Articles | Volume 20, issue 10
https://doi.org/10.5194/nhess-20-2647-2020
https://doi.org/10.5194/nhess-20-2647-2020
Research article
 | 
06 Oct 2020
Research article |  | 06 Oct 2020

Building hazard maps with differentiated risk perception for flood impact assessment

Punit K. Bhola, Jorge Leandro, and Markus Disse

Related authors

Reducing uncertainties in flood inundation outputs of a two-dimensional hydrodynamic model by constraining roughness
Punit Kumar Bhola, Jorge Leandro, and Markus Disse
Nat. Hazards Earth Syst. Sci., 19, 1445–1457, https://doi.org/10.5194/nhess-19-1445-2019,https://doi.org/10.5194/nhess-19-1445-2019, 2019
Short summary

Related subject area

Hydrological Hazards
Spatiotemporal variability of flash floods and their human impacts in the Czech Republic during the 2001–2023 period
Rudolf Brázdil, Dominika Faturová, Monika Šulc Michalková, Jan Řehoř, Martin Caletka, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 3663–3682, https://doi.org/10.5194/nhess-24-3663-2024,https://doi.org/10.5194/nhess-24-3663-2024, 2024
Short summary
Risk of compound flooding substantially increases in the future Mekong River delta
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024,https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Transferability of machine-learning-based modeling frameworks across flood events for hindcasting maximum river water depths in coastal watersheds
Maryam Pakdehi, Ebrahim Ahmadisharaf, Behzad Nazari, and Eunsaem Cho
Nat. Hazards Earth Syst. Sci., 24, 3537–3559, https://doi.org/10.5194/nhess-24-3537-2024,https://doi.org/10.5194/nhess-24-3537-2024, 2024
Short summary
Floods in the Pyrenees: a global view through a regional database
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024,https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Algorithmically detected rain-on-snow flood events in different climate datasets: a case study of the Susquehanna River basin
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
Nat. Hazards Earth Syst. Sci., 24, 3315–3335, https://doi.org/10.5194/nhess-24-3315-2024,https://doi.org/10.5194/nhess-24-3315-2024, 2024
Short summary

Cited articles

Alfieri, L., Feyen, L., Salamon, P., Thielen, J., Bianchi, A., Dottori, F., and Burek, P.: Modelling the socio-economic impact of river floods in Europe, Nat. Hazards Earth Syst. Sci., 16, 1401–1411, https://doi.org/10.5194/nhess-16-1401-2016, 2016. 
Bartels, J., Seidel, J., Bardossy, A., Bliefernicht, J., Kunstmann, H., Kunstmann, H., Johst, M., and Demuth, N.: Bewertung von Ensemble-Abflussvorhersagen für die operationelle Hochwasserwarnung, Hydrol. Wasserbewirts., 61, 297–310, https://doi.org/10.5675/HyWa_2017,5_1, 2017. 
Bates, P. D., Pappenberger, F., and Romanowicz, R. J.: Uncertainty in Flood Inundation Modelling, in: Applied Uncertainty Analysis for Flood Risk Management, edited by: Beven, K., and Hall, J., Imperial College Press, London, UK, 232–269, ISBN 978-1-78326-312-7, 2014. 
Beg, M. N. A., Leandro, J., Bhola, P., Konnerth, I., Amin, K., Koeck, F., Carvalho, R. F., and Disse, M.: Flood Forecasting with Uncertainty Using a Fully Automated Flood Model Chain: A Case Study for the City of Kulmbach, HIC 2018, in: 13th International Conference on Hydroinformatics, 1–5 July 2018, Palermo, Italy, 2018. 
Bermúdez, M. and Zischg, A. P.: Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling, Nat. Hazards, 92, 1633–1648. https://doi.org/10.1007/s11069-018-3270-7, 2018. 
Download
Short summary
In operational flood risk management, a single best model is used to assess the impact of flooding, which might misrepresent uncertainties in the modelling process. We have used quantified uncertainties in flood forecasting to generate flood hazard maps that were combined based on different exceedance probability scenarios with the purpose to differentiate impacts of flooding and to account for uncertainties in flood hazard maps that can be used by decision makers.
Altmetrics
Final-revised paper
Preprint