Articles | Volume 21, issue 3
https://doi.org/10.5194/nhess-21-1051-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1051-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wet and dry spells in Senegal: comparison of detection based on satellite products, reanalysis, and in situ estimates
Cheikh Modou Noreyni Fall
CORRESPONDING AUTHOR
Laboratoire de Physique de l'Atmosphère et de l'Océan Siméon Fongang (LPAOSF), École Supérieure Polytechnique (ESP), Univ. Cheikh Anta Diop, Dakar, Senegal
Christophe Lavaysse
Institut des Géosciences de l'Environnement IGE, Univ. Grenoble Alpes, IRD, CNRS, Grenoble INP, 38000 Grenoble, France
Mamadou Simina Drame
Laboratoire de Physique de l'Atmosphère et de l'Océan Siméon Fongang (LPAOSF), École Supérieure Polytechnique (ESP), Univ. Cheikh Anta Diop, Dakar, Senegal
Geremy Panthou
Institut des Géosciences de l'Environnement IGE, Univ. Grenoble Alpes, IRD, CNRS, Grenoble INP, 38000 Grenoble, France
Amadou Thierno Gaye
Laboratoire de Physique de l'Atmosphère et de l'Océan Siméon Fongang (LPAOSF), École Supérieure Polytechnique (ESP), Univ. Cheikh Anta Diop, Dakar, Senegal
Related authors
No articles found.
Tanguy Jonville, Maurus Borne, Cyrille Flamant, Juan Cuesta, Olivier Bock, Pierre Bosser, Christophe Lavaysse, Andreas Fink, and Peter Knippertz
Atmos. Chem. Phys., 25, 9765–9786, https://doi.org/10.5194/acp-25-9765-2025, https://doi.org/10.5194/acp-25-9765-2025, 2025
Short summary
Short summary
Tropical waves structure the atmosphere. Four types of tropical waves (equatorial Rossby – ER, Kelvin, MRG-TD1, and MRG-TD2 – mixed Rossby gravity–tropical depressions) are studied using filters, satellite measurements, and in situ data from the Clouds–Atmosphere Dynamics–Dust Interaction in West Africa (CADDIWA) campaign held in September 2021 in Cabo Verde. ER waves impact temperature and humidity above 2500 m, MRG-TD1 around 3500 m, and MRG-TD2 around 2000 m. Interactions between these waves favor tropical cyclone formation.
Erwan Le Roux, Valentin Wendling, Gérémy Panthou, Océane Dubas, Jean-Pierre Vandervaere, Basile Hector, Guillaume Favreau, Jean-Martial Cohard, Caroline Pierre, Luc Descroix, Eric Mougin, Manuela Grippa, Laurent Kergoat, Jérôme Demarty, Nathalie Rouche, Jordi Etchanchu, and Christophe Peugeot
EGUsphere, https://doi.org/10.5194/egusphere-2025-1965, https://doi.org/10.5194/egusphere-2025-1965, 2025
Short summary
Short summary
In hydrological science, better accounting for regime shift (abrupt and/or irreversible changes) remains a challenge that could lead to a new paradigm for the adaptation to extreme events (flood , drought). In this article, we present a simple model that can account for a hydrological regime shift in Sahelian watersheds. Based on this model, we find that the Dargol, Nakanbé, and Sirba watersheds have shifted during the droughts of the '70s–'80s, while the Gorouol watershed has shifted before.
Dioumacor Faye, Felipe M. de Andrade, Roberto Suárez-Moreno, Dahirou Wane, Michaela I. Hegglin, Abdou L. Dieng, François Kaly, Redouane Lguensat, and Amadou T. Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2024-4040, https://doi.org/10.5194/egusphere-2024-4040, 2025
Short summary
Short summary
This study evaluates machine learning (ML) methods to improve subseasonal-to-seasonal (S2S) rainfall forecasts in Senegal during the West African monsoon. Using high-resolution precipitation data and atmospheric-oceanic reanalysis, we show that ML models like ridge regression outperform traditional climate models. These methods enhance prediction accuracy and efficiency, offering valuable tools for climate risk management and water resource planning.
