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Abstract. In this study, the detection and characteristics
of dry/wet spells (defined as episodes when precipitation
is abnormally low or high compared to usual climatology)
drawn from several datasets are compared for Senegal. Here,
four datasets are based on satellite data (TRMM-3B42 V7,
CMORPH V1.0, TAMSAT V3, and CHIRPS V2. 0), two
on reanalysis products (NCEP-CFSR and ERA5), and three
on rain gauge observations (CPC Unified V1.0/RT and a 65-
rain-gauge network regridded by using two kriging methods,
namely ordinary kriging, OK, and block kriging, BK). All
datasets were converted to the same spatio-temporal resolu-
tion: daily cumulative rainfall on a regular 0.25◦ grid. The
BK dataset was used as a reference. Despite strong agree-
ment between the datasets on the spatial variability in cu-
mulative seasonal rainfall (correlations ranging from 0.94 to
0.99), there were significant disparities in dry/wet spells. The
occurrence of dry spells is less in products using infrared
measurement techniques than in products coupling infrared
and microwave, pointing to more frequent dry spell events.
All datasets show that dry spells appear to be more frequent
at the start and end of rainy seasons. Thus, dry spell occur-
rences have a major influence on the duration of the rainy
season, in particular through the “false onset” or “early cessa-
tion” of seasons. The amplitude of wet spells shows the great-
est variation between datasets. Indeed, these major wet spells
appear more intense in the OK and Tropical Rainfall Measur-
ing Mission (TRMM) datasets than in the others. Lastly, the
products indicate a similar wet spell frequency occurring at
the height of the West African monsoon. Our findings pro-

vide guidance in choosing the most suitable datasets for im-
plementing early warning systems (EWSs) using a multi-risk
approach and integrating effective dry/wet spell indicators
for monitoring and detecting extreme events.

1 Introduction

Several studies on climate change predict the intensifica-
tion of hydrological cycles and thus an increased probabil-
ity of heavy rainfall and dry periods due to global warming
(Held and Soden, 2006; Giorgi et al., 2011; Trenberth, 2011;
Kendon et al., 2019; Berthou et al., 2019). An increase in
extreme events is a major phenomenon accompanying Sa-
hel rainfall recovery (Alhassane et al., 2013; Descroix et al.,
2016; Panthou et al., 2014, 2018; Taylor et al., 2017; Wilcox
et al., 2018). An estimated 1.7 million people have been af-
fected by floods in Benin, Burkina Faso, Chad, Ghana, Niger,
Nigeria, and Togo since the second half of the 2000s (Sarr,
2012). In 2009, Benin, Burkina Faso, Niger, and Senegal
all reported major flooding (Engel et al., 2017; Fowe et al.,
2018; Salack et al., 2018), while heavy rains impacted more
than 80 % of Nigeria in 2012. Extreme events occurred as
well in Burkina Faso, including record rainfall of 263 mm
in Ouagadougou in September 2009 (Lafore et al., 2017). In
Senegal, over 26 people died from direct or indirect reper-
cussions of an extreme rainfall event on 26 August 2012,
with 161 mm recorded in less than 3 h (Sagna et al., 2015;
Young et al., 2019). On the other hand, UN agencies judged
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that over 16 million people in Mali, Sudan, Niger, Burkina
Faso, Senegal, and Chad were affected by the 2012 drought
(UCDP, 2017). In 2014, severe drought hit several areas of
Senegal, leading to USD 16.5 million in funding from the
African Risk Capacity (ARC, 2014) for the Senegalese gov-
ernment. In 2018, according to the World Food Programme
(WFP), Senegal was one of seven Sahelian countries with
a significant increase in the number of food-insecure peo-
ple, from 314 600 to 548 000 in the 2018 lean season (WFP,
2018). In such a context of high risk combined with extreme
hydro-meteorological events and highly vulnerable popula-
tions, a better understanding of multi-scale rainfall regime
variability is essential (Le Barbé et al., 2002; Lebel and Ali,
2009; Nicholson, 2013; Dione et al., 2014; Yeni and Alpas,
2017).

Several authors using rain gauges, rainfall estimates from
satellite imagery, and numerical weather prediction (NWP)
focused on the multi-scale variability in these potentially
high-impact events (Washington et al., 2006; Sane et al.,
2018; Nicholson et al., 2018). Indeed, with partial rainfall re-
covery, the Sahel experiences mixed dry/wet seasonal rainfall
features known as hybrid rainy seasons (Salack et al., 2016).
These hybrid rainy seasons illustrating “hydroclimatic inten-
sity” are what Giorgi et al. (2011) defined as a more extreme
hydrological climate with longer dry spells and more intense
rainfall (Trenberth et al., 2003; Trenberth, 2011). However,
a deeper analysis of the components of these hybrid seasons
is still lacking even though other studies analyzed the spatio-
temporal variability in dry/wet spells over West Africa and
showed a close correlation to west African monsoon spatio-
temporal variability (Froidurot and Diedhiou, 2017). Further-
more, in terms of seasonal cycles, these longer dry spells
generally occur at the start and end of rainy seasons, mak-
ing them crucial for agro-climatic monitoring (Salack et al.,
2013). The study by Dieng et al. (2008) showed that an ear-
lier (later) long dry spell is associated with higher (lower)
cumulative seasonal rainfall in July through September in
northern Senegal. However, this correlation is less distinct
in the south of the country. Understanding and monitoring
such high-impact events can yield important applications for
agronomy and disaster risk mitigation.

Very few studies have compared the performances of satel-
lite imagery, reanalysis products, and ground observations in
the detection of the distribution of dry/wet spells over the Sa-
hel. The few comparative studies conducted in Africa have
focused mainly on inter-annual variability in seasonal rain-
fall amounts (Thorne et al., 2001; Ali et al., 2005). Trop-
ical Applications of Meteorology Using Satellite Data and
Ground-based Observations (TAMSAT) has proven success-
ful in many areas of Africa despite its relatively simple algo-
rithm (Thorne et al., 2001; Jobart et al., 2011; Dinku et al.,
2007; Maidment et al., 2013). The Climate Prediction Cen-
ter (CPC) MORPHing technique (CMORPH) appears to con-
firm gauge data in Ethiopia but greatly underestimate rainfall
amounts in the Sahel (Bergès et al., 2010). Concurrently, past

studies have also demonstrated that Tropical Rainfall Mea-
suring Mission (TRMM 3B42) data adequately capture spa-
tial variations TRMM 3B42 annual and seasonal precipita-
tion (Xu et al., 2019). Nevertheless, it tends to overestimate
trace precipitation and underestimate torrential precipitation
at daily scales owing to inadequate detection capability (Xu
et al., 2019; Shuhong et al., 2019). Often reanalyses are of
lesser quality in the tropics, particularly in Africa where there
are unfortunately few in situ observations. However, this ap-
pears to have improved since satellite observations have been
more widely used because they are incorporated into assimi-
lation systems (Parker, 2016).

