befort, D. J., Wild, S., Kruschke, T., Ulbrich, U., and Leckebusch, G. C.:
Different long-term trends of extra-tropical cyclones and windstorms in
ERA-20C and NOAA-20CR reanalyses, Atmos. Sci. Lett., 17, 586–595,
2016.
Bengtsson, L., Hagemann, S., and Hodges, K. I.: Can climate trends be
calculated from reanalysis data?, J. Geophsy. Res.-Atmos., 109, https://doi.org/10.1029/2004JD004536, 2004.
Bengtsson, L., Hodges, K. I., and Keenlyside, N.: Will extratropical storms
intensify in a warmer climate?, J. Climate, 22, 2276–2301, 2009.
Bentley, A. M., Bosart, L. F., and Keyser, D.: A climatology of
extratropical cyclones leading to extreme weather events over central and
eastern North America, Mon. Weather Rev., 147, 1471–1490, 2019.
Bierly, G. D. and Harrington, J. A.: A Climatology of Transition Season
Colorado Cyclones – 1961–1990, J. Climate, 8, 853–863, 1995.
Bloomfield, H., Shaffrey, L., Hodges, K., and Vidale, P.: A critical
assessment of the long-term changes in the wintertime surface Arctic
Oscillation and Northern Hemisphere storminess in the ERA20C reanalysis,
Environ. Res. Lett., 13, 094004, https://doi.org/10.1088/1748-9326/aad5c5, 2018.
Booth, J. F., Rieder, H. E., Lee, D. E., and Kushnir, Y.: The paths of
extratropical cyclones associated with wintertime high-wind events in the
northeastern United States, J. Appl. Meteorol. Climatol.,
54, 1871–1885, 2015.
Bouwer, L. M., Crompton, R. P., Faust, E., Höppe, P., and Pielke Jr., R.
A.: Confronting disaster losses, Science, 318, 753, https://doi.org/10.1126/science.1149628, 2007.
Brönnimann, S., Martius, O., von Waldow, H., Welker, C., Luterbacher,
J., Compo, G. P., Sardeshmukh, P. D., and Usbeck, T.: Extreme winds at
northern mid-latitudes since 1871, Meteorologische Z., 21, 13–27,
2012.
Brown, T. M., Pogorzelski, W. H., and Giammanco, I. M.: Evaluating hail
damage using property insurance claims data, Weather Clim. Soc.,
7, 197–210, 2015.
Browning, K.: The sting at the end of the tail: Damaging winds associated
with extratropical cyclones, Q. J. Roy. Meteor. Soc., 130, 375–399, 2004.
Changnon, S. A.: Temporal and spatial distributions of wind storm damages in
the United States, Climatic Change, 94, 473–482, 2009.
Clark, P. A. and Gray, S. L.: Sting jets in extratropical cyclones: a
review, Q. J. Roy. Meteor. Soc., 144, 943–969,
2018.
Copernicus: Climate Reanalysis, available at: https://climate.copernicus.eu/climate-reanalysis, last access: 6 June 2021.
Cunha, L. K., Smith, J. A., Krajewski, W. F., Baeck, M. L., and Seo, B.-C.:
NEXRAD NWS polarimetric precipitation product evaluation for IFloodS,
J. Hydrometeorol., 16, 1676–1699, 2015.
Della-Marta, P. M., Mathis, H., Frei, C., Liniger, M. A., Kleinn, J., and
Appenzeller, C.: The return period of wind storms over Europe, International
J. Climatol., 29, 437–459, https://doi.org/10.1002/joc.1794, 2009.
Dörenkämper, M., Olsen, B. T., Witha, B., Hahmann, A. N., Davis, N. N., Barcons, J., Ezber, Y., García-Bustamante, E., González-Rouco, J. F., Navarro, J., Sastre-Marugán, M., Sīle, T., Trei, W., Žagar, M., Badger, J., Gottschall, J., Sanz Rodrigo, J., and Mann, J.: The Making of the New European Wind Atlas – Part 2: Production and evaluation, Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, 2020.
Earl, N., Dorling, S., Starks, M., and Finch, R.: Subsynoptic-scale features
associated with extreme surface gusts in UK extratropical cyclone events,
Geophys. Res. Lett., 44, 3932–3940, 2017.
Eisenhauer, J. G.: Regression through the origin, Teaching statistics, 25,
76–80, 2003.
Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R., and Xia,
L.: Storminess over the North Atlantic and northwestern Europe – A review,
Q. J. Roy. Meteor. Soc., 141, 350–382, 2015.
Gall, M., Borden, K. A., and Cutter, S. L.: When do losses count? Six
fallacies of natural hazards loss data, B. Am. Meteorol. Soc., 90, 799–810, 2009.
Gall, M., Borden, K. A., Emrich, C. T., and Cutter, S. L.: The unsustainable
trend of natural hazard losses in the United States, Sustainability, 3,
2157–2181, 2011.
Golden, J. H. and Snow, J. T.: Mitigation against extreme windstorms,
Rev. Geophys., 29, 477–504, 1991.
Gramcianinov, C., Campos, R., de Camargo, R., Hodges, K., Soares, C. G., and
da Silva Dias, P.: Analysis of Atlantic extratropical storm tracks
characteristics in 41 years of ERA5 and CFSR/CFSv2 databases, Ocean
Eng., 216, 108111, https://doi.org/10.1016/j.oceaneng.2020.108111, 2020.
Halverson, J. B. and Rabenhorst, T.: Hurricane Sandy: The science and
impacts of a superstorm, Weatherwise, 66, 14–23, 2013.
Haylock, M. R.: European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models, Nat. Hazards Earth Syst. Sci., 11, 2847–2857, https://doi.org/10.5194/nhess-11-2847-2011, 2011.
Hersbach, H., Bell, B., Berrisford, P., Horányi, A., Sabater, J. M.,
Nicolas, J., Radu, R., Schepers, D., Simmons, A., and Soci, C.: Global
reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newsl., 159, 17–24, 2019.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.:
The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020.
Hewson, T. D. and Neu, U.: Cyclones, windstorms and the IMILAST project,
Tellus A., 67, 27128, https://doi.org/10.3402/tellusa.v67.27128, 2015.
Hirsch, M. E., DeGaetano, A. T., and Colucci, S. J.: An East Coast winter
storm climatology, J. Climate, 14, 882–899, 2001.
Hobbs, P. V., Locatelli, J. D., and Martin, J. E.: A new conceptual model
for cyclones generated in the lee of the Rocky Mountains, B. Am. Meteorol. Soc., 77, 1169–1178, 1996.
Hodges, K. I., Lee, R. W., and Bengtsson, L.: A Comparison of Extratropical
Cyclones in Recent Reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and
JRA-25, J. Climate, 24, 4888–4906, https://doi.org/10.1175/2011jcli4097.1, 2011.
Hoskins, B. J.: Theory of extratropical cyclones, in: Extratropical
Cyclones, edited by: Newton, C. W. and Holopainen, E. O., American
Meteorological Society, Boston, MA, American Meteorological Society, Boston,
MA, ISBN 978-1-944970-33-8, 63–80, 1990.
Hoskins, B. J. and Hodges, K. I.: New perspectives on the Northern
Hemisphere winter storm tracks, J. Atmos. Sci., 59,
1041-1061, 2002.
Huo, Z., Zhang, D.-L., Gyakum, J., and Staniforth, A.: A diagnostic analysis
of the superstorm of March 1993, Mon. Weather Rev., 123, 1740–1761,
1995.
Jeong, D. I., Cannon, A. J., and Zhang, X.: Projected changes to extreme freezing precipitation and design ice loads over North America based on a large ensemble of Canadian regional climate model simulations, Nat. Hazards Earth Syst. Sci., 19, 857–872, https://doi.org/10.5194/nhess-19-857-2019, 2019.
Jourdier, B.: Evaluation of ERA5, MERRA-2, COSMO-REA6, NEWA and AROME to
simulate wind power production over France, Adv. Sci. Res., 17, 63–77, 2020.
Kalverla, P. C., Duncan Jr., J. B., Steeneveld, G.-J., and Holtslag, A. A. M.: Low-level jets over the North Sea based on ERA5 and observations: together they do better, Wind Energ. Sci., 4, 193–209, https://doi.org/10.5194/wes-4-193-2019, 2019.
Kalverla, P. C., Holtslag, A. A. M., Ronda, R. J., and Steeneveld, G.-J.: Quality of wind characteristics in recent wind atlases over the North Sea, Q. J. Roy. Meteor. Soc., 146, 1498–1515, https://doi.org/10.1002/qj.3748, 2020.
Kitzmiller, D., Miller, D., Fulton, R., and Ding, F.: Radar and multisensor
precipitation estimation techniques in National Weather Service hydrologic
operations, J. Hydrol. Eng., 18, 133–142, 2013.