Cedric G. Ngoungue Langue, Christophe Lavaysse, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 25, 147–168, https://doi.org/10.5194/nhess-25-147-2025, https://doi.org/10.5194/nhess-25-147-2025, 2025
Short summary
Short summary
The present study addresses the predictability of heat waves at subseasonal timescales in West African cities over the period 2001–2020. Two models, the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office models, were evaluated using two reanalyses: ERA5 and MERRA. The results suggest that at subseasonal timescales, the forecast models provide a better forecast than climatology, but the hit rate and false alarm rate are sub-optimal.
Cedric Gacial Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 23, 1313–1333, https://doi.org/10.5194/nhess-23-1313-2023, https://doi.org/10.5194/nhess-23-1313-2023, 2023
Short summary
Short summary
Heat waves (HWs) are climatic hazards that affect the planet. We assess here uncertainties encountered in the process of HW detection and analyse their recent trends in West Africa using reanalysis data. Three types of uncertainty have been investigated. We identified 6 years with higher frequency of HWs, possibly due to higher sea surface temperatures in the equatorial Atlantic. We noticed an increase in HW characteristics during the last decade, which could be a consequence of climate change.
Cedric G. Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, Philippe Peyrillé, and Cyrille Flamant
Weather Clim. Dynam., 2, 893–912, https://doi.org/10.5194/wcd-2-893-2021, https://doi.org/10.5194/wcd-2-893-2021, 2021
Short summary
Short summary
This work assesses the forecast of the temperature over the Sahara, a key driver of the West African Monsoon, at a seasonal timescale. The seasonal models are able to reproduce the climatological state and some characteristics of the temperature during the rainy season in the Sahel. But, because of errors in the timing, the forecast skill scores are significant only for the first 4 weeks.
Cited articles
Alhassane, A., Salack, S., Ly, M., Lona, I., Traore, S., and Sarr, B.: Evolution of agro-climatic risks related to the recent trends of the rainfall regime over the Sudano-Sahelian region of West Africa, Sci. Changem. Planet., 24, 282–293, https://doi.org/10.1684/sec.2013.0400, 2013. a
Ali, A., Amani, A., Diedhiou, A., and Lebel, T.: Rainfall Estimation in the Sahel. Part II: Evaluation of Rain Gauge Networks in the CILSS Countries and Objective Intercomparison of Rainfall Products, J. Appl. Meteorol., 44, 1707–1722, https://doi.org/10.1175/JAM2305.1, 2005. a
ARC: Risk Pool I, available at: https://www.africanriskcapacity.org/impact/ (last access: 28 January 2021), 2014. a
Barring, L., Holt, T., Linderson, M.-L., Radziejewski, M., Moriondo, M., and Palutikof, J.: Defining dry wet spells for point observations, observed area averages, and regional climate model gridboxes in Europe, Clim. Res., 31, 35–49, https://doi.org/10.3354/cr031035, 2006. a
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019. a
Bergès, J. C., Jobard, I., Chopin, F., and Roca, R.: EPSAT-SG: a satellite method for precipitation estimation; its concepts and implementation for the AMMA experiment, Ann. Geophys., 28, 289–308, https://doi.org/10.5194/angeo-28-289-2010, 2010. a
Berthou, S., Rowell, D. P., Kendon, E. J., Roberts, M. J., Stratton, R. A., Crook, J. A., and Wilcox, C.: Improved climatological precipitation characteristics over West Africa at convection-permitting scales, Clim. Dynam., 53, 1991–2011, https://doi.org/10.1007/s00382-019-04759-4, 2019. a