Thus, there is a great need for a broad, inter-comparative
study of these products in a region that is not only well doc-
umented but also equipped with a high-density rain gauge
network. This paper aims to set up an inter-comparison be-
tween several products resulting from observations, satel-
lite data, and models. More specifically, the idea is to com-
pare their ability to detect potentially high-impact dry/wet
events in Senegal. In this paper, potentially high-impact in-
dicators are defined and characterized. Here, we use the term
“potentially high-impact indicators” to illustrate the extreme
dry/wet spells subject to this analysis. This term is used to
better encompass vulnerability, exposure of populations, and
risks of hazard. Our paper is structured in sections as fol-
lows. Section 2 describes the data and methodology used in
our analysis, Sect. 3 presents the main findings and results of
statistical tests, and Sects. 4 and 5 conclude the paper with a
discussion of our main findings and wider implications.

2 Data and methodological approach

2.1 Rain gauge data and kriging methods

Daily rainfall data were provided by the National Meteoro-
logical Service of Senegal (ANACIM) for 65 locations cov-
ering the period 1991–2010 (Fig. 1). Two levels of quality
control were carried out for an objective verification of ho-
mogeneity. One manual check of dubious records was done,
followed by other checks, including verification of station
locations, identification of redundant data, identification of
outliers, tests comparing neighbouring stations, and exam-
ination of suspicious zero values (i.e. missing data or no
precipitation). The 1991–2010 time span is the longest pe-
riod having the maximum number of reliable stations with
sufficient spatial coverage allowing study objectives to be
met. Even so, the geographical distribution of this network
shows a strong east–west imbalance. An overview of the net-
work shows more rain gauges in the peanut-growing basin
(central-western zone) than elsewhere in the country (see
Fig. 1). This is due to the intensive agricultural production
in this area where rainfall imposes a limit on economic activ-
ity. Because it is difficult to compare rain gauge (point mea-
surement) data with satellite datasets, rain gauge data were
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Figure 1. Map of Senegal and West Africa (inset). The black dots indicate the location of the 65 ANACIM rain gauges used in this study.
The square in central-western Senegal denotes the location of the peanut basin (area of high density of rain gauges).

gridded in 0.25◦× 0.25◦ resolution using two different krig-
ing methods: ordinary kriging (OK) and block kriging (BK).
Several studies have shown these kriging techniques to be
among the most efficient interpolation methods (Creutin and
Obled, 1982; Tabios and Salas, 1985; Goovaerts, 2000). Be-
cause different techniques do exist and some inherent uncer-
tainties remain, two kriging methods were used in this study.
OK was used to estimate a value at a point in a region for
which there is a known variogram, applying data near the es-
timation location (Myers, 1997; Chen et al., 2008; Wei et al.,
2009). Equation (1) gives a value for rain estimated by ordi-
nary kriging.

Zk =

n∑
i=1

λiZ
o
i , (1)

where Zk and Zo respectively represent the rainfall estimate
and the observed rain gauge values, and λ is weightings as-
signed to n available observations. The λi kriging weightings
are obtained by configuring an optimization scheme contain-
ing n+1 simultaneous linear equations. These equations are
derived from the standard variogram models for the distance
separating sampling points from target locations using the
Lagrange multiplier. The second kriging technique, BK, uses
a moving district or a block of given dimensions to estimate
the average Z value over a surface (Lloyd and Atkinson,
2001; Maidment et al., 2013). The average value of Z at-
tribute over a V block centred at the block’s mean value is
computed using Eq. (2).

Zkv =
1
n

n∑
i=1

Zki (2)

TheZ block value is a linear average of the n point estima-
tors, and it has a minimum estimated error variance (Cressie,
2006; Bilonick, 2012). The root mean square error (RMSE)

of the kriging is also estimated. This estimate of kriging er-
ror is crucial in the Sahelian countries where observation
networks are often scantily distributed. We used the kriging
RMSE to blank out areas of the country where there are too
few rainfall stations to avoid a biased result. The reference
dataset chosen for this study is block kriging (BK) despite the
imprecision of the network of surface observations and un-
certainties related to kriging techniques. Although OK pro-
duces the best point-based estimates, in cases where nugget
variance is great, interpolated surfaces may be subject to lo-
cal discontinuities, consequently troubling longer-range spa-
tial variations. BK circumvents this by computing averaged
estimates over areas or volumes (albeit at the cost of reduced
spatial resolution). BK estimates may also be more realistic
since data from one point usually represent the area around
it. We therefore suggest BK as the best available reference
candidate.

2.2 Satellites and reanalyses and combined datasets

To compare the monitoring of dry/wet spells among datasets
and their uncertainties, an ensemble of nine different avail-
able datasets were used (see Table 1). These datasets are ei-
ther satellite products, reanalyses, or rain gauges. TRMM-
3B42 V7 and CMORPH V1.0 are characterized by combin-
ing infrared (IR) and microwave (MW) measurements (Kum-
merow et al., 1998; Nesbitt et al., 2006; Huffman et al.,
2007), while CHIRPS and TAMSAT are primarily based on
thermal-infrared measurement techniques (Funk et al., 2015;
Maidment et al., 2017). Recently, Le Coz and van de Giesen
(2019) provided a detailed overview of these products and
their recommendations to detect different types of hazards.
The infrared measurements are very indirect, but they have a
high spatio-temporal sampling frequency (Kummerow et al.,
1998; Ferraro and Li, 2002; Ferraro, 1997). Conversely, mi-
crowave methods enable an improved estimation of instan-
taneous precipitation but have a low temporal sampling fre-
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Table 1. Summary of the nine datasets used in this study. The abbreviations in the data sources column are defined as follows: S signifies
satellite, R signifies reanalysis, and G signifies rain gauge.

