Articles | Volume 20, issue 10
https://doi.org/10.5194/nhess-20-2721-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-20-2721-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling volcanic ash aggregation processes and related impacts on the April–May 2010 eruptions of Eyjafjallajökull volcano with WRF-Chem
Sean D. Egan
CORRESPONDING AUTHOR
Department of Chemistry, University of Alaska Fairbanks, Fairbanks,
AK 99775, USA
Martin Stuefer
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Peter W. Webley
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Taryn Lopez
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Catherine F. Cahill
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Marcus Hirtl
Department of Chemical Weather Forecasting, Zentralanstalt für
Meteorologie und Geodynamik (ZAMG), Vienna, 1190, Austria
Related authors
No articles found.
África Barreto, Francisco Quirós, Omaira E. García, Jorge Pereda-de-Pablo, Daniel González-Fernández, Andrés Bedoya-Velásquez, Michael Sicard, Carmen Córdoba-Jabonero, Marco Iarlori, Vincenzo Rizi, Nickolay Krotkov, Simon Carn, Reijo Roininen, Antonio J. Molina-Arias, A. Fernando Almansa, Óscar Álvarez-Losada, Carla Aramo, Juan José Bustos, Romain Ceolato, Adolfo Comerón, Alicia Felpeto, Rosa D. García, Pablo González-Sicilia, Yenny González, Pascal Hedelt, Miguel Hernández, María-Ángeles López-Cayuela, Diego Loyola, Stavros Meletlidis, Constantino Muñoz-Porcar, Ermanno Pietropaolo, Ramón Ramos, Alejandro Rodríguez-Gómez, Roberto Román, Pedro M. Romero-Campos, Martin Stuefer, Carlos Toledano, and Elsworth Welton
EGUsphere, https://doi.org/10.5194/egusphere-2025-3164, https://doi.org/10.5194/egusphere-2025-3164, 2025
Short summary
Short summary
This manuscript describes the instrumental coverage deployed during the Tajogaite eruption (19 September–25 December 2021) by the Instituto Geográfico Nacional (IGN), the Spanish State Meteorological Agency (AEMET), and other Spanish members of ACTRIS (Aerosol, Clouds and Trace Gases Research Infrastructure) to monitor its atmospheric impact. Two complementary methods provide consistent plume height data for future operational surveillance.
Marcus Hirtl, Barbara Scherllin-Pirscher, Martin Stuefer, Delia Arnold, Rocio Baro, Christian Maurer, and Marie D. Mulder
Nat. Hazards Earth Syst. Sci., 20, 3099–3115, https://doi.org/10.5194/nhess-20-3099-2020, https://doi.org/10.5194/nhess-20-3099-2020, 2020
Short summary
Short summary
The paper shows the application of a new volcanic emission preprocessor for the chemical transport model WRF-Chem. The model is evaluated with different observational data sets for the eruption of the Grimsvötn volcano 2011.
Cited articles
Allard, P., Burton, M., Oskarsson, N., Michel, A., and Polacci, M.: Magmatic
gas composition and fluxes during the 2010 Eyjafjallajökull explosive
eruption: implications for degassing magma volumes and volatile sources, in
Geophys. Res. Abstr., 13, 2011.
Angell, J. K.: Comparison of stratospheric warming following Agung, El
Chichon and Pinatubo volcanic eruptions, Geophys. Res. Lett., 20,
715–718, 1993.
Arason, P., Petersen, G. N., and Bjornsson, H.: Observations of the altitude of the volcanic plume during the eruption of Eyjafjallajökull, April–May 2010, Earth Syst. Sci. Data, 3, 9–17, https://doi.org/10.5194/essd-3-9-2011, 2011.
Boichu, M., Menut, L., Khvorostyanov, D., Clarisse, L., Clerbaux, C., Turquety, S., and Coheur, P.-F.: Inverting for volcanic SO2 flux at high temporal resolution using spaceborne plume imagery and chemistry-transport modelling: the 2010 Eyjafjallajökull eruption case study, Atmos. Chem. Phys., 13, 8569–8584, https://doi.org/10.5194/acp-13-8569-2013, 2013.