Klawa, M. and Ulbrich, U.: A model for the estimation of storm losses and the identification of severe winter storms in Germany, Nat. Hazards Earth Syst. Sci., 3, 725–732, https://doi.org/10.5194/nhess-3-725-2003, 2003.
Konisky, D. M., Hughes, L., and Kaylor, C. H.: Extreme weather events and
climate change concern, Climatic Change, 134, 533–547,
https://doi.org/10.1007/s10584-015-1555-3, 2016.
Krajewski, W. and Smith, J. A.: Radar hydrology: rainfall estimation,
Adv. Water Resour., 25, 1387–1394, 2002.
Kreibich, H., Van Den Bergh, J. C., Bouwer, L. M., Bubeck, P., Ciavola, P.,
Green, C., Hallegatte, S., Logar, I., Meyer, V., and Schwarze, R.: Costing
natural hazards, Nat. Clim. Change, 4, 303–306, 2014.
Lackmann, G. M.: Hurricane Sandy before 1900 and after 2100, B. Am Meteorol. Soc., 96, 547–560, 2015.
Lamb, H.: Historic Storms of the North Sea, British Isles and Northwest
Europe, Cambridge University Press, Cambridge, England, ISBN 978-0521619318, 228 pp., 1991.
Lareau, N. P. and Horel, J. D.: The climatology of synoptic-scale ascent
over western North America: A perspective on storm tracks, Mon. Weather Rev., 140, 1761–1778, 2012.
Larsén, X. G., Ott, S., Badger, J., Hahmann, A. N., and Mann, J.:
Recipes for correcting the impact of effective mesoscale resolution on the
estimation of extreme winds, J. Appl. Meteorol. Climatol.,
51, 521–533, 2012.
Letson, F., Barthelmie, R. J., and Pryor, S. C.: Radar-derived precipitation climatology for wind turbine blade leading edge erosion, Wind Energ. Sci., 5, 331–347, https://doi.org/10.5194/wes-5-331-2020, 2020.
Li, F., Chavas, D. R., Reed, K. A., and Dawson II, D. T.: Climatology of
severe local storm environments and synoptic-scale features over North
America in ERA5 reanalysis and CAM6 simulation, J. Climate, 33,
8339–8365, 2020.
Lopez, P.: Direct 4D-Var assimilation of NCEP stage IV radar and gauge
precipitation data at ECMWF, Mon. Weather Rev., 139, 2098–2116, 2011.
Lukens, K. E., Berbery, E. H., and Hodges, K. I.: The imprint of
strong-storm tracks on winter weather in North America, J. Climate,
31, 2057–2074, 2018.
Ma, C.-G. and Chang, E. K.: Impacts of Storm-Track Variations on Wintertime
Extreme Weather Events over the Continental United States, J. Climate, 30, 4601–4624, 2017.
Mailier, P. J., Stephenson, D. B., Ferro, C. A., and Hodges, K. I.: Serial
clustering of extratropical cyclones, Mon. Weather Rev., 134,
2224–2240, 2006.
Mann, J., Kristensen, L., and Jensen, N. O.: Uncertainties of extreme winds,
spectra, and coherences, in: Bridge Aerodynamics, edited by: Larsen, A. and
Esdahl, S., Balkerna, Rotterdam, 49–56, 1998.
Marchigiani, R., Gordy, S., Cipolla, J., Adams, R. C., Evans, D. C., Stehly,
C., Galwankar, S., Russell, S., Marco, A. P., and Kman, N.: Wind disasters:
A comprehensive review of current management strategies, International
journal of critical illness and injury science, 3, 130–142, https://doi.org/10.4103/2229-5151.114273, 2013.
Mills, E. and Jones, R. B.: An insurance perspective on US electric grid
disruption costs, The Geneva Papers on Risk and Insurance-Issues and
Practice, 41, 555–586, 2016.
Minola, L., Zhang, F., Azorín-Molina, C., Safaei Pirooz, A. A., Flay,
R., Hersbach, H., and Chen, D.: Near-surface mean and gust wind speeds in
ERA5 across Sweden: towards an improved gust parametrization, Clim.
Dynam., 55, 887–907, https://doi.org/10.1007/s00382-020-05302-6, 2020.
Munsell, E. B. and Zhang, F.: Prediction and uncertainty of Hurricane Sandy
(2012) explored through a real-time cloud-permitting ensemble analysis and
forecast system assimilating airborne Doppler radar observations, J. Adv. Model. Earth Sy., 6, 38–58, 2014.