Name Details Data Spatial resolution Temporal Temporal
sources resolution coverage

TRMM 3B42
(V7)

Tropical Rainfall
Measuring Mission

S 0.25◦× 0.25◦ 3 h 1998–present

(TRMM) 3B42 (V7)

CMORPH
V1.0

CPC MORPHing
technique (CMORPH)

S 0.05◦× 0.05◦ 30 min 1998–present

V1.0

CHIRPS V2.0 Climate Hazards
group InfraRed

S, R, G 0.05◦× 0.05◦ Daily 1981–present

Precipitation (CHIRP)
V2.0

TAMSAT V3 Tropical Applications
of Meteorology using

S, G 0.0375◦× 0.0375◦ Daily 1983–present

satellite data and
ground-based
observations V3

NCEP-CFSR National Centres R 0.31◦× 0.31◦ Hourly 1979–2010
for Environmental

Prediction (NCEP)
Climate Forecast
System Reanalysis
(CFSR)

ERA5 European Centre for
Medium-range Weather

R 0.25◦× 0.25◦ Hourly 1987–present

Forecasts Reanalysis 5
(ERA5)

Native resolution is 9 km

CPC Unified
(V1.0/RT)

CPC Unified Gauge-
based Analysis of

G 0.5◦× 0.5◦ Daily 1979–present

Global Daily
Precipitation V1.0/RT

OK Ordinary kriging G 0.25◦× 0.25◦ Daily 1991–2010

BK Block kriging G 0.25◦× 0.25◦ Daily 1991–2010

quency (Joyce et al., 2004; Zeweldi and Gebremichael, 2009;
Xie et al., 2017). Thus, in order to benefit from both es-
timation techniques, the two methods can be coupled, as
in TRMM-3B42 V7 and CMORPH V1.0. In addition, the
TRMM satellite was the first satellite to have active radar in-
strumentation on board. As such, it could cover cloud charac-
teristics since the radar was able to measure by means of the
principle of electromagnetic wave reflection (Maranan et al.,
2018).

Among the datasets, two of them are reanalysis data,
namely National Centres for Environmental Prediction Cli-
mate Forecast System Reanalysis (NCEP-CFSR) and Euro-
pean Centre for Medium-range Weather Forecast (ECMWF)

Reanalysis 5 (ERA5). The NCEP-CFSR is available on the
T382 Gaussian grid (Ebert et al., 2007; Saha et al., 2010),
while the ERA5 is based on 4D-Var data assimilation us-
ing the 41r2 cycle of the Integrated Forecasting System (IFS;
Malardel et al., 2016) and is generated by ECMWF. The last
dataset, CPC Unified V1.0/RT, is fully based on rain gauge
observations. It uses the gauge reports of over 30 000 stations
worldwide from multiple sources including Global Telecom-
munication System (GTS), Cooperative Observer Program
(COOP), and other national and international agencies (Xie
et al., 2017).

To achieve a reliable comparison and decrease each prod-
uct’s resolution impact, the same spatio-temporal resolutions
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as the kriging datasets are used. For datasets with a sub-daily
temporal resolution, we calculated daily accumulations, such
as rain gauge data. The datasets with spatial resolutions be-
low 0.25◦ are upscaled to that resolution using bilinear av-
eraging, whereas those with larger spatial resolutions were
resampled using bilinear interpolation (Beck et al., 2019).

2.3 Methodological approach

Based on daily rainfall data, different dry/wet spells depend-
ing on their duration and intensity are computed for each grid
point of the 0.25◦ shared resolution over the period of the dif-
ferent data products. The frequency and duration distribution
of dry/wet spells depend significantly on the threshold cho-
sen to define a rainy day (Barring et al., 2006). A few authors
have used 0.1 mm to define rainy days, as this is the usual
accuracy of rain gauges (Da et al., 2019). Nevertheless, Frei
et al. (2003) consider 1 mm to be a more relevant measure-
ment for avoiding errors associated with scant precipitation.
The authors asserted that precipitation below this amount
evaporates directly. In this study, a threshold of 1.0 mm was
used. This threshold was also used by Diallo et al. (2016) and
Froidurot and Diedhiou (2017) for the Sahel.

This work represents a first step in identifying potential
high-impact events. It is therefore important to have a large
sample of dry/wet events so as to obtain robust statistics
when comparing sources. However, since most of the results
presented in this study concern events with a return period
of several years minimum, they could be considered to be
extremes or highly abnormal. Moreover, a large number of
definitions (related to duration of the episodes and their in-
tensity) are used in order to highlight potential differences
between datasets for representing the effect of high-impact
events on socio-economic activities. The following subsec-
tions present methods applied to detecting dry/wet spells.

2.3.1 Dry spells

Two criteria are used to define two different types of dry
spells. The first (hereafter called DS) is based on the num-
ber of consecutive dry days having daily precipitation below
1 mmd−1. This definition is commonly used to define a dry
spell in the Sahel, and the methodology employed here par-
allels that of Salack et al. (2013). Different DS intensities
are defined according to their durations (short DS, medium
DS, long DS, and extremely long DS) and are presented in
Table 2. The second criterion is based on accumulated pre-
cipitation during a specific period and is called dry spell cu-
mulative (DSC). Four durations (i.e. intensities) are then de-
fined. DSC5: 5 d with less than 5 mm of rainfall; DSC10: 10 d
with less than 10 mm; DSC15: 15 d with less than 15 mm;
and DSC20: 20 d with less than 20 mm (see Table 2). These
DSCs can be seen as periods when there is not enough rain-
fall to significantly moisten the soil and thus not enough for
crop growth (Sivakumar, 1992). The results presented in this

Table 2. Definition of indices for detecting dry spells.

Dry spell Definitions
indices

DSC5 5 d with less than 5 mm of rainfall
DSC10 10 d with less than 10 mm of rainfall
DSC15 15 d with less than 15 mm of rainfall
DSC20 20 d with less than 20 mm of rainfall
DSs 1–3 consecutive dry days
DSm 4–7 consecutive dry days
DSl 8–14 consecutive dry days
DSxl Consecutive dry days exceeding 15 d

study focus on the most intense dry spells (DSC10, DSC20,
DSl, and DSxl). Nonetheless, all the results from the other
periods are presented in the Supplement.