Bonadonna, C., Genco, R., Gouhier, M., Pistolesi, M., Cioni, R., Alfano, F.,
Hoskuldsson, A., and Ripepe, M.: Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations, J. Geophys. Res.-Sol. Ea., 116, B12202,
https://doi.org/10.1029/2011JB008462, 2011.
Booth, B. and Walker, G. P. L.: Ash Deposits from the New Explosion Crater,
Etna 1971, Philos. T. Roy. Soc. Lond., 274, 147–151, https://doi.org/10.1098/rsta.1973.0034, 1973.
Brown, R. J., Bonadonna, C., and Durant, A. J.: A review of volcanic ash
aggregation, Phys. Chem. Earth Pt. ABC, 45–46, 65–78,
https://doi.org/10.1016/j.pce.2011.11.001, 2012.
Carey, S. N. and Sigurdsson, H.: Influence of particle aggregation on
deposition of distal tephra from the May 18, 1980, eruption of Mount St.
Helens volcano, J. Geophys. Res.-Sol. Ea., 87, 7061–7072,
https://doi.org/10.1029/JB087iB08p07061, 1982.
Casadevall, T. J.: The 1989–1990 eruption of Redoubt Volcano, Alaska:
impacts on aircraft operations, J. Volcanol. Geoth. Res., 62,
301–316, https://doi.org/10.1016/0377-0273(94)90038-8, 1994.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model
with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation
and Sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2,
2001.
Chin, M., Rood, R. B., Lin, S.-J., Müller, J.-F., and Thompson, A. M.:
Atmospheric sulfur cycle simulated in the global model GOCART: Model
description and global properties, J. Geophys. Res., 105, 24671–24687, https://doi.org/10.1029/2000JD900384, 2000.
Cole-Dai, J.: Volcanoes and climate, Wiley Interdiscip. Rev. Clim. Change,
1, 824–839, https://doi.org/10.1002/wcc.76, 2010.
Cornell, W., Carey, S., and Sigurdsson, H.: Computer simulation of transport
and deposition of the campanian Y-5 ash, J. Volcanol. Geoth. Res.,
17, 89–109, https://doi.org/10.1016/0377-0273(83)90063-X, 1983.
Costa, A., Folch, A., and Macedonio, G.: A model for wet aggregation of ash
particles in volcanic plumes and clouds: 1. Theoretical formulation, J. Geophys. Res.-Sol. Ea., 115, B09201, https://doi.org/10.1029/2009JB007175, 2010.
Dekkers, P. J. and Friedlander, S. K.: The Self-Preserving Size Distribution
Theory: I. Effects of the Knudsen Number on Aerosol Agglomerate Growth, J.
Colloid Interface Sci., 248, 295–305, https://doi.org/10.1006/jcis.2002.8212, 2002.
Devenish, B. J., Thomson, D. J., Marenco, F., Leadbetter, S. J., Ricketts,
H., and Dacre, H. F.: A study of the arrival over the United Kingdom in April 2010 of the Eyjafjallajökull ash cloud using ground-based lidar and
numerical simulations, Atmos. Environ., 48, 152–164,
https://doi.org/10.1016/j.atmosenv.2011.06.033, 2012a.
Devenish, B. J., Francis, P. N., Johnson, B. T., Sparks, R. S. J., and
Thomson, D. J.: Sensitivity analysis of dispersion modeling of volcanic ash
from Eyjafjallajökull in May 2010, J. Geophys. Res.-Atmos.,
117, D00U21, https://doi.org/10.1029/2011JD016782, 2012b.
Egan, S. D.: First Release WRF-Chem Aggregation Code (Version v1.0.0), Zenodo, https://doi.org/10.5281/zenodo.3540446, 2019.
Folch, A., Costa, A., and Macedonio, G.: FALL3D: A computational model for
transport and deposition of volcanic ash, Comput. Geosci., 35,
1334–1342, https://doi.org/10.1016/j.cageo.2008.08.008, 2009.
Folch, A., Costa, A., Durant, A., and Macedonio, G.: A model for wet
aggregation of ash particles in volcanic plumes and clouds: 2. Model
application, J. Geophys. Res.-Sol. Ea., 115, B09202,
https://doi.org/10.1029/2009JB007176, 2010.
