Articles | Volume 20, issue 10
https://doi.org/10.5194/nhess-20-2647-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-2647-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Building hazard maps with differentiated risk perception for flood impact assessment
Chair of Hydrology and River Basin Management, Department of Civil,
Geo and Environmental Engineering,
Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany
Jorge Leandro
Chair of Hydrology and River Basin Management, Department of Civil,
Geo and Environmental Engineering,
Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany
Markus Disse
Chair of Hydrology and River Basin Management, Department of Civil,
Geo and Environmental Engineering,
Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany
Related authors
No articles found.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Manuel Rauch, Jan Bliefernicht, and Markus Disse
EGUsphere, https://doi.org/10.5194/egusphere-2025-3836, https://doi.org/10.5194/egusphere-2025-3836, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Evapotranspiration is an integral element of the water availability estimation in tropical regions like West Africa. Climate change is projected to impact the water cycle. In this study, we evaluate the importance of AET (actual evapotranspiration) simulation for future climate impact assessments. We highlight differences if AET is or is not integrated in the model calibration. Our work contributes to the reduction of uncertainties in hydrological climate impact studies.
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025, https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary
Short summary
The glacier-expanded SWAT (Soil Water Assessment Tool) version, SWAT-GL, was tested in four different catchments, highlighting the capabilities of the glacier routine. It was evaluated based on the representation of glacier mass balance, snow cover and glacier hypsometry. The glacier changes over a long timescale could be adequately represented, leading to promising potential future applications in glaciated and high mountain environments and significantly outperforming standard SWAT models.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024, https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Short summary
Evapotranspiration (ET) is computed from the vegetation (plant transpiration) and soil (soil evaporation). In western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented using the leaf area index (LAI). In this study, we evaluate the importance of the LAI for ET calculation. We take a close look at this interaction and highlight its relevance. Our work contributes to the understanding of terrestrial water cycle processes .
Lu Tian, Markus Disse, and Jingshui Huang
Hydrol. Earth Syst. Sci., 27, 4115–4133, https://doi.org/10.5194/hess-27-4115-2023, https://doi.org/10.5194/hess-27-4115-2023, 2023
Short summary
Short summary
Anthropogenic global warming accelerates the drought evolution in the water cycle, increasing the unpredictability of drought. The evolution of drought is stealthy and challenging to track. This study proposes a new framework to capture the high-precision spatiotemporal progression of drought events in their evolutionary processes and characterize their feature further. It is crucial for addressing the systemic risks within the hydrological cycle associated with drought mitigation.
Muhammad Fraz Ismail, Wolfgang Bogacki, Markus Disse, Michael Schäfer, and Lothar Kirschbauer
The Cryosphere, 17, 211–231, https://doi.org/10.5194/tc-17-211-2023, https://doi.org/10.5194/tc-17-211-2023, 2023
Short summary
Short summary
Fresh water from mountainous catchments in the form of snowmelt and ice melt is of critical importance especially in the summer season for people living in these regions. In general, limited data availability is the core concern while modelling the snow and ice melt components from these mountainous catchments. This research will be helpful in selecting realistic parameter values (i.e. degree-day factor) while calibrating the temperature-index models for data-scarce regions.
Cited articles
Alfieri, L., Feyen, L., Salamon, P., Thielen, J., Bianchi, A., Dottori, F., and Burek, P.: Modelling the socio-economic impact of river floods in Europe, Nat. Hazards Earth Syst. Sci., 16, 1401–1411, https://doi.org/10.5194/nhess-16-1401-2016, 2016.
Bartels, J., Seidel, J., Bardossy, A., Bliefernicht, J., Kunstmann, H.,
Kunstmann, H., Johst, M., and Demuth, N.: Bewertung von
Ensemble-Abflussvorhersagen für die operationelle Hochwasserwarnung,
Hydrol. Wasserbewirts., 61, 297–310,
https://doi.org/10.5675/HyWa_2017,5_1, 2017.
