Articles | Volume 19, issue 10
https://doi.org/10.5194/nhess-19-2169-2019
https://doi.org/10.5194/nhess-19-2169-2019
Research article
 | 
08 Oct 2019
Research article |  | 08 Oct 2019

Anomalies of dwellers' collective geotagged behaviors in response to rainstorms: a case study of eight cities in China using smartphone location data

Jiawei Yi, Yunyan Du, Fuyuan Liang, Tao Pei, Ting Ma, and Chenghu Zhou

Related authors

Quantifying unequal urban resilience to rainfall across China from location-aware big data
Jiale Qian, Yunyan Du, Jiawei Yi, Fuyuan Liang, Nan Wang, Ting Ma, and Tao Pei
Nat. Hazards Earth Syst. Sci., 23, 317–328, https://doi.org/10.5194/nhess-23-317-2023,https://doi.org/10.5194/nhess-23-317-2023, 2023
Short summary
Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly
J. Yi, Y. Du, Z. He, and C. Zhou
Ocean Sci., 10, 39–48, https://doi.org/10.5194/os-10-39-2014,https://doi.org/10.5194/os-10-39-2014, 2014
A clustering analysis of eddies' spatial distribution in the South China Sea
J. Yi, Y. Du, X. Wang, Z. He, and C. Zhou
Ocean Sci., 9, 171–182, https://doi.org/10.5194/os-9-171-2013,https://doi.org/10.5194/os-9-171-2013, 2013

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024,https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024,https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024,https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Dynamic response of pile–slab retaining wall structure under rockfall impact
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024,https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024,https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary

Cited articles

Adelekan, I. O.: Vulnerability assessment of an urban flood in Nigeria: Abeokuta flood 2007, Nat. Hazards, 56, 215–231, https://doi.org/10.1007/s11069-010-9564-z, 2011. 
Bagrow, J. P., Wang, D., and Barabási, A.-L.: Collective Response of Human Populations to Large- Scale Emergencies, PLoS One, 6, 1–8, https://doi.org/10.1371/journal.pone.0017680, 2011. 
Barberia, L., Amaro, J., Aran, M., and Llasat, M. C.: The role of different factors related to social impact of heavy rain events: considerations about the intensity thresholds in densely populated areas, Nat. Hazards Earth Syst. Sci., 14, 1843–1852, https://doi.org/10.5194/nhess-14-1843-2014, 2014. 
Cannon, S. H., Gartner, J. E., Wilson, R. C., Bowers, J. C., and Laber, J. L.: Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California, Geomorphology, 96, 250–269, https://doi.org/10.1016/j.geomorph.2007.03.019, 2007. 
Download
Short summary
This paper utilized the advantages of smartphone location data to study human responses to rainstorm disasters. Intense rainstorms disrupt city residents' behaviors as reflected in anomalies of location-based service requests. Anomaly identification from fine-scale smartphone location data facilitates the monitoring of social responses to rainstorms. Residents' collective geotagged behaviors in different cities show different sensitivities to rainstorms.
Altmetrics
Final-revised paper
Preprint