Nadolski, V.: Automated Surface Observing System (ASOS) user's guide, available at: http://www.nws.noaa.gov/asos/pdfs/aum-toc.pdf (last access: 5 January 2018), 1998.
NCDC: Radar Data, available at: https://www.ncdc.noaa.gov/data-access/radar-data, last access: 6 June 2021.
NCEI: Automated Surface Observation System (ASOS), available at: https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/automated-surface-observing-system-asos, last access: 6 June 2021a.
NCEI: Storm Events Database, available at: https://www.ncdc.noaa.gov/stormevents/, last access: 6 June 2021b.
Nelli, N. R., Temimi, M., Fonseca, R. M., Weston, M. J., Thota, M. S.,
Valappil, V. K., Branch, O., Wulfmeyer, V., Wehbe, Y., and Al Hosary, T.:
Impact of roughness length on WRF simulated land-atmosphere interactions
over a hyper-arid region, Earth and Space Science, 7, e2020EA001165,
https://doi.org/10.1029/2020EA001165, 2020.
NOAA: First Ice, Last Ice, and Ice Duration, available at: https://www.glerl.noaa.gov/data/ice/atlas/ice_duration/duration.html, last access: 6 June 2021.
Nyce, C., Dumm, R. E., Sirmans, G. S., and Smersh, G.: The capitalization of
insurance premiums in house prices, J. Risk Insur., 82,
891–919, 2015.
Olauson, J.: ERA5: The new champion of wind power modelling?, Renew.
Energ., 126, 322–331, 2018.
Pielke, R. A. and Landsea, C. W.: Normalized hurricane damages in the
United States: 1925–95, Weather Forecast., 13, 621–631, 1998.
Pinto, J. G., Ulbrich, S., Economou, T., Stephenson, D. B., Karremann, M.
K., and Shaffrey, L. C.: Robustness of serial clustering of extratropical
cyclones to the choice of tracking method, Tellus A, 68, 32204, https://doi.org/10.3402/tellusa.v68.32204, 2016.
Pryor, S. C., Barthelmie, R. J., Young, D. T., Takle, E. S., Arritt, R. W.,
Flory, D., Gutowski, W. J., Nunes, A., and Roads, J.: Wind speed trends over
the contiguous United States, J. Geophys. Res.-Atmos.,
114, D14105, https://doi.org/10.1029/2008JD011416, 2009.
Pryor, S. C., Barthelmie, R. J., Clausen, N., Drews, M., MacKellar, N., and
Kjellström, E.: Analyses of possible changes in intense and extreme wind
speeds over northern Europe under climate change scenarios, Clim.
Dynam., 38, 189–208, 2012.
Pryor, S. C., Shepherd, T. J., Bukovsky, M., and Barthelmie, R. J.:
Assessing the stability of wind resource and operating conditions, J. Phys. Conf. Ser., 1452, https://doi.org/10.1088/1742-6596/1452/1/012084, 2020.
Ramon, J., Lledó, L., Torralba, V., Soret, A., and Doblas-Reyes, F. J.:
What global reanalysis best represents near-surface winds?, Q. J. Roy. Meteor. Soc., 145, 3236–3251, 2019.
Roberts, J. F., Champion, A. J., Dawkins, L. C., Hodges, K. I., Shaffrey, L. C., Stephenson, D. B., Stringer, M. A., Thornton, H. E., and Youngman, B. D.: The XWS open access catalogue of extreme European windstorms from 1979 to 2012, Nat. Hazards Earth Syst. Sci., 14, 2487–2501, https://doi.org/10.5194/nhess-14-2487-2014, 2014.
Sadegh, M., Moftakhari, H., Gupta, H. V., Ragno, E., Mazdiyasni, O.,
Sanders, B., Matthew, R., and AghaKouchak, A.: Multihazard scenarios for
analysis of compound extreme events, Geophys. Res. Lett., 45,
5470–5480, 2018.
Sainsbury, E. M., Schiemann, R. K., Hodges, K. I., Shaffrey, L. C., Baker,
A. J., and Bhatia, K. T.: How Important are Post-Tropical Cyclones for
European Windstorm Risk?, Geophys. Res. Lett., 47, e2020GL089853, https://doi.org/10.1029/2020GL089853, 2020.
Schmitt IV, C. V.: A quality control algorithm for the ASOS ice free wind
sensor, Preprints, 13th Conf. on Integrated Observing and Assimilation
Systems for Atmosphere, Oceans, and Land Surface, Phoenix, AZ, Amer. Meteor.