2.3.2 Wet spells

As for dry spells, two criteria are used to detect wet spells
and their intensities. The first method is based on the num-
ber of intense rainy days (hereafter called WS). Since intense
rainy days may be defined by different relative intensities,
four thresholds were also defined (climatological percentiles
90, 95, 99, and 99.5 of rainy days over all the years and en-
tire seasons). After computing these WSs, it was found that
durations equal to or longer than 2 d are extremely rare even
for the lowest intensities (percentiles).

Indeed, the wet spell duration categories were chosen to
correspond to the different synoptic systems causing rain in
West Africa. Short wet spells are associated with the so-
called “3–5 d” African easterly waves (AEWs). These AEWs
are synoptic disturbances known to drive mesoscale convec-
tive systems throughout West Africa (Diedhiou et al., 1998;
Wu et al., 2013). Because of their wavelengths, only two WS
durations were defined: a 1 d duration (e.g. to monitor intense
daily rainfall, WS1) and another equal to or longer than a 2 d
duration (WSM). Thus, for example, WSM 99P represents a
wet event of at least 2 consecutive days with each cumulative
rainfall exceeding the 99th percentile of rainy days. The sec-
ond criterion in defining wet events is based on percentiles
of specific cumulative periods. These cumulative wet spells
are defined according to different synoptic components such
as the 10–20 d variability mode of African monsoon rainfall
which stems from coupled regional land–atmosphere inter-
actions (Grodsky and Carton, 2001; Mounier and Janicot,
2004). Wet spell cumulative (WSC) is defined as specific pe-
riods when cumulative rainfall exceeds a threshold (as shown
in Table 3). As for dry spells, in this study we focused on the
strongest wet spells (WS1 99P, WSM 99P, WSC5 99P, and
WSC15 99P), although all the results are presented in the
Supplement.
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Figure 2. Spatial distribution of average seasonal rainfall from June to October for the overlap period between datasets (1998–2010, in mm)
using (a) TRMM, (b) TAMSAT, (c) CMORPH, (d) CHIRPS, (e) CPC, (f) NCEP, (g) ERA5, (h) OK, and (i) BK. The black dots represent
the stations used. Details of the datasets are provided in Table 1.

Table 3. Definition of indices for detecting wet spells: XX signifies
percentiles 90, 95, 99, and 99.5, and p signifies percentile.

Wet spell Definitions
indices

WS1 XXP 1 d with rainfall > XXth p of daily rainfall
WSM XXP 2 d or more with rainfall > XXth p of daily rainfall
WSC5 XXP 5 d precip. > XXth p of 5 d cumulative rainfall
WSC10 XXP 10 d precip. > XXth p of 10 d cumulative rainfall
WSC15 XXP 15 d precip. > XXth p of 15 d cumulative rainfall
WSC20 XXP 20 d precip. > XXth p of 20 d cumulative rainfall

3 Results

3.1 Seasonal rainfall over Senegal

The first inter-comparison between all the datasets focuses
on total seasonal precipitation from June to October. Figure 2
shows the climatology of seasonal precipitation for the over-
lapping dates (1998–2010) between the datasets. The krig-
ing method allows for estimation errors. It takes into account
the spatial dependency structure of the data. Based on the
kriging error, a critical threshold is established to eliminate
pixels when estimated data are not reliable. For this study,

the threshold of 0.5, based on Lloyd and Atkinson (2001),
was adopted. The main characteristic of Senegalese precipi-
tation, driven by the monsoon flow, is a south–north cumula-
tive rainfall gradient. It is interesting to note that TRMM is
closest to BK in intensity, but only CMORPH is able to re-
produce the specific southeast–northwest gradient observed
over the peanut-growing basin. This correspondence between
TRMM, CMORPH, and BK may be due to the precipitation
radar (PR) on board TRMM or the combination of infrared
and microwave measurements used in CMORPH since they
appear well adapted to this region. Maranan et al. (2018)
report that these instruments provide improved estimation
of precipitation by atmospheric assessment of water vapour,
cloud water, and precipitation intensity.

Nevertheless, the reanalyses appear to underestimate pre-
cipitation in the north (ERA5) or south (NCEP), as illus-
trated Fig. 2f and g. The findings show that CMORPH is
the product exhibiting the lowest cumulative seasonal rain-
fall especially in Senegal’s southern coastal area compared to
other datasets. Indeed, in this part of the country, CMORPH
records cumulative seasonal rainfall of less than 900 mm,
whereas in other datasets, rainfall amounts exceed 1100 mm.
This result confirms the findings of Tian et al. (2007) show-
ing that the regular smoothing of precipitation consequential
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to the “morphing” process can have an effect on precipitation
intermittency (Fig. 2c).

There is a good correlation among the products in terms
of spatial variability and cumulative values (from 100 mm in
the north to 1200 mm in the south), as illustrated in Fig. 3.
Using BK as a reference, the performance of the products
on the seasonal north–south rainfall gradient is denoted by
correlation scores ranging from 0.94 to 0.99. TRMM gives
the highest correlation (r = 0.99) and is presented along with
OK as the two best-performing products. CMORPH, using
the same measurement technique as TRMM, has the lowest
score compared to other satellite-based products (r = 0.94).
Also, Fig. 3 shows the root mean square error scores which
allow us to quantify biases on the intensity of cumulative
seasonal rainfall. Satellite products, with the exception of
CMORPH, showed the lowest bias, with TAMSAT, CHIRPS,
and TRMM recorded respectively at 56.97, 67.36, and 83.16.
Concurrently, reanalysis and in situ datasets recorded the
highest bias.