Bates, P. D., Pappenberger, F., and Romanowicz, R. J.: Uncertainty in Flood
Inundation Modelling, in: Applied Uncertainty Analysis for Flood Risk
Management, edited by: Beven, K., and Hall, J., Imperial College Press,
London, UK, 232–269, ISBN 978-1-78326-312-7, 2014.
Beg, M. N. A., Leandro, J., Bhola, P., Konnerth, I., Amin, K., Koeck, F.,
Carvalho, R. F., and Disse, M.: Flood Forecasting with Uncertainty Using a
Fully Automated Flood Model Chain: A Case Study for the City of Kulmbach,
HIC 2018, in: 13th International Conference on Hydroinformatics, 1–5 July 2018, Palermo, Italy,
2018.
Bermúdez, M. and Zischg, A. P.: Sensitivity of flood
loss estimates to building representation and flow depth attribution methods
in micro-scale flood modelling, Nat. Hazards, 92, 1633–1648. https://doi.org/10.1007/s11069-018-3270-7, 2018.
Beven, K. and Binley, A.: GLUE: 20 years on, Hydrol. Process., 28,
5897–5918, https://doi.org/10.1002/hyp.10082, 2014.
Beven, K., Leedal, D., and McCarthy, S.: Framework for assessing uncertainty
in fluvial flood risk mapping, CIRIA, London, UK, 58 pp., 2014.
Beven, K., Lamb, R., Leedal, D., and Hunter, N.: Communicating uncertainty
in flood inundation mapping: a case study, Intl. J. River Basin Management,
13, 285–295, https://doi.org/10.1080/15715124.2014.917318, 2015.
Beven, K. J., Almeida, S., Aspinall, W. P., Bates, P. D., Blazkova, S., Borgomeo, E., Freer, J., Goda, K., Hall, J. W., Phillips, J. C., Simpson, M., Smith, P. J., Stephenson, D. B., Wagener, T., Watson, M., and Wilkins, K. L.: Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas, Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018, 2018.
Bhola, P., Leandro, J., and Disse, M.: Framework for Offline Flood
Inundation Forecasts for Two-Dimensional Hydrodynamic Models, Geosciences,
8, 346, https://doi.org/10.3390/geosciences8090346, 2018a.
Bhola, P. K., Nair, B. B., Leandro, J., Rao, S. N., and Disse, M.: Flood
inundation forecasts using validation data generated with the assistance of
computer vision, J. Hydroinform., 21, 240–256, https://doi.org/10.2166/hydro.2018.044,
2018b.
Boelee, L., Lumbroso, D. M., Samuels, P. G., and Cloke, H. L.: Estimation of
uncertainty in flood forecasts – A comparison of methods, J. Flood Risk.
Manag., e12516, https://doi.org/10.1111/jfr3.12516, 2018.
Botzen, W. J. W., Aerts, J. C. J. H., and van den Bergh, J. C. J. M.:
Dependence of flood risk perceptions on socioeconomic and objective risk
factors, Water Res., 45, W10440, https://doi.org/10.1029/2009WR007743,
2009.
Bruen, M., Krahe, P., Zappa, M., Olsson, J., Vehvilainen, B., Kok, K., and
Daamen, K.: Visualizing flood forecasting uncertainty: some current European
EPS platforms – COST731 working group 3, Atmos. Sci. Lett., 11, 92–99,
https://doi.org/10.1002/asl.258, 2010.
Brunner, G. W., United, S., Army, Corps of, E., Institute for Water, R., and
Hydrologic Engineering, C.: HEC-RAS river analysis system: hydraulic
reference manual Version 5.0, US Army Corps of Engineers, Institute for
Water Resources, Hydrologic Engineering Center, Davis, CA, 2016.
Cloke, H. L. and Pappenberger, F.: Ensemble flood forecasting: A review, J.