Soc. A, 12, 1–5, 2009.
SEDAC: U.S. Census Grids: available at: https://sedac.ciesin.columbia.edu/data/collection/usgrid, last access: 10 September 2020.
Seo, B.-C., Dolan, B., Krajewski, W. F., Rutledge, S. A., and Petersen, W.:
Comparison of single-and dual-polarization–based rainfall estimates using
NEXRAD data for the NASA Iowa Flood Studies project, J. Hydrometeorol., 16, 1658–1675, 2015.
Shepherd, T. G., Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S.,
Dima-West, I. M., Fowler, H. J., James, R., Maraun, D., and Martius, O.:
Storylines: an alternative approach to representing uncertainty in physical
aspects of climate change, Climatic change, 151, 555–571, 2018.
Sinclair, M. R.: An objective cyclone climatology for the Southern
Hemisphere, Mon. Weather Rev., 122, 2239–2256, 1994.
Sinh, H. N., Lombardo, F. T., Letchford, C. W., and Rosowsky, D. V.:
Characterization of Joint Wind and Ice Hazard in Midwestern United States,
Nat. Hazards Rev., 17, 04016004, https://doi.org/10.1061/(asce)nh.1527-6996.0000221, 2016.
Skamarock, W. C.: Evaluating mesoscale NWP models using kinetic energy
spectra, Mon. Weather Rev., 132, 3019–3032, 2004.
Smith, A. B. and Matthews, J. L.: Quantifying uncertainty and variable
sensitivity within the US billion-dollar weather and climate disaster cost
estimates, Nat. Hazards, 77, 1829–1851, 2015.
Smith, J. B.: The potential impacts of climate change on the Great Lakes,
B. Am. Meteorol. Soc., 72, 21–28, 1991.
Stephenson, D. B.: Definition, diagnosis, and origin of extreme weather and
climate events, in: Climate extremes and society, edited by: Diaz, H. F.
and Murnane, R. J., Cambridge University Press, 11–23, Cambridge, England, 2008.
Straka, J. M., Zrnić, D. S., and Ryzhkov, A. V.: Bulk hydrometeor
classification and quantification using polarimetric radar data: Synthesis
of relations, J. Appl. Meteorol., 39, 1341–1372, 2000.
Sun, C. and Liang, X.-Z.: Improving US extreme precipitation simulation:
sensitivity to physics parameterizations, Clim. Dynam., 54, 4891–4918,
2020.
Tarek, M., Brissette, F. P., and Arsenault, R.: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America, Hydrol. Earth Syst. Sci., 24, 2527–2544, https://doi.org/10.5194/hess-24-2527-2020, 2020.
Thomas, B. C. and Martin, J. E.: A synoptic climatology and composite
analysis of the Alberta clipper, Weather Forecast., 22, 315–333,
https://doi.org/10.1175/waf982.1, 2007.
Tokay, A., Bashor, P. G., and McDowell, V. L.: Comparison of rain gauge
measurements in the mid-Atlantic region, J. Hydrometeorol., 11,
553–565, 2010.
Trapp, R. J., Wheatley, D. M., Atkins, N. T., Przybylinski, R. W., and Wolf,
R.: Buyer beware: Some words of caution on the use of severe wind reports in
postevent assessment and research, Weather Forecast., 21, 408–415,
2006.
U.S. Census Bureau: State Population Totals and Components of Change:
2010–2019, available at: https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html (last access: 10 September 2020), 2019.
Ulbrich, U., Fink, A., Klawa, M., and Pinto, J. G.: Three extreme storms
over Europe in December 1999, Weather, 56, 70–80, 2001.
Ulbrich, U., Leckebusch, G. C., and Pinto, J. G.: Extra-tropical cyclones in
the present and future climate: a review, Theor. Appl. Climatol., 96, 117–131, https://doi.org/10.1007/s00704-008-0083-8, 2009.
USGCRP: Impacts, Risks, and Adaptation in the United States: Fourth National
Climate Assessment, Volume II, U.S. Global Change Research Program,
Washington, DC, USA, 2018.
Varlas, G., Papadopoulos, A., and Katsafados, P.: An analysis of the
synoptic and dynamical characteristics of hurricane Sandy (2012),
Meteorol. Atmos. Phys., 131, 443–453, 2019.
Villarini, G. and Krajewski, W. F.: Review of the different sources of
uncertainty in single polarization radar-based estimates of rainfall,
Surv. Geophys., 31, 107–129, 2010.