Bilonick, R.: An Introduction to Applied Geostatistics, Technometrics, 33, 483–485, https://doi.org/10.1080/00401706.1991.10484886, 2012. a
Bruster-Flores, J. L., Ortiz-Gómez, R., Ferriño-Fierro, A. L., Guerra-Cobián, V. H., Burgos-Flores, D., and Lizárraga-Mendiola, L. G.: Evaluation of Precipitation Estimates CMORPH-CRT on Regions of Mexico with Different Climates, Water, 11, 1722, https://doi.org/10.3390/w11081722, 2019. a
Chen, Y.-C., Wei, C., and Yeh, H.-C.: Rainfall network design using kriging and entropy, Hydrol. Process., 22, 340–346, https://doi.org/10.1002/hyp.6292, 2008. a
Cressie, N.: Block Kriging for Lognormal Spatial Processes, Math. Geol., 38, 413–443, https://doi.org/10.1007/s11004-005-9022-8, 2006. a
Creutin, J. and Obled, C.: Objective Analyses and Mapping Techniques for Rainfall Fields: An Objective Comparison, Water Resour. Res., 18, 413–431, https://doi.org/10.1029/WR018i002p00413, 1982. a
Da, J., Jale, S., Fernando, S., Junior, S. F., Fialho, E., Xavier, M., Stosic, T., Stosic, B., Alessandro, T., and Ferreira, E.: Application of Markov chain on daily rainfall data in Paraíba-Brazil from 1995–2015, Acta Sci. Technol., 41, 1–10, https://doi.org/10.4025/actascitechnol.v41i1.37186, 2019. a
Descroix, L., Diongue Niang, A., Panthou, G., Bodian, A., Sane, Y., Dacosta, H., Malam Abdou, M., Vandervaere, J.-P., and Quantin, G.: Évolution récente de la pluviométrie en Afrique de l'ouest à travers deux régions: la Sénégambie et le Bassin du Niger Moyen, Climatologie, 12, 25–43, https://doi.org/10.4267/climatologie.1105, 2016. a
Diallo, I., Giorgi, F., Deme, A., Tall, M., Mariotti, L., and Gaye, A.: Projected changes of summer monsoon extremes and hydroclimatic regimes over West Africa for the twenty-first century, Clim. Dynam., 47, 3931–3954, https://doi.org/10.1007/s00382-016-3052-4, 2016. a
Diedhiou, A., Janicot, S., Viltard, A., and Felice, P.: Evidence of two regimes of easterly waves over West Africa and tropical Atlantic, Geophys. Res. Lett., 25, 2805–2808, https://doi.org/10.1029/98GL02152, 1998. a
Dieng, O., Roucou, P., and Louvet, S.: Variabilité intra-saisonnière des précipitations au Sénégal (1951–1996), Sécheresse, 19,
87–93, 2008. a
Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S. J., and Ropelewski, C. F.: Validation of satellite rainfall products over East Africa's complex topography, Int. J. Remote Sens., 28, 1503–1526, https://doi.org/10.1080/01431160600954688, 2007. a
Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., and Ceccato, P.: Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa: Validation of the CHIRPS Satellite Rainfall Estimates, Q. J. Roy. Meteorol. Soc., 144, 292–312, https://doi.org/10.1002/qj.3244, 2018. a
Dione, C., Lothon, M., Daouda, B., Campistron, B., Couvreux, F., Guichard, F., and Sall, S. M.: Phenomenology of Sahelian convection observed in Niamey during the early monsoon, Q. J. Roy. Meteorol. Soc., 140, 500–516, https://doi.org/10.1002/qj.2149, 2014. a
Ebert, E., Janowiak, J., and Kidd, C.: Comparison of Near-Real-Time Precipitation Estimates From Satellite Observations, B. Am. Meteorol. Soc., 88, 47–64, https://doi.org/10.1175/BAMS-88-1-47, 2007. a
Engel, T., Fink, A. H., Knippertz, P., Pante, G., and Bliefernicht, J.: Extreme Precipitation in the West African Cities of Dakar and Ouagadougou: Atmospheric Dynamics and Implications for Flood Risk Assessments, J. Hydrometeorol., 18, 2937–2957, 2017. a
Ferraro, R.: SSM/I derived global rainfall estimates for climatological applications, J. Geophys. Res., 1021, 16715–16736, https://doi.org/10.1029/97JD01210, 1997. a