Figure 4 showing the cumulative distribution func-
tion (CDF) of the cumulative seasonal amounts helps to ex-
plain these biases. These distributions are calculated for the
overlap period between 1998 and 2010. Overall, the products
are divided into two groups. First is a group of five prod-
ucts composed of NCEP, ERA5, CPC, OK, and CMORPH
in which 60 % of the cumulative seasonal rainfall is below
600 mm and 90 % is below 800 mm. Concurrently, in the sec-
ond more heterogeneous group composed of TRMM, TAM-
SAT, CHIRPS, and BK, these thresholds are higher at 800
and 1000 mm respectively. This can be explained by the two
kriging methods. BK produces an average rainfall estimate
at a given location (considered as a “block”), whereas OK
estimates the rainfall value at a point in a region using data
near the estimation location. This means the BK method is
akin to satellite measurement techniques which also estimate
rainfall in pixels (Figs. 3h and 4h). Finally, there are differ-
ences in the peanut-growing basin (identified in Fig. 1). This
region is an important agricultural area of Senegal supplying
80 % of its peanuts for export and representing 70 % of total
grain crops (Thuo et al., 2014). Because of this strategic im-
portance, a consequential network of rain gauges (about 24)
was used to obtain a more robust estimation of ordinary and
block krigings (OK and BK). Regional-scale rainfall patterns
are of particular importance. All products showed a similar
magnitude of spatial rainfall variations even though this vari-
ation is particularly noticeable across the peanut basin with
amounts ranging from 400 to 700 mm.

In addition to the cumulative seasonal rainfall, the seasonal
progression of the dry days is crucial and is illustrated in
Fig. 5. It enables definitions of the start/finish of rainy sea-
sons and drought periods. During the dry season (November
to May), all the datasets record over 85 % of dry days show-
ing little occurrence of off-season rainfall called “Heug”
rainfall (Seck, 1962; Gaye et al., 1994). Yet, at the same
time, OK and BK record 100 % dry days. This could be due

to technical issues and/or absence of proper data collection
during that period. Given these technical problems, it is even
more difficult to declare BK as the most accurate dataset.
Nevertheless, certain products such as CMORPH during the
entire dry season and TAMSAT and NCEP during the Octo-
ber to December dry season recorded more Heug rainfalls
than others datasets (Fig. 5). Although high-intensity rain
dominates the wet season, CMORPH misses some of these
events in-between scans while overestimating low-intensity
events in the dry season. One explanation for this could be
the CMORPH’s algorithm since it tends to be more sensitive
to the false alarm rate (FAR) or the fraction not stemming
from events detected by the CMORPH algorithm (Bruster-
Flores et al., 2019).

During the rainy season (June to October) when the oc-
currence of these dry days is more crucial to socio-economic
activities, differences between datasets increase, as displayed
in Fig. 5. The datasets can be split into groups: TRMM, CPC,
and NCEP depicting progression close to the OK with more
dry days than the second group (TAMSAT, CHIRPS, and
CMORPH) through the whole season. The latter is closer to
the progression of the BK. Finally, ERA5 is the only product
similar to OK at the start and end of the season and similar
to BK in the middle of it. It is difficult to posit an expla-
nation for the presence of these two groups, CHIRPS and
TAMSAT, which combine in situ stations and infrared sen-
sors and generally record fewer dry days. It is well known
that infrared sensors are not well suited to assess ground pre-
cipitation from cloud-top temperatures (Ringard, 2017). An-
other commonality of the two groups is the native resolu-
tion of the products. Indeed, even if they are all regridded
at the same resolution, TAMSAT, CHIRPS, and CMORPH
have the highest resolutions (0.0375, 0.05, and 0.05, respec-
tively) compared to TRMM, CPC, and NCEP (0.25, 0.5, and
0.31, respectively; see Table 1). Yet this result is counterin-
tuitive since the datasets with coarse resolutions are closer to
OK, known to be a point interpolation. Obtaining the largest
percentage of dry days via the lowest-resolution datasets is
very surprising. The seasonal cycle of dry days highlights the
complexity of intermittent rainfall in the datasets and thus the
potential difficulty of monitoring dry/wet spells. After this
seasonal analysis was carried out, a specific comparison of
dry/wet spell detection was done.

3.2 Dry spells

The purpose of this section is to compare the detection of
different types of dry spells (depending on their intensity
and duration) derived from the nine products. We will focus
on the four most sensitive dry spell indicators for agricul-
ture and livestock, namely DSC10, DSC20, DSl, and DSxl
(see Table 2 for definitions; further results in the Supple-
ment). The first comparison concerns the average occurrence
of yearly dry spells (Fig. 6). These occurrences are calcu-
lated for all datasets only on grid points alone when the krig-
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Figure 3. Scatter plots of cumulative seasonal rainfall from rain gauge BK versus (a) TRMM, (b) TAMSAT, (c) CMORPH, (d) CHIRPS,
(e) CPC, (f) NCEP, (g) ERA5, and (h) OK. The RMSE and correlation scores are spatial and computed for the rainy season (June to October)
over the 1998–2010 period. Details of the datasets are provided in Table 1.

Figure 4. Distribution of cumulative distribution function (CDF)
of amounts of the seasonal rainfall from June to October for the
overlap period between datasets (1998–2010, in mm) using TRMM,
TAMSAT, CMORPH, CHIRPS, CPC, NCEP, ERA5, OK, and BK.
Details of the datasets are provided in Table 1.

ing method is considered significant. In Fig. 6, clear differ-
ences emerge between BK, TAMSAT, and CHIRPS on the
one hand, in which the number of DSls does not exceed 1,
and TRMM, CMORPH, CPC, NCEP, ERA5, and OK on the
other hand with average per season recordings of two DSls.
This pattern persists for DSxl, though there are clear dif-
ferences for DSC10 and DSC20. This fits with the previous
findings concerning dry days (Fig. 5). Such a result confirms
the great sensitivity in detecting dry spells using methods
which extract precipitation datasets. Indeed, TRMM, with its
coupled infrared (IR) and microwave (MW), reports more
frequent rainfall breaks than TAMSAT and CHIRPS, which
are infrared. Surprisingly, although CMORPH reports find-
ing fewer occurrences of dry days similar to TAMSAT and
CHIRPS, it produces comparable occurrences of dry spells
to the driest products. This is especially true for DSl and
DSxl. TRMM and CMORPH benefit from the advantages
of both IR and MO. The IR principle is based on rainfall
rate proxy from cloud-top temperatures. According to Dinku
et al. (2018), IR sensors might overestimate rainfall rates by
considering cirrus clouds to be convective. Concurrently, the
MW measurement is a more physical measure of clouds’
water content, providing a clearer instantaneous estimate of
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Figure 5. Percentage of average dry days (≤ 1 mm) per month computed for the overlap period between datasets (1998–2010) and for all
grid points in each dataset: TRMM, TAMSAT, CMORPH, CHIRPS, CPC, NCEP, ERA5, BK, and OK.