Hydrol., 375, 613–626, https://doi.org/10.1016/j.jhydrol.2009.06.005, 2009.
Demuth, N. and Rademacher, S.: Chapter 5 – Flood Forecasting in Germany –
Challenges of a Federal Structure and Transboundary Cooperation, in: Flood
Forecasting, edited by: Adams, T. E. and Pagano, T. C., Academic Press,
Boston, 125–151, 2016.
Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913–921, https://doi.org/10.5194/hess-13-913-2009, 2009.
Di Baldassarre, G., Schumann, G., Bates, P. D., Freer, J. E., and Beven, K.
J.: Flood-plain mapping: a critical discussion of deterministic and
probabilistic approaches, Hydrolog. Sci. J., 55, 364–376,
https://doi.org/10.1080/02626661003683389, 2010.
Disse, M., Konnerth, I., Bhola, P. K., and Leandro, J.:
Unsicherheitsabschätzung für die Berechnung von dynamischen
Überschwemmungskarten – Fallstudie Kulmbach, in: Vorsorgender und
nachsorgender Hochwasserschutz: Ausgewählte Beiträge aus der
Fachzeitschrift WasserWirtschaft Band 2, edited by: Heimerl, S., Springer
Fachmedien Wiesbaden, Wiesbaden, 350–357, 2018.
Dotto, C. B. S., Mannina, G., Kleidorfer, M., Vezzaro, L., Henrichs, M.,
McCarthy, D. T., Freni, G., Rauch, W., and Deletic, A.: Comparison of
different uncertainty techniques in urban stormwater quantity and quality
modelling, Water Res., 46, 2545–2558, https://doi.org/10.1016/j.watres.2012.02.009,
2012.
Doyle, E. E. H., Johnston, D. M., Smith, R., and Paton, D.: Communicating
model uncertainty for natural hazards: A qualitative systematic thematic
review, Int. J. Disast. Risk Re., 33, 449–476, https://doi.org/10.1016/j.ijdrr.2018.10.023, 2019.
Dutta, D., Herath, S., and Musiake, K.: A mathematical
model for flood loss estimation, J. Hydrol., 277, 24–49, https://doi.org/10.1016/S0022-1694(03)00084-2, 2003.
European Union: Directive 2007/60/EC of the European Parliament and of the
Council of 23 October 2007 on the assessment and management of flood risks,
2007.
Gebbeken, N., Videkhina, I., Pfeiffer, E., Garsch, M., and Rüdiger, L.:
Risikobewertung und Schutz von baulichen Infrastrukturen bei
Hochwassergefahr, Bautechnik, 93, 199–213, https://doi.org/10.1002/bate.201600003, 2016.
Goerigk, M., Hamacher, H. W., and Kinscherff, A.: Ranking robustness and its
application to evacuation planning, Eur. J. Oper. Res., 264, 837–846, https://doi.org/10.1016/j.ejor.2016.05.037, 2018.
Haag, I. and Bremicker, M.: Möglichkeiten und Grenzen der
Schneesimulation mit dem Hochwasservorhersagemodell LARSIM, Forum für
Hydrol. Wasserbewirts., 33, 47–58, 2013.
Haag, I., Johst, M., Sieber, A., and Bremicher, M.: Guideline for the
Calibration of LARSIM Water Balance Models for operational Application in
Flood Forecasting, LARSIM Entwicklergemeinschaft – Hochwasserzentralen
LUBW, BLfU, LfU RP, HLNUG, BAFU, 2016.
Hagemeier-Klose, M. and Wagner, K.: Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication, Nat. Hazards Earth Syst. Sci., 9, 563–574, https://doi.org/10.5194/nhess-9-563-2009, 2009.
Hammond, M. J., Chen, A. S., Djordjevi, S., Butler, D., and Mark, O.: Urban
flood impact assessment: A state-of-the-art review, Urban Water J., 12,
14–29, https://doi.org/10.1080/1573062X.2013.857421, 2013.