Ferraro, R. and Li, Q.: Detailed analysis of the error associated with the rainfall retrieved by the NOAA/NESDIS Special Sensor Microwave/Imager algorithm 2. Rainfall over land, J. Geophys. Res., 107, 4680, https://doi.org/10.1029/2001JD001172, 2002. a
Fowe, T., Diarra, a., Kabore, R., Ibrahim, B., BOLOGO/TRAORE, M., TRAORE, K., and Karambiri, H.: Trends in flood events and their relationship to extreme rainfall in an urban area of West African Sahel: The case of the Ouagadougou area in Burkina Faso, J. Flood Risk Manage., 12, e12507, https://doi.org/10.1111/jfr3.12507, 2018. a
Frei, C., Christensen, J., Deque, M., Jacob, D., Jones, R., and Vidale, P.: Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps, J. Geophys. Res., 108, 4124, https://doi.org/10.1029/2002JD002287, 2003. a
Froidurot, S. and Diedhiou, A.: Characteristics of Wet and Dry Spells in the West African Monsoon System, Atmos. Sci. Lett., 18, 125–131, https://doi.org/10.1002/asl.734, 2017. a, b
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared precipitation with stations – A new environmental record for monitoring extremes, Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66, 2015. a
Gaye, A. T., Fongang, S., Garba, A., and Badiane, D.: Etude des pluies de Heug sur le Senegal a l'aide de donnees conventionnelles et imagerie Meteosat (Study of Heug rainfall in Senegal using conventional data and Meteosat imagery), Veille Climatique Satellitaire, 61–71, available at: http://www.documentation.ird.fr/hor/fdi:41383 (last access: 19 November 2020), 1994. a
Giorgi, F., Im, E.-S., Coppola, E., Diffenbaugh, N. S., Gao, X. J., Mariotti, L., and Shi, Y.: Higher Hydroclimatic Intensity with Global Warming, J. Climate, 24, 5309–5324, https://doi.org/10.1175/2011JCLI3979.1, 2011. a, b
Goovaerts, P.: Geostatistical Approaches for Incorporating Elevation Into the Spatial Interpolation of Rainfall, J. Hydrol., 228, 113–129, https://doi.org/10.1007/s00703-005-0116-0, 2000. a
Grodsky, S. and Carton, J.: Coupled land/atmosphere interactions in the West African Monsoon, Geophys. Res. Lett., 28, 1503–1506, https://doi.org/10.1029/2000GL012601, 2001. a
Held, I. M. and Soden, B. J.: Robust Responses of the Hydrological Cycle to Global Warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006. a
Huffman, G., Adler, R., Bolvin, D., Gu, G., Nelkin, E., Bowman, K., Stocker, E., and Wolff, D.: The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale, J. Hydrometeorol., 8, 28–55, 2007. a
Jobart, I., Chopin, F., Berges, J., and Roca, R.: An intercomparison of 10 days satellite products during West African Monsoon, Int. J. Remote Sens.,
32, 2353–2376, https://doi.org/10.1080/01431161003698286, 2011. a
Joyce, R., Janowiak, J., Arkin, P., and Xie, P.: CMORPH: A Method That Produces Global Precipitation Estimates From Passive Microwave and Infrared Data at High Spatial and Temporal Resolution, J. Hydrometeorol., 5, 487–503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2, 2004. a
Kendon, E. J., Stratton, R. A., Marsham, J. H., Berthou, S., and Rowell, David P., and Senior, C. A.: Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale, Nat. Commun., 10, 2041–1723, https://doi.org/10.1038/s41467-019-09776-9, 2019. a
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J.: The Tropical Rainfall Measuring Mission (TRMM) sensor package, J. Atmos. Ocean Tech., 15, 809–817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2, 1998. a, b