Figure 6. Box plots of average number of dry spells (DSC10, DSC20, DSl, and DSxl) per year collected for all grid points for the nine
gridded datasets used (TRMM, TAMSAT, CMORPH, CHIRPS, CPC, NCEP, ERA5, BK, and OK). The minus sign (−) represents the
median value, the plus sign (+) represents the mean value, the bottom and top edges of the box represent the 25th and 75th percentile values,
respectively, and the whiskers represent the extreme values (5 % and 95 %). The average number of dry spells is computed for the overlap
period (1998–2010). Details on the datasets and dry spells are provided in Tables 1 and 2, respectively.

precipitation (Ringard, 2017). This may explain the satisfac-
tory performance of the two products compared to rain gauge
findings but not the CMORPH discrepancies between dry
day detection and dry spell occurrences. Finally, BK and OK
demonstrate important differences in dry spell occurrences.

Indeed, the smoothing effect due to kriging is stronger in
OK than BK. This is a direct consequence of the two krig-
ing methods as described above.

To better analyze these different behaviours, seasonal pro-
gression is taken into account (Fig. 7) illustrating frequency,
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Figure 7. Seasonal cycle of four categories of dry spells (DSC10, DSC20, DSl, and DSxl) used in this study computed for the overlap
between datasets (1998–2010): TRMM, TAMSAT, CMORPH, CHIRPS, CPC, NCEP, ERA5, BK, and OK. Frequency is defined as a ratio
of observational days with recorded dry spells. Details on the datasets and dry spells are provided in Tables 1 and 2, respectively.

which is defined as a ratio of observed days having recorded
dry spells. Note that, due to their definitions, DSC10, DSC20,
and DSxl are quite sensitive to the dry season (November to
May), whereas DSl shows rain breaks between 8 and 14 d.
Thus, the end of the breaks is necessarily marked by a rainy
day, which would explain their sensitivity during the tran-
sition phases (i.e. onset and retreat phase of rainfall) and
their misreadings during dry seasons. Hence, there is a co-
herent grouping of DSC10 and DSC20 datasets during the
rainy season similar to those shown for dry day frequency in
Fig. 5. ERA5 and NCEP have an overestimation of DSC10,
DSC20, and DSxl during the period from May to July in
comparison to other datasets. The monsoon’s waning and
waxing phases correlate with these observations. This de-
tection varies greatly among products. For this particular
drought, it is difficult to point to the specific behaviour of a
group of products. Each has a specific time progression with
a higher peak either during onset (June) or retreat phases
(September). Some lags are also visible during the retreat
phase (TAMSAT for instance). Finally, the very good corre-
spondence between OK and CPC is remarkable to see. Two
conclusions can be drawn. First, monitoring the seasonal pro-
gression of specific dry spells over Senegal is highly complex
in spite of alignment at a wider scale (Fig. 7). Secondly, it is
difficult to take the reference into account. Even when rain
gauges are used, it is necessary to spatialize data via kriging
methods as this will have a big impact in terms of dry spell
detection.

Figure 8. Taylor diagram providing three statistical scores (stan-
dard deviation, correlation coefficient, and root mean square devi-
ation), in which radius expresses the standard deviation, the angle
expresses the correlation, and the distance from the bottom right
point expresses the RMSD. The BK dataset is considered as a refer-
ence for comparing the spatial distribution of the four categories of
dry spells (DSC10, DSC20, DSl, and DSxl) of the different datasets
(TRMM, TAMSAT, CMORPH, CHIRPS, CPC, NCEP, ERA5, and
OK). BK is used as a reference. Details on the datasets and dry
spells are provided in Tables 1 and 2, respectively.
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Figure 9. Inter-annual variability in average numbers on all grid points of DSC10, DSC20, DSl, and DSxl computed over the period of
availability for each dataset: TRMM (1998–2013), TAMSAT (1998–2010), CMORPH (1998–2015), CHIRPS (1981–2010), CPC (1979–
2016), NCEP (1992–2013), ERA5 (1987–2017), BK (1991–2010), and OK (1991–2010). Details on the datasets and dry spells are provided
in Tables 1 and 2, respectively.

In order to examine the correspondence among the
datasets of the spatial variability between the different dry
spells, a Taylor diagram (Taylor, 2001) was plotted (Fig. 8).
This type of graphic gives an overview of the capacity of
datasets to concur on spatial distribution by simultaneously
providing three pieces of information: spatial correlation,
standard deviation, and root mean square deviation (RMSD),
which is compared to a reference. Here, the reference is de-
fined as BK. This is motivated by the fact that this kriging
method with its spatial assessment on grid boxes is more
suited for comparison with gridded datasets. Not surpris-
ingly, DSC20 and DSxl are more stable and thus display
the lowest standard deviation values. Spatial correlation is
strongest with DSC10, above 0.8 for all datasets, while for
the other metrics, we find correlations around 0.5, although
the dispersion is less marked for DSC20, DSl, and DSxl.
Overall, TRMM looks to be the closest to the reference and
so the best product for detecting these dry spells. TAMSAT
and CHIRPS also get good scores with a correlation above
0.85, standard deviation of 1, and RMSD close to 0.5 for dry
spell numbers. In contrast, CPC yields the lowest scores.

It is also worth noting that a big difference stems from the
methodology of generating kriging of observation datasets.
Hence, OK is generally one of the largest RMSDs with the

lowest correlation scores. It is important to note that the dif-
ferences between OK and BK are linked to uncertainties con-
cerning kriging methods for observations. Finally, Fig. 9 de-
picts a comparison of inter-annual variability in dry spell
occurrences. The figures reveal the challenges of assessing
climatological trends due to the high inter-annual variability
in these events, discrepancies between datasets, and some-
times opposing temporal progressions. Overall, DSC10 and
DSC20 display a slight decrease in events. This is noted for
all the products except CPC and ERA5. DSxl displays some
similarity to this climatological progression. Nevertheless,
inter-annual variability is much higher, and no significant
trend is detected. Finally, DSl denotes a specific time pro-
gression. It is worth pointing out that, except for the biases,
the time progressions of all the products correspond well,
displaying an increase in these DSls at the beginning of the
2000s and peaking in 2003/04. It is also worth considering
that, even if the spatial congruity between the two kriging
techniques is low, their inter-annual progressions are similar.