Henonin, J., Russo, B., Mark, O., and Gourbesville, P.: Real-time Urban Flood Forecasting and Modelling – a State of the Art, J. Hydroinform., 15, 717–736, https://doi.org/10.2166/hydro.2013.132, 2013.
Jonkman, S. N., Bockarjova, M., Kok, M., and Bernardini, P.: Integrated
hydrodynamic and economic modelling of flood damage in the Netherlands, Ecol. Econ. 66, 77–90, https://doi.org/10.1016/j.ecolecon.2007.12.022, 2008.
Kauffeldt, A., Wetterhall, F., Pappenberger, F., Salamon, P., and Thielen,
J.: Technical review of large-scale hydrological models for implementation
in operational flood forecasting schemes on continental level, Environ.
Modell. Softw., 75, 68–76, https://doi.org/10.1016/j.envsoft.2015.09.009, 2016.
Kolen, B., Kutschera, G., and Helsloot, I.: A comparison between
the Netherlands and Germany of evacuation in case of extreme
flooding, Urban flood Conference, 26–27 September, Paris, 2010.
Kreibich, H., Seifert, I., Merz, B., and Thieken, A. H.:
Development of FLEMOcs – a new model for the estimation of flood losses in
the commercial sector, Hydrolog. Sci. J., 55, 1302–1314, https://doi.org/10.1080/02626667.2010.529815, 2010.
Krieger, K., Schmitt, T. G., and Illgen, M.: Risikomanagement in der
kommunalen Überflutungsvorsorge nach DWA-Merkblatt M 119, GWF Wasser
Abwasser, 158, 34–39, 2017.
Kuchar, S., Golasowski, M., Vavrik, R., Podhoranyi, M., Sir, B., and
Martinovic, J.: Using High Performance Computing for Online Flood Monitoring
and Prediction, Int. J. Env. Chem. Ecolog. Geolog. Geophy. Eng., 101, 432–437, 2015.
Laurent, S., Hangen-Brodersen, C., Ehret, U., Meyer, I., Moritz, K., Vogelbacher, A., and Holle, F.-K.: Forecast uncertainties in the operational flood forecasting of the Bavarian Danube catchment, in: Hydrological Processes of the Danube River Basin, edited by: Brilly, M., Springer, Dordrecht, Netherlands, 367–387, 2010.
Leandro, J., Leitão, J. P., and de Lima, J. L. M. P.: Quantifying the
uncertainty in the Soil Conservation Service flood hydrographs: a case study
in the Azores Islands, J. Flood Risk. Manag., 6, 279–288, https://doi.org/10.1111/jfr3.12010, 2013.
Leandro, J., Chen, A. S., and Schumann, A.: A 2D parallel diffusive wave
model for floodplain inundation with variable time step (P-DWave), J.
Hydrol., 517, 250–259, https://doi.org/10.1016/j.jhydrol.2014.05.020, 2014.
Leandro, J., Schumann, A., and Pfister, A.: A step towards considering the
spatial heterogeneity of urban key features in urban hydrology flood
modelling, J. Hydrol., 535, 356–365, https://doi.org/10.1016/j.jhydrol.2016.01.060,
2016.
Leedal, D., Neal, J., Beven, K., Young, P., and Bates, P.: Visualization
approaches for communicating real-time flood forecasting level and
inundation information, J. Flood Risk. Manag., 3, 140–150, https://doi.org/10.1111/j.1753-318X.2010.01063.x, 2010.
Luce, A., Haag, I., and Bremicker, M.: Daily discharge forecasting with
operational water-balance models in Baden-Württemberg, Hydrol.
Wasserbewirts., 50, 58–66, 2006.
Ludwig, K. and Bremicker, M.: The water balance model LARSIM: design,
content and applications, Inst. für Hydrologie der Univ., Freiburg i.