Lafore, J.-P., Beucher, F., Peyrillé, P., Diongue-Niang, A., Chapelon, N., Bouniol, D., Caniaux, G., Favot, F., Ferry, F., Guichard, F., Poan, D., Roehrig, R., and Vischel, T.: A multi-scale analysis of the extreme rain event of Ouagadougou in 2009, Q. J. Roy. Meteorol. Soc., 143, 3094–3109, https://doi.org/10.1002/qj.3165, 2017. a
Le Barbé, L., Lebel, T., and Tapsoba, D.: Rainfall Variability in West Africa during the Years 1950–90, J. Climate, 15, 187–202, https://doi.org/10.1175/1520-0442(2002)015<0187:RVIWAD>2.0.CO;2, 2002. a
Lebel, T. and Ali, A.: Recent trends in the Central and Western Sahel rainfall regime (1990–2007), J. Hydrol., 375, 52–64, https://doi.org/10.1016/j.jhydrol.2008.11.030, 2009. a
Le Coz, C. and van de Giesen, N.: Comparison of Rainfall Products over Sub-Saharan Africa, J. Hydrometeorol., 21, 4, https://doi.org/10.1175/JHM-D-18-0256.1, 2019. a
Lloyd, C. and Atkinson, P.: Assessing Uncertainty in Estimates with Ordinary and Indicator Kriging, Comput. Geosci., 27, 929–937, https://doi.org/10.1016/S0098-3004(00)00132-1, 2001. a, b
Maidment, R., Grimes, D., Allan, R., Greatrex, H., Rojas, O., and Leo, O.: Evaluation of satellite-based and model re-analysis rainfall estimates for Uganda, Meteorol. Appl., 20, 714, https://doi.org/10.1002/met.1283, 2013. a, b
Maidment, R., Grimes, D., Black, E., Tarnavsky, E., Young, M., Greatrex, H., Allan, R., Stein, T., Nkonde, E., Senkunda, S., and Uribe, E.: A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa, Sci. Data, 4, 170063, https://doi.org/10.1038/sdata.2017.63, 2017. a
Malardel, S., Wedi, N., Deconinck, W., Diamantakis, M., Kühnlein, C., Mozdzynski, G., Hamrud, M., and Smolarkiewicz, P.: A new grid for the IFS, ECMWF Newslett., 146, 23–28, 2016. a
Maranan, M., Fink, A., and Knippertz, P.: Rainfall types over southern West Africa: Objective identification, climatology and synoptic environment, Q. J. Roy. Meteorol. Soc., 144, 1628–1648, https://doi.org/10.1002/qj.3345, 2018. a, b
Mounier, F. and Janicot, S.: Evidence of two independent modes of convection at intraseasonal timescale in the West African summer monsoon, Citation: Mounier, 31, 16, https://doi.org/10.1029/2004GL020665, 2004. a
Myers, D.: Multivariate geostatistics By Hans Wackernagel, Math. Geol., 29, 307–310, https://doi.org/10.1007/BF02769635, 1997. a
Nesbitt, S. W., Cifelli, R., and Rutledge, S. A.: Storm Morphology and Rainfall Characteristics of TRMM Precipitation Features, Mon. Weather Rev., 134, 2702–2721, https://doi.org/10.1175/MWR3200.1, 2006. a
Nicholson, S.: The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability, ISRN Meteorol., 2013, 453521, https://doi.org/10.1155/2013/453521, 2013. a
Nicholson, S., Fink, A., and Funk, C.: Assessing recovery and change in West Africa's rainfall regime from a 161-year record, Int. J. Climatol., 38, 3770–3786, https://doi.org/10.1002/joc.5530, 2018. a
Panthou, G., Vischel, T., and Lebel, T.: Recent trends in the regime of extreme rainfall in the Central Sahel, Int. J. Climatol., 34, 3998–4006, https://doi.org/10.1002/joc.3984, 2014. a
Panthou, G., Lebel, T., Vischel, T., Quantin, G., Sane, Y., Abdramane, B., Ndiaye, O., Diongue Niang, A., and Diopkane, M.: Rainfall intensification in tropical semi-arid regions: The Sahelian case, Environ. Res. Lett., 13, 064013, https://doi.org/10.1088/1748-9326/aac334, 2018. a
Parker, W.: Reanalyses and Observations: What's the Difference?, B. Am. Meteorol. Soc., 97, 160128144638003, https://doi.org/10.1175/BAMS-D-14-00226.1, 2016. a