3.3 Wet spells

In this section, the same inter-comparison of datasets mon-
itoring wet spells (depending on intensity and duration) is
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Figure 10. Box plots of amounts from all grids points from wet spells WS1, WSM, WSC5, and WSC15 (99th) per year, collected from all
grid points for the nine gridded datasets used (TRMM, TAMSAT, CMORPH, CHIRPS, CPC, NCEP, ERA5, BK, and OK). The minus sign
(−) represents the median value, the plus sign (+) represents the mean value, the bottom and top edges of the box represent the 25th and 75th
percentile values, respectively, and the whiskers represent the extreme values (5 % and 95 %). The average number of wet spells is computed
for the overlap period (1998–2010). Details on the datasets and wet spells are provided in Tables 1 and 3, respectively.

assessed. In the main document, four types of wet spells us-
ing the 99th percentile of daily rain amounts as thresholds,
namely WS1 99P, WSM 99P, WSC5 99P, and WSC15 99P
(see Table 3), are discussed. Results using other definitions
of wet spells are presented in the Supplement. Regarding the
intensity of events detected (Fig. 10), there are two main
findings. First, TRMM appears to be closer to the OK and
BK observations than the other datasets. This is true for all
wet spell categories. All the other datasets clearly underesti-
mate events, especially when based on OK alone. Regarding
BK, which is associated with smoother datasets by definition,
there are fewer differences, but they do remain, especially for
the WSCs (Fig. 10c and d).

The seasonal cycles of short-duration wet spells (WS1 99P
and WSC5 99P; Fig. 11) tend to correspond among the prod-
ucts. As for dry spells, this frequency is defined as a ratio of
observational days with a recorded wet spell. The only sig-
nificant differences lie in the underestimation of CHIRPS,
CPC, and TAMSAT and CMORPH’s delay in representing
the peak in the heart of the rainy season. For WSC15, a sim-
ilar distribution is found, and the differences (in terms of in-
tensity or timing) are not huge. Finally, WSM 99P, which is
one of the most intense events, displays more variability. It is
worth noting that CHIRPS underestimated the WS1 99P and
has the most frequent WSM 99P. The reasons for this are not
well understood.

In order to elucidate the reasons for these differences, the
logarithmic distribution of daily rainfall over the shared 1998
to 2010 period was calculated (Fig. 12). This figure illus-
trates relatively well how the intensity of daily rainfall can
be detected via datasets. Daily rainfalls below 25 mm are
more frequent in TAMSAT and CHIRPS. These two prod-
ucts record the most rainy days in the main season (Fig. 2).
But the switch to more intense daily rainfall is more abrupt
than for the other products. This results in the smallest num-
ber of high daily rainfalls for TAMSAT with a maximum
at about 50 mm. CHIRPS and CMORPH are also associ-
ated with slight underestimations of strong daily rainfalls
(no event above 90 mm). In contrast, TRMM produces the
largest rainfall events. This anomaly ranges from mild events
(around 30 mm) to the most extreme cases (over 120 mm).

To assess spatial variability in wet spells, the Taylor dia-
gram (Fig. 13) shows much greater variability than for dry
spells (Fig. 8). These results yield globally lower scores for
WSs than DSs due to these events’ scarcity and variabil-
ity. Moreover, differences between products are more pro-
nounced, highlighting the uncertainties of monitoring WS. It
is also worth noting that cumulative methods (WSCs) yield
better scores. As shown in the previous instance, TRMM ap-
pears to be closest to the observations except for the WSM
99P. This could be due to the very strict criteria for detect-
ing them and the fact that only a few cases were recorded
during the shared period. Unusually, despite major discrep-
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Figure 11. Seasonal cycle of four categories of wet spells, WS1, WSM, WSC5, and WSC15 (99th percentile), used in this study computed
for the overlap between datasets (1998–2010): TRMM, TAMSAT, CMORPH, CHIRPS, CPC, NCEP, ERA5, BK, and OK. Frequency is
defined as a ratio of observational days with recorded wet spells. Details on the datasets and wet spells are provided in Tables 1 and 3,
respectively.

Figure 12. Comparison of the logarithmic distribution of daily rainfall amounts recorded in each grid point over the common period between
datasets for Senegal (1998–2010): TRMM, TAMSAT, CMORPH, CHIRPS, CPC, NCEP, ERA5, BK, and OK. Details of the datasets are
provided in Table 1.
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Figure 13. Taylor diagram providing three statistical scores (stan-
dard deviation, correlation coefficient, root mean square deviation)
in which radius expresses the standard deviation, the angle ex-
presses the correlation, and the distance from the bottom right point
expresses the RMSD. The OK dataset is considered as a refer-
ence for comparing the spatial distribution of the four categories
of wet spells WS1, WSM, WSC5, and WSC15 (99th) of the differ-
ent datasets (TRMM, TAMSAT, CMORPH, CHIRPS, CPC, NCEP,
ERA5, and OK). BK is used as a reference. Details on the datasets
and wet spells are provided in Tables 1 and 3, respectively.

ancies in daily rainfall distribution (Fig. 12), TAMSAT is rel-
atively well suited for representing events’ variability. The
fact that our criteria are using quantiles instead of specific
rainfall amounts allows such biases to be taken into account
with this underestimation. In contrast, CMORPH is gener-
ally the farthest from BK, pointing to the difficulty in rep-
resenting the spatial variability in these events’ occurrences.
Finally, the recent climatological evolution of these extreme
events (Fig. 14) demonstrates a great inter-annual variabil-
ity and, as for dry spells, important differences among the
products. For most of the products, the temporal correlations
are not significant when compared to BK or OK. Recently,
for almost all the products and wet spells, there was an in-
crease in occurrences, especially for WSC5 99P and WSC15
99P. For the two products based on observations, the tempo-
ral progressions are quite close and display a major increase
in all indicators. These results are in line with the recent study
by Taylor et al. (2017) suggesting that mesoscale convective
systems (MCSs) responsible for extreme rainfall in the Sahel
increased recently. However, this could also be related to a
highly abnormal year in 2010.