Folch, A., Costa, A., and Macedonio, G.: FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation, Geosci. Model Dev., 9, 431–450, https://doi.org/10.5194/gmd-9-431-2016, 2016.
Gilbert, J. S. and Lane, S. J.: The origin of accretionary lapilli, Bull.
Volcanol., 56, 398–411, https://doi.org/10.1007/BF00326465, 1994.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Gudmundsson, M. T., Thordarson, T., Höskuldsson, Á., Larsen, G.,
Björnsson, H., Prata, F. J., Oddsson, B., Magnússon, E.,
Högnadóttir, T., Petersen, G. N., Hayward, C. L., Stevenson, J. A.,
and Jónsdóttir, I.: Ash generation and distribution from the
April–May 2010 eruption of Eyjafjallajökull, Iceland, Sci. Rep., 2, 572,
https://doi.org/10.1038/srep00572, 2012.
Harris, A. J. L., Gurioli, L., Hughes, E. E., and Lagreulet, S.: Impact of
the Eyjafjallajökull ash cloud: A newspaper perspective: Impact of the
Eyjafjallajökull Ash Cloud, J. Geophys. Res.-Sol. Ea., 117, B00C08,
https://doi.org/10.1029/2011JB008735, 2012.
Hirtl, M., Stuefer, M., Arnold, D., Grell, G., Maurer, C., Natali, S.,
Scherllin-Pirscher, B., and Webley, P.: The effects of simulating volcanic
aerosol radiative feedbacks with WRF-Chem during the Eyjafjallajökull
eruption, April and May 2010, Atmos. Environ., 198, 194–206,
https://doi.org/10.1016/j.atmosenv.2018.10.058, 2019.
Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with
an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134,
2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
Jacobson, M. Z.: Fundamentals of atmospheric modeling, 2nd Edn., Cambridge
University Press, Cambridge, 2005.
James, M. R., Lane, S. J., and Gilbert, J. S.: Density, construction, and
drag coefficient of electrostatic volcanic ash aggregates, J. Geophys. Res.-Sol. Ea., 108, 2435–2447, https://doi.org/10.1029/2002JB002011, 2003.
Jullien, R. and Botet, R.: Aggregation and fractal aggregates, Ann. Telecomm., 41, 249–331, 1987.
Keiding, J. K. and Sigmarsson, O.: Geothermobarometry of the 2010 Eyjafjallajökull eruption: New constraints on Icelandic magma plumbing
systems, J. Geophys. Res.-Sol. Ea., 117, B00C09, https://doi.org/10.1029/2011JB008829, 2012.
Kristiansen, N. I., Stohl, A., Prata, A. J., Bukowiecki, N., Dacre, H.,
Eckhardt, S., Henne, S., Hort, M. C., Johnson, B. T., Marenco, F.,
Neininger, B., Reitebuch, O., Seibert, P., Thomson, D. J., Webster, H. N.,
and Weinzierl, B.: Performance assessment of a volcanic ash transport model
mini-ensemble used for inverse modeling of the 2010 Eyjafjallajökull
eruption, J. Geophys. Res.-Atmos., 117, D00U11, https://doi.org/10.1029/2011JD016844, 2012.
Lee, C. and Kramer, T. A.: Prediction of three-dimensional fractal
dimensions using the two-dimensional properties of fractal aggregates, Adv.
Colloid Interface Sci., 112, 49–57, https://doi.org/10.1016/j.cis.2004.07.001, 2004.
Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., and Webley, P.:
Lagrangian Modeling of the Atmosphere, American Geophysical Union, https://doi.org/10.1029/GM200, 2012.
Mastin, L. G., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean,
K., Durant, A., Ewert, J. W., Neri, A., Rose, W. I., Schneider, D., Siebert,
L., Stunder, B., Swanson, G., Tupper, A., Volentik, A., and Waythomas, C. F.:
A multidisciplinary effort to assign realistic source parameters to models
of volcanic ash-cloud transport and dispersion during eruptions, J. Volcanol. Geoth. Res., 186, 10–21, https://doi.org/10.1016/j.jvolgeores.2009.01.008, 2009.