Sagna, P., Ndiaye, O., Diop, C., Diongue-Niang, A., and Corneille, S.: Are recent climate variations observed in Senegal in conformity with the descriptions given by the IPCC scenarios?, available at: http://lodel.irevues.inist.fr/pollution-atmospherique/index.php?id=5320 (last access: 18 March 2021), 2015. a
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M., Sela, J., and Goldberg, M.: The NCEP climate forecast system reanalysis, B. Am. Meteorol. Soc., 91, 1015–1057, https://doi.org/10.1175/2010BAMS3001.1, 2010. a
Salack, S., Giannini, A., Diakhate, M., Gaye, A., and Muller, B.: Oceanic influence on the sub-seasonal to interannual timing and frequency of extreme dry spells over the West African Sahel, Clim. Dynam., 42, 189–201, https://doi.org/10.1007/s00382-013-1673-4, 2013. a, b
Salack, S., Klein, C., Giannini, A., Sarr, B., Worou, N., Belko, N., Bliefernicht, J., and Kunstman, H.: Global warming induced hybrid rainy seasons in the Sahel, Environ. Res. Lett., 11, 104008, https://doi.org/10.1088/1748-9326/11/10/104008, 2016. a
Salack, S., Saley, I. A., Lawson, N. Z., Zabré, I., and Daku, E. K.: Scales for rating heavy rainfall events in the West African Sahel, Weather Clim. Extrem., 21, 36–42, https://doi.org/10.1016/j.wace.2018.05.004, 2018. a
Sane, Y., Panthou, G., Bodian, A., Vischel, T., Lebel, T., Dacosta, H., Quantin, G., Wilcox, C., Ndiaye, O., Diongue-Niang, A., and Diop Kane, M.: Intensity–duration–frequency (IDF) rainfall curves in Senegal, Nat. Hazards Earth Syst. Sci., 18, 1849–1866, https://doi.org/10.5194/nhess-18-1849-2018, 2018. a
Sarr, B.: Present and future climate change in the semi-arid region of West Africa: A crucial input for practical adaptation in agriculture, Atmos. Sci. Lett., 13, 108–112, https://doi.org/10.1002/asl.368, 2012. a
Seck, A.: Le “Heug” ou pluie de saison sèche au Sénégal, Annales de Géographie, 385, 225–246, https://doi.org/10.3406/geo.1962.16196, 1962. a
Shuhong, W., Liu, J., Wang, J., Qiao, X., and Zhang, J.: Evaluation of GPM IMERG V05B and TRMM 3B42V7 Precipitation Products over High Mountainous Tributaries in Lhasa with Dense Rain Gauges, Remote Sens., 11, 2080, https://doi.org/10.3390/rs11182080, 2019. a
Siegmund, J., Bliefernicht, J., Laux, P., and Kunstmann, H.: Toward a Seasonal Precipitation Prediction System for West Africa: Performance of CFSv2 and High Resolution Dynamical Downscaling, J. Geophys. Res.-Atmos., 120, 7316–7339, https://doi.org/10.1002/2014JD022692, 2015. a
Sivakumar, M.: Empirical analysis of dry spells for agricultural applications in west Africa, J. Climate, 24, 532–539, 1992. a
Tabios, G. and Salas, J.: A Comparative Analysis of Techniques for Spatial Interpolation of Precipitation, J. Am. Water Resour. Assoc., 21, 365–380, https://doi.org/10.1111/j.1752-1688.1985.tb00147.x, 1985. a
Taylor, C., Belušić, D., Guichard, F., Parker, D., Vischel, T., Bock, O., P. Harris, P., Janicot, S., Klein, C., and Panthou, G.: Frequency of extreme Sahelian storms tripled since 1982 in satellite observations, Nature, 544, 475–478, https://doi.org/10.1038/nature22069, 2017. a, b
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001. a
Thorne, V., Coakeley, P., Grimes, D., and Dugdale, G.: Comparison of TAMSAT and CPC Rainfall Estimates with rainfall, for southern Africa, Int. J. Remote Sens., 22, 1951–1974, https://doi.org/10.1080/01431160118816, 2001. a, b
Thuo, M., Bravo-Ureta, B., Obeng-Asiedu, K., and Hathie, I.: The Adoption of Agricultural Inputs by Smallholder Farmers: The Case of an Improved Groundnut Seed and Chemical Fertilizer in the Senegalese Groundnut Basin, J. Dev. Areas, 48, 61–82, https://doi.org/10.1353/jda.2014.0014, 2014. a