Br., User Manual of Software, 2006.
Martins, R., Leandro, J., Chen, A. S., and Djordjević, S.: A comparison
of three dual drainage models: shallow water vs local inertial vs diffusive
wave, J. Hydroinform., 19, 331–348, https://doi.org/10.2166/hydro.2017.075, 2017.
Meyer, V., Scheuer, S., and Haase, D.: A multicriteria approach for flood
risk mapping exemplified at the Mulde river, Germany, Nat. Hazards, 48, 17–39, https://doi.org/10.1007/s11069-008-9244-4, 2009.
Molinari, D., Ballio, F., Handmer, J., and Menoni, S.: On the modeling of
significance for flood damage assessment, Int. J. Disast. Risk Re., 10,
381–391, https://doi.org/10.1016/j.ijdrr.2014.10.009, 2014.
Moya Quiroga, V., Kure, S., Udo, K., and Mano, A.: Application of 2D
numerical simulation for the analysis of the February 2014 Bolivian Amazonia
flood: Application of the new HEC-RAS version 5, RIBAGUA – Rev. Iberoam. Agua, 3, 25–33,
https://doi.org/10.1016/j.riba.2015.12.001, 2016.
Nester, T., Komma, J., Viglione, A., and Blöschl, G.: Flood forecast
errors and ensemble spread – A case study, Water Resour. Res., 48, W10502, https://doi.org/10.1029/2011wr011649, 2012.
Oudin, L., Andréassian, V., Mathevet, T., Perrin, C., and Michel, C.:
Dynamic averaging of rainfall-runoff model simulations from complementary
model parameterizations, Water Resour. Res., 42, W07410, https://doi.org/10.1029/2005wr004636,
2006.
Pappenberger, F. and Beven, K. J.: Ignorance is bliss: Or seven reasons not
to use uncertainty analysis, Water Resour. Res., 42, W05302, https://doi.org/10.1029/2005WR004820, 2006.
Pappenberger, F., Harvey, H., Beven, K., Hall, J., and Meadowcroft, I.:
Decision tree for choosing an uncertainty analysis methodology: a wiki
experiment, Hydrol. Process., 20, 3793–3798, https://doi.org/10.1002/hyp.6541, 2006.
Pappenberger, F., Beven, K. J., Ratto, M., and Matgen, P.: Multi-method
global sensitivity analysis of flood inundation models, Adv. Water Resour.,
31, 1–14, https://doi.org/10.1016/j.advwatres.2007.04.009, 2008.
Patel, D. P., Ramirez, J. A., Srivastava, P. K., Bray, M., and Han, D.:
Assessment of flood inundation mapping of Surat city by coupled 1D/2D
hydrodynamic modeling: a case application of the new HEC-RAS 5, Nat. Hazards,
89, 93–130, https://doi.org/10.1007/s11069-017-2956-6, 2017.
Schanze, J.: A hybrid multi-model approach to river level forecasting, in:
Flood Risk Management: Hazards, Vulnerability and Mitigation Measures,
edited by: Schanze, J., Zeman, E., and Marsalek, J., Flood Risk Management:
Hazards, Vulnerability and Mitigation Measures, Springer Netherlands,
Dordrecht, 1–20, 2006.
See, L. and Openshaw, S.: A hybrid multi-model approach to river level
forecasting, Hydrolog. Sci. J., 45, 523–536, https://doi.org/10.1080/02626660009492354,
2000.
Shamseldin, A. Y., O'Connor, K. M., and Liang, G. C.: Methods for combining
the outputs of different rainfall – runoff models, J. Hydrol., 197, 203–229,
https://doi.org/10.1016/S0022-1694(96)03259-3, 1997.
Shultz, S.: The Extent and Nature of Potential Flood Damage to Commercial
Property Structures in the Midwestern United States, J. Contemp. Water Res.
Educ., 161, 81–91, https://doi.org/10.1111/j.1936-704X.2017.3253.x, 2017.