Mastin, L. G., Bonadonna, C., Folch, A., Stunder, B. J., Webley, P. W., and
Pavolonis, M. J.: Summary of data on well-documented eruptions for
validation of volcanic ash transport and dispersal models, VHub.org,
available at:
https://vhub.org/resources/4044/download/summary_table_2016.06.11.htm (last access: 19 September 2016), 2014.
Miller, T. P. and Casadevall, T. J.: Volcanic ash hazards to aviation,
Encycl. Volcanoes, 915–930, 2000.
NCAR: NCEP FNL Operational Model Global Tropospheric Analyses, continuing
from July 1999, available at:
https://rda.ucar.edu/datasets/ds083.2/ (last access: 7 February 2019), 2000.
Peckham, S. E., Grell, G., McKeen, S., Barth, M., Pfister, G., Wiedinmyer,
C., Fast, J. D., Gustafson, W. I., Zaveri, R. A., and Easter, R. C.: WRF/Chem Version 3.9 User's Guide, US Department of Commerce, National Oceanic and Atmospheric Administration, Oceanic and Atmospheric Research Laboratories, Global Systems Division, available at:
https://ruc.noaa.gov/wrf/wrf-chem/Users_guide.pdf (last access: 15 August 2019), 2018.
Rose, W. I. and Durant, A. J.: Fine ash content of explosive eruptions, J. Volcanol. Geoth. Res., 186, 32–39, https://doi.org/10.1016/j.jvolgeores.2009.01.010,
2009.
Rose, W. I. and Durant, A. J.: Fate of volcanic ash: Aggregation and
fallout, Geology, 39, 895–896, https://doi.org/10.1130/focus092011.1, 2011.
Schumacher, R. and Schmincke, H.-U.: Models for the origin of accretionary
lapilli, Bull. Volcanol., 56, 626–639, https://doi.org/10.1007/BF00301467, 1995.
Schumann, U., Weinzierl, B., Reitebuch, O., Schlager, H., Minikin, A., Forster, C., Baumann, R., Sailer, T., Graf, K., Mannstein, H., Voigt, C., Rahm, S., Simmet, R., Scheibe, M., Lichtenstern, M., Stock, P., Rüba, H., Schäuble, D., Tafferner, A., Rautenhaus, M., Gerz, T., Ziereis, H., Krautstrunk, M., Mallaun, C., Gayet, J.-F., Lieke, K., Kandler, K., Ebert, M., Weinbruch, S., Stohl, A., Gasteiger, J., Groß, S., Freudenthaler, V., Wiegner, M., Ansmann, A., Tesche, M., Olafsson, H., and Sturm, K.: Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010, Atmos. Chem. Phys., 11, 2245–2279, https://doi.org/10.5194/acp-11-2245-2011, 2011.
Sorem, R. K.: Volcanic ash clusters: Tephra rafts and scavengers, J. Volcanol. Geoth. Res., 13, 63–71, https://doi.org/10.1016/0377-0273(82)90019-1, 1982.
Sparks, R. J. S., Burski, M. I., Carey, S. N., Gilbert, J. S., Glaze, L. S.,
Siquerdsson, H., and Woods, A. W.: Volcanic Plumes, John Wiley and Sons, Sussex, England, 1997.
Stevenson, J. A., Loughlin, S., Rae, C., Thordarson, T., Milodowski, A. E.,
Gilbert, J. S., Harangi, S., Lukács, R., Højgaard, B., Árting,
U., Pyne-O'Donnell, S., MacLeod, A., Whitney, B., and Cassidy, M.: Distal
deposition of tephra from the Eyjafjallajökull 2010 summit eruption, J.
Geophys. Res.-Solid, 117, B00C10, https://doi.org/10.1029/2011JB008904, 2012.
Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The second
generation regional acid deposition model chemical mechanism for regional
air quality modeling, J. Geophys. Res., 95, 16343–16367,
https://doi.org/10.1029/JD095iD10p16343, 1990.
Stohl, A., Prata, A. J., Eckhardt, S., Clarisse, L., Durant, A., Henne, S., Kristiansen, N. I., Minikin, A., Schumann, U., Seibert, P., Stebel, K., Thomas, H. E., Thorsteinsson, T., Tørseth, K., and Weinzierl, B.: Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption, Atmos. Chem. Phys., 11, 4333–4351, https://doi.org/10.5194/acp-11-4333-2011, 2011.