Villarini, G., Mandapaka, P. V., Krajewski, W. F., and Moore, R. J.:
Rainfall and sampling uncertainties: A rain gauge perspective, J. Geophys. Res.-Atmos., 113, D11102, https://doi.org/10.1029/2007JD009214, 2008.
Vose, R. S., Applequist, S., Bourassa, M. A., Pryor, S. C., Barthelmie, R.
J., Blanton, B., Bromirski, P. D., Brooks, H. E., DeGaetano, A. T., and
Dole, R. M.: Monitoring and understanding changes in extremes: Extratropical
storms, winds, and waves, B. Am. Meteorol. Soc.,
95, 377–386, 2014.
Walz, M. A., Kruschke, T., Rust, H. W., Ulbrich, U., and Leckebusch, G. C.:
Quantifying the extremity of windstorms for regions featuring infrequent
events, Atmos. Sci. Lett., 18, 315–322, 2017.
Walz, M. A., Befort, D. J., Kirchner-Bossi, N. O., Ulbrich, U., and
Leckebusch, G. C.: Modelling serial clustering and inter-annual variability
of European winter windstorms based on large-scale drivers, Int.
J. Climatol., 38, 3044–3057, 2018.
Wan, H., Wang, X. L., and Swail, V. R.: Homogenization and Trend Analysis of
Canadian Near-Surface Wind Speeds, J. Climate, 23, 1209–1225,
https://doi.org/10.1175/2009jcli3200.1, 2010.
Wang, H. V., Loftis, J. D., Liu, Z., Forrest, D., and Zhang, J.: The storm
surge and sub-grid inundation modeling in New York City during Hurricane
Sandy, Journal of Marine Science and Engineering, 2, 226–246, 2014.
Wanik, D., Anagnostou, E., Hartman, B., Frediani, M., and Astitha, M.: Storm
outage modeling for an electric distribution network in Northeastern USA,
Nat. Hazards, 79, 1359–1384, 2015.
Wilks, D. S.: Statistical methods in the atmospheric sciences, International
geophysics series, Academic Press, Oxford, UK, ISBN: 9780123850225, 2011a.
Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic
press, Cambridge, Massachusetts, 2011b.
Xian, S., Lin, N., and Hatzikyriakou, A.: Storm surge damage to residential
areas: a quantitative analysis for Hurricane Sandy in comparison with FEMA
flood map, Nat. Hazards, 79, 1867–1888, 2015.
Xiao, C., Lofgren, B. M., and Wang, J.: WRF-based assessment of the Great Lakes' impact on cold season synoptic cyclones,
Atmos. Res., 214, 189–203, https://doi.org/10.1016/j.atmosres.2018.07.020, 2018.
Young, A. M., Skelly, K. T., and Cordeira, J. M.: High-impact hydrologic
events and atmospheric rivers in California: An investigation using the NCEI
Storm Events Database, Geophys. Res. Lett., 44, 3393–3401,
https://doi.org/10.1002/2017gl073077, 2017.
Young, G. S. and Kristensen, L.: Surface-layer gusts for aircraft
operation, Bound.-Lay. Meteorol., 59, 231–242, https://doi.org/10.1007/bf00119814,
1992.
Zielinski, G. A.: A classification scheme for winter storms in the eastern
and central United States with an emphasis on nor'easters, B. Am. Meteorol. Soc., 83, 37–52, 2002.
Zoraghein, H. and O'Neill, B. C.: US State-level Projections of the Spatial
Distribution of Population Consistent with Shared Socioeconomic Pathways,
Sustainability, 12, 3374, https://doi.org/10.3390/su12083374, 2020.
Zscheischler, J., Westra, S., Van Den Hurk, B. J., Seneviratne, S. I., Ward,
P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., and Wahl,
T.: Future climate risk from compound events, Nat. Clim. Change, 8,
469–477, 2018.
Short summary
Windstorms during the last 40 years in the US Northeast are identified and characterized using the spatial extent of extreme wind speeds at 100 m height from the ERA5 reanalysis. During all of the top 10 windstorms, wind speeds exceeding the local 99.9th percentile cover at least one-third of the land area in this high-population-density region. These 10 storms followed frequently observed cyclone tracks but have intensities 5–10 times the mean values for cyclones affecting this region.
Windstorms during the last 40 years in the US Northeast are identified and characterized using...
Altmetrics
Final-revised paper
Preprint