Thieken, A. H., Müller, M., Kreibich, H., and Merz, B.: Flood damage and
influencing factors: New insights from the August 2002 flood in Germany,
Water Resour. Res., 41, W12430, https://doi.org/10.1029/2005wr004177, 2005.
Thieken, A. H., Olschewski, A., Kreibich, H., Kobsch, S., and Merz, B.:
Development and evaluation of FLEMOps – a new Flood Loss Estimation Model for the private sector, in: Flood Recovery, Innovation and Response I. Flood Recovery, Innovation And Response 2008, London, England, 2–3 July 2008, edited by: Proverbs, D., Brebbia, C. A., and
Penning-Rowsell, E., WIT Press, Southampton, UK, 315–324, 2008.
Thieken, A. H., Bessel, T., Kienzler, S., Kreibich, H., Müller, M., Pisi, S., and Schröter, K.: The flood of June 2013 in Germany: how much do we know about its impacts?, Nat. Hazards Earth Syst. Sci., 16, 1519–1540, https://doi.org/10.5194/nhess-16-1519-2016, 2016.
Todini, E.: Flood Forecasting and Decision Making in the new Millennium,
Where are We?, Water Res. Manag., 31, 3111–3129, https://doi.org/10.1007/s11269-017-1693-7, 2017.
Triglav-Čekada, M. and Radovan, D.: Using volunteered geographical information to map the November 2012 floods in Slovenia, Nat. Hazards Earth Syst. Sci., 13, 2753–2762, https://doi.org/10.5194/nhess-13-2753-2013, 2013.
Uusitalo, L., Lehikoinen, A., Helle, I., and Myrberg, K.: An overview of
methods to evaluate uncertainty of deterministic models in decision support,
Environ. Modell. Softw., 63, 24–31, https://doi.org/10.1016/j.envsoft.2014.09.017,
2015.
Voigt, S., Kemper, T., Riedlinger, T., Kiefl, R., Scholte, K., and Mehl, H.:
Satellite Image Analysis for Disaster and Crisis-Management Support, IEEE T.
Geosci. Remote., 45, 1520–1528, https://doi.org/10.1109/TGRS.2007.895830, 2007.
Wasserwirtschaftsamt Hof: Gebiet des Mains: available at:
https://www.wwa-ho.bayern.de/hochwasser/hochwasserereignisse/januar2011/main/index.htm
(last access: 27 March 2019), 2011.
Weigel, A. P., Liniger, M. A., and Appenzeller, C.: Can multi-model
combination really enhance the prediction skill of probabilistic ensemble
forecasts?, Q. J. Roy. Meteor. Soc., 134, 241–260, https://doi.org/10.1002/qj.210,
2008.
Zarzar, C. M., Hosseiny, H., Siddique, R., Gomez, M., Smith, V., Mejia, A.,
and Dyer, J.: A Hydraulic MultiModel Ensemble Framework for Visualizing
Flood Inundation Uncertainty, J. Am. Water Resour. As., 54, 807–819, https://doi.org/10.1111/1752-1688.12656, 2018.
Zheng, X., Tarboton, D. G., Maidment, D. R., Liu, Y. Y., and Passalacqua,
P.: River Channel Geometry and Rating Curve Estimation Using Height above
the Nearest Drainage, J. Am. Water Resour. As., 54, 785–806, https://doi.org/10.1111/1752-1688.12661, 2018.
Short summary
In operational flood risk management, a single best model is used to assess the impact of flooding, which might misrepresent uncertainties in the modelling process. We have used quantified uncertainties in flood forecasting to generate flood hazard maps that were combined based on different exceedance probability scenarios with the purpose to differentiate impacts of flooding and to account for uncertainties in flood hazard maps that can be used by decision makers.
In operational flood risk management, a single best model is used to assess the impact of...
Altmetrics
Final-revised paper
Preprint