Stuefer, M., Freitas, S. R., Grell, G., Webley, P., Peckham, S., McKeen, S. A., and Egan, S. D.: Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: development and some applications, Geosci. Model Dev., 6, 457–468, https://doi.org/10.5194/gmd-6-457-2013, 2013.
Taddeucci, J., Scarlato, P., Montanaro, C., Cimarelli, C., Bello, E. D.,
Freda, C., Andronico, D., Gudmundsson, M. T., and Dingwell, D. B.:
Aggregation-dominated ash settling from the Eyjafjallajökull volcanic
cloud illuminated by field and laboratory high-speed imaging, Geology,
39, 891–894, https://doi.org/10.1130/G32016.1, 2011.
Thomas, H. E. and Prata, A. J.: Sulphur dioxide as a volcanic ash proxy during the April–May 2010 eruption of Eyjafjallajökull Volcano, Iceland, Atmos. Chem. Phys., 11, 6871–6880, https://doi.org/10.5194/acp-11-6871-2011, 2011.
Thordarson, T. and Self, S.: Atmospheric and environmental effects of the
1783–1784 Laki eruption: A review and reassessment, J. Geophys. Res.-Atmos., 108, AAC 7-1–AAC 7-29, https://doi.org/10.1029/2001JD002042, 2003.
Van Eaton, A. R., Muirhead, J. D., Wilson, C. J., and Cimarelli, C.: Growth
of volcanic ash aggregates in the presence of liquid water and ice: an
experimental approach, Bull. Volcanol., 74, 1963–1984, 2012.
Van Eaton, A. R., Mastin, L. G., Herzog, M., Schwaiger, H. F., Schneider, D.
J., Wallace, K. L., and Clarke, A. B.: Hail formation triggers rapid ash
aggregation in volcanic plumes, Nat. Commun., 6, 7860, https://doi.org/10.1038/ncomms8860, 2015.
Smoluchowski, M.: Mathematical Theory of the Kinetics of the Coagulation of Colloidal Solutions, Zeitschrift für Physikalische Chemie, 19, 129–135, 1917.
Waitt, R. B., Hansen, V. L., Sarna-Wojcicki, A. M., and Wood, S. H.: Proximal
air-fall deposits of eruptions (of Mount St. Helens) between May 24 and
August 7, 1980 – stratigraphy and field sedimentology, US Geol. Surv. Prof.
Pap. 1250, US Geological Surevey, Duluth, Minnesota, MN, 617–628, 1981.
Wallace, K. L., Schaefer, J. R., and Coombs, M. L.: Character, mass,
distribution, and origin of tephra-fall deposits from the 2009 eruption of
Redoubt Volcano, Alaska—Highlighting the significance of particle
aggregation, J. Volcanol. Geoth. Res., 259, 145–169,
https://doi.org/10.1016/j.jvolgeores.2012.09.015, 2013.
Webley, P. W., Steensen, T., Stuefer, M., Grell, G., Freitas, S., and Pavolonis, M.: Analysing the Eyjafjallajökull 2010 eruption using satellite remote sensing, lidar and WRF-Chem dispersion and tracking model, J. Geophys. Res.-Atmos., 117, D00U26, https://doi.org/10.1029/2011JD016817, 2012.
Young, C. L., Sokolik, I. N., and Dufek, J.: Regional radiative impact of volcanic aerosol from the 2009 eruption of Mt. Redoubt, Atmos. Chem. Phys., 12, 3699–3715, https://doi.org/10.5194/acp-12-3699-2012, 2012.
Short summary
The Weather Research Forecasting with Chemistry (WRF-Chem) model was modified to include volcanic ash aggregation. The modified WRF-Chem model was run with and without aggregation, and changes in the model output were measured. Changes in the lifetime of volcanic ash a function of the chosen fractal dimension were quantified. A case study using the 2010 eruptions of Eyjafjallajökull revealed that the aggregation modifications result in tephra fallout and ash concentrations near observed values.
The Weather Research Forecasting with Chemistry (WRF-Chem) model was modified to include...
Altmetrics
Final-revised paper
Preprint