Tian, Y., Peters-Lidard, C., Choudhury, B., and Garcia, M.: Multi-Temporal Analysis of TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications, J. Hydrometeorol., 8, 1165–1183, https://doi.org/10.1175/2007JHM859.1, 2007. a
Trenberth, K. E.: Attribution of Climate Variations and Trends to Human Influences and Natural Variability, WIREs Clim. Change, 2, 925–930, https://doi.org/10.1002/wcc.142, 2011. a, b
Trenberth, K. E., Dai, A., M. Rasmussen, R., and Parsons, D.: The Changing Character of Precipitation, B. Am. Meteorol. Soc., 84, 1205–1217, https://doi.org/10.1175/BAMS-84-9-1205, 2003. a
UCDP: UCDP Conflict Encyclopedia, Uppsala University, available at: https://www.ucdp.uu.se (last access: 19 November 2020), 2017. a
Washington, R., Harrison, M., Conway, D., Black, E., Challinor, A., Grimes, D., Jones, R., Morse, A., Kay, G., and Todd, M.: African Climate Change: Taking the Shorter Route, B. Am. Meteorol. Soc., 87, 1355–1366, https://doi.org/10.1175/BAMS-87-10-1355, 2006. a
Wei, C., Chiang, J.-L., Wey, T. H., Yeh, H., and Cheng, Y.: Rainfall Network Design using Entropy and Kriging Approach, Hydrol. Process., 11, 4927, https://doi.org/10.1002/hyp.6292, 2009.
a
WFP: WFP Senegal Country Brief, January 2018, Senegal, available at: https://reliefweb.int/report/senegal/wfp-senegal-country-brief-january-2018
(last access: 19 November 2020), 2018. a
Wilcox, C., Vischel, T., Panthou, G., Bodian, A., Blanchet, J., Descroix, L., Quantin, G., Cassé, C., Tanimoun, B., and Kone, S.: Trends in hydrological extremes in the Senegal and Niger Rivers, J. Hydrol., 566, 531–545, https://doi.org/10.1016/j.jhydrol.2018.07.063, 2018. a
Wu, M.-L., Reale, O., and Schubert, S.: A Characterization of African Easterly Waves on 2.5–6-Day and 6–9-Day Time Scales, J. Climate, 26, 6750–6774, https://doi.org/10.1175/JCLI-D-12-00336.1, 2013. a
Xie, P., Joyce, R., Wu, S., Yoo, S.-H., Yarosh, Y., Sun, F., and Lin, R.: Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation Estimates from 1998, J. Hydrometeorol., 18, 1617–1641, https://doi.org/10.1175/JHM-D-16-0168.1, 2017. a, b
Xu, F., Guo, B., Ye, B., Ye, Q., Chen, H., Ju, X., Jinyun, G., and Wang, Z.: Systematical Evaluation of GPM IMERG and TRMM 3B42V7 Precipitation Products in the Huang-Huai-Hai Plain, China, Remote Sens., 11, 697, https://doi.org/10.3390/rs11060697, 2019. a, b
Yeni, F. and Alpas, H.: Vulnerability of global food production to extreme climatic events, Food Res. Int., 96, 27–39, https://doi.org/10.1016/j.foodres.2017.03.020, 2017. a
Young, H. R., Cornforth, R. J., Gaye, A. T., and Boyd, E.: Event Attribution science in adaptation decision-making: the context of extreme rainfall in urban Senegal, Clim. Dev., 11, 812–824, https://doi.org/10.1080/17565529.2019.1571401, 2019. a
Zeweldi, D. and Gebremichael, M.: Evaluation of CMORPH Precipitation Products at Fine Space-Time Scales, J. Hydrometeorol., 10, 300–307, https://doi.org/10.1175/2008JHM1041.1, 2009. a
Short summary
Extreme wet and dry rainfall periods over Senegal provided by satellite, reanalyses, and ground observations are compared. Despite a spatial coherence of seasonal rainfall accumulation between all products, discrepancies are found at intra-seasonal timescales. All datasets highlight comparable seasonal cycles of dry and wet spells. Nevertheless, CHIRPS and TAMSAT are close to observations for the dry spells, whereas TRMM obtains the closest values of wet spells as regards the observations.
Extreme wet and dry rainfall periods over Senegal provided by satellite, reanalyses, and ground...
Altmetrics
Final-revised paper
Preprint