4 Discussion

In this study, a wide range of datasets are compared to as-
sess uncertainties in monitoring dry/wet spells in Senegal.
Significant differences and discrepancies are observed. The
product resulting from the BK method of in situ observa-
tions is identified as a reference. This is justified by the fact
that krigged data are more likely to be comparable to gridded
satellite observations or model data. This method, represent-
ing mean precipitations on a grid, is also more comparable to
integrated data from other products.

The first investigation considered the resolution of the
products. Even if all the products are regridded on identical
grids, the original resolution of the products differs greatly
from one product to the next. Disparities between OK and
BK, even though they come from the same rain gauge net-
works, are akin to the differences between the two kriging
methods. Indeed, the OK method is used to estimate a value
at a point in a region, applying data close to the estima-
tion point, while the BK method uses a movable zone or
block. Therefore, the smoothing effect resulting from krig-
ing is stronger in BK than OK since it tends to diminish rain
event intensity and augment rainy day occurrences. How-
ever, the results obtained were counter-intuitive, especially
for dry spells, with more dry spells coming from the lowest-
resolution datasets. For wet spells, it turns out that prod-
ucts with the lowest-intensity rainfall are also the highest-
resolution datasets. Therefore, the resolution of datasets is
probably an insufficient explanation for these differences.
Furthermore, satellite products combining infrared and mi-
crowave result in good sampling (because of IR) with im-
proved intensity extractions (because of MO). TRMM and
CMORPH using this combination show similar skill in the
detection of wet spell intensity and are often quite close to
in situ observations. Moreover, the correspondence between
TRMM and rain gauges (OK and BK) seems to point to the
importance of the contribution of radar on board the TRMM
satellite. It should be remembered that TRMM was the first
satellite to be equipped with an active radar instrument on
board. This represents great added value since it provides a
profile of rainfall activity. It is also important because the
data obtained indicate in-cloud precipitation structure and
type, vertical extent of this precipitation, and freezing point
height determined via bright band level. As far as the reanal-
yses (ERA5 and NCEP) are concerned, they quickly reach
their limits in reproducing these precipitation events. It is im-
portant to note that precipitation is generally not a reanalysis
product but is rather derived from short-term forecasts in the
reanalysis cycle. Observations are thus not assimilated, and
the products are generally seen by the providers as less ro-
bust. Overall, these results confirm the conclusions of Sieg-
mund et al. (2015) on reanalyses. Indeed, in unimodal re-
gions such as the Sahel, where a unique rainy season is ob-
served from June to October, the reanalyses are quite close to
the main characteristics of monthly and annual rainfall. This
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Figure 14. Inter-annual variability in average numbers on all grid points of WS1, WSM, WSC5, and WSC15 (99th percentile) computed over
the period of availability for each dataset: TRMM (1998–2013), TAMSAT (1998–2010), CMORPH (1998–2015), CHIRPS (1981–2010),
CPC (1979–2016), NCEP (1992–2013), ERA5 (1987–2017), BK (1991–2010), and OK (1991–2010). Details on the datasets and wet spells
are provided in Tables 1 and 3, respectively.

contrasts with the Gulf of Guinea regions where there is a bi-
modal rainfall regime. However, reanalyses often show quite
significant differences in intra-seasonal rainfall characteris-
tics.

5 Conclusions

In this work, the monitoring of high-potential impact events
over Senegal is studied using four satellite products (TRMM
3B42 V7, CMORPH V1.0, CHIRPS V2.0, and TAMSAT
V3), two reanalyses models (NCEP-CFSR and ERA5), and
three rain-gauge-based observations (CPC Unified V1.0/RT,
OK, and BK). For this, the same spatial resolution was ap-
plied to all the products via area averaging, interpolation, or
kriging to obtain a single spatial resolution of 0.25◦× 0.25◦.
Large-scale climatology research on seasonal rainfall points
to decent correspondence between the products, particularly
for the well-known south–north rainfall gradient associated
with the West African monsoon. Some differences in the
magnitude of seasonal rainfall amounts are observed, how-
ever, when pinpointing specific regions. TRMM, TAMSAT,
and CHIRPS yield seasonal cumulative rainfall quite close to
BK. This specific kriging technique is chosen as the reference
since its estimation covers average rainfall over pixels, which

is similar to most satellite products. Nevertheless, this simi-
larity among products lessens when analyzing the seasonal
cycle of dry days. Two data groups emerge: one recording
more dry days with less correspondence between different
data products for dry spells vs. wet spells. Indeed, especially
for WS, TRMM, and CMORPH, they are quite close to OK
and BK. This correspondence illustrates the value of com-
bined IR and MO techniques that optimize the advantages
and shortcomings of both types of remote sensing. Never-
theless, for WSC, TRMM maintains its correspondence to
OK and BK unlike CMORPH which tends to be closer to
ERA5 and NCEP. The TRMM onboard radar appears to play
an important role because of its close correspondence to rain
gauges, especially in WS and WSC. Moreover, the WS in-
tensities in TRMM, OK, and BK are often more than double
those of TAMSAT and CHIRPS. This exemplifies the diffi-
culties of satellite datasets which use only infrared sensors.
The reason for this is that cold but non-precipitating cirrus
clouds impact the infrared with very cold temperatures, so
the system sees these clouds as precipitating. Finally, inter-
annual progressions of dry/wet spells were compared. We
noted a slight trend toward DS decrease for the products, as
well as a positive but non-significant WS trend. This insignif-
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icance may be explained by the extremely short durations of
the products available.

This study shows that despite the general correlation
with seasonal precipitation, there is extensive uncertainty
about monitoring extreme dry/wet spells at an intra-seasonal
timescale. Nevertheless, since there is a marked proximity
between TRMM and rain gauges for all dry/wet spell cate-
gories, TRMM may be a prime candidate for extrapolating
these results to other areas of West Africa. Our study re-
veals several potentially important implications, in particu-
lar concerning the judicious choice of datasets to implement
early warning systems (EWSs) integrating a multi-hazard ap-
proach and disaster risk management plus adaptation to a
“hydroclimatic intensity” context. This study also provides
useful information for different hydrological and agronomic
applications by defining a wide range of rainfall metrics.
This may benefit agricultural insurance companies, as well
as stakeholders, by implementing more effective indicators
for considerably improved mitigation measures.
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