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Abstract. Understanding city residents’ collective geotagged
behaviors (CGTBs) in response to hazards and emergency
events is important in disaster mitigation and emergency re-
sponse. It is a challenge, if not impossible, to directly ob-
serve CGTBs during a real-time matter. This study used the
number of location requests (NLR) data generated by smart-
phone users for a variety of purposes such as map naviga-
tion, car hailing, and food delivery to infer the dynamics of
CGTBs in response to rainstorms in eight Chinese cities. We
examined rainstorms, flooding, and NLR anomalies, as well
as the associations among them, in eight selected cities across
mainland China. The time series NLR clearly reflects cities’
general diurnal rhythm, and the total NLR is moderately
correlated with the total city population. Anomalies of the
NLR were identified at both the city and grid scale using the
Seasonal Hybrid Extreme Studentized Deviate (S-H-ESD)
method. Analysis results demonstrated that the NLR anoma-
lies at the city and grid levels are well associated with rain-
storms, indicating that city residents request more location-
based services (e.g., map navigation, car hailing, food deliv-
ery, etc.) when there is a rainstorm. However, the sensitivity
of the city residents’ collective geotagged behaviors in re-
sponse to rainstorms varies in different cities as shown by
different peak rainfall intensity thresholds. Significant high
peak rainfall intensity tends to trigger city flooding, which
leads to increased location-based requests as shown by posi-
tive anomalies in the time series NLR.

1 Introduction

Global climate change is making rainfall events heavier and
more frequent in many areas. Powerful rainstorms may flood
a city once the rainfall exceeds the discharge capacity of a
city’s drainage system. Inundation of cities’ critical infras-
tructure and populated communities tends to disrupt urban
residents’ social and economic activities and even cause dra-
matic loss of life and property (Papagiannaki et al., 2013;
Spitalar et al., 2014; Liao et al., 2019). Floods nowadays are
the most common type of natural disaster, which poses a seri-
ous threat to the safety of life and property in most countries
(Alexander et al., 2006; Min et al., 2011; Hu et al., 2018).
According to the released survey in the Bulletin of Flood and
Drought Disasters in China, more than 104 cities were struck
by floods in 2017, affecting a population of up to 2.18 million
and causing over USD 2.46 billion in direct economic losses
(China National Climate Center, 2017).

The impacts of a rainstorm are usually evaluated with re-
spect to the interactions among rainfall intensity, population
exposure, urban vulnerability, and the society coping capac-
ity (Spitalar et al., 2014; Papagiannaki et al., 2017). The rain-
fall intensity that may trigger flood disasters has been exten-
sively investigated, and many studies have examined the rela-
tionship between rainfall intensity and social responses (Ruin
et al., 2014; Papagiannaki et al., 2015, 2017). Nowadays the
peak rainfall intensity is widely used to determine the critical
rainfall threshold for issuing flash flood warnings (Cannon et
al., 2007; Diakakis, 2012; Miao et al., 2016).
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The population exposure refers to the spatial domain of
population and properties that would be affected by a rain-
fall hazard (Ruin et al., 2008). A gradual increase in the pro-
portion of the population living in urban areas due to urban-
ization makes more people exposed and vulnerable to urban
flash floods, posing a great challenge to flood risk reduction
(Liao et al., 2019). Vulnerability reduction therefore becomes
critical in urban disaster mitigation. Vulnerability is usu-
ally assessed by comprehensively considering related phys-
ical, social, and environmental factors (Kubal et al., 2009;
Adelekan, 2011; Zhou et al., 2019) and their dynamic char-
acteristics across space and time (Terti et al., 2015).

Coping capacity reflects the ability of a society to han-
dle adverse disaster conditions, and it is one of the most im-
portant things to consider in disaster mitigation (UNISDR,
2015). The coping capacity is usually evaluated by exam-
ining the human behaviors in response to disasters, which
are mainly collected by post-disaster field investigations and
questionnaires (Taylor et al., 2015). Such conventional ap-
proaches only provide limited samples that may not be able
to fully and timely reflect disaster-induced human behaviors.
Recently, researchers have learned the advantages of using
unconventional datasets such as insurance claims (Barberia
et al., 2014), newspapers (Llasat et al., 2009), and emer-
gency operations and calls (Papagiannaki et al., 2015, 2017)
to quantify the coping capacity.

The growing use of smartphones and location-based ser-
vices (LBSs) in recent years has generated massive geospa-
tial data, which could be used to infer collective geotagged
human activities. The geospatial data thus provide a new per-
spective to study normal urban rhythm in regular days (Ratti
et al., 2006; Ma et al., 2019) and abnormal human behaviors
in response to emergencies (Goodchild and Glennon, 2010;
Wang and Taylor, 2014; Kryvasheyeu et al., 2016). Bagrow
et al. (2011) found that the number of phone calls spiked
during earthquakes, blackouts, and storm emergencies. Do-
bra et al. (2015) explored the spatiotemporal variations in
the anomaly patterns caused by different emergencies. Gun-
dogdu et al. (2016) reported that it is possible to identify the
anomalies inflicted by emergencies or non-emergency events
from mobile phone data using a stochastic method. In ad-
dition to the aforementioned applications, more studies are
needed to explore the full potential of the mobile phone data
in terms of revealing human collective behaviors, particularly
in response to hazards and emergencies.

This study explored the urban anomalies and their varia-
tions in response to rainstorms using the number of location
requests (NLR) from smartphone users. We selected eight
representative cities in mainland China to examine how ur-
ban residents response to typical summer rainstorms in dif-
ferent regions. The anomalies of LBS requests caused by
rainstorms were identified using a time series decomposi-
tion method and then described by multiple indices, which
are used to study how rainstorms collectively affect geo-
tagged human behavior. The rest of the paper is organized

Table 1. Statistics of the cities.

Region City Population Footprint Urbanization
(104) area rate (%)

(km2)

Southern China
Haikou 227.21 625 78.21
Zhuhai 176.54 567 89.37

Central China
Hefei 796.50 1927 73.75
Xiangyang 565.40 1817 59.65

Northern China
Lanzhou 372.96 1219 81.02
Hengshui 446.04 2997 50.60

Northeastern Harbin 1092.90 2083 64.50
China Jilin 415.35 704 52.80

as follows. Section 2 introduces the selected cities and the
smartphone NLR dataset. Section 3 presents the anomaly
detection and description methods. Section 4 provides the
analysis results including rainfall statistics, normal rhythms,
and rainstorm-triggered anomalies in the selected cities. Sec-
tion 5 concludes the study and discusses future work.

2 Materials

2.1 Study area

We selected eight representative cities across mainland China
for this study (Fig. 1). Two cities were selected from each re-
gion except northwestern and southwestern China (Table 1).
The eight cities vary significantly with respect to their to-
tal population, footprint areas, and urbanization rate. In this
study, the footprint of a city is composed of the grids that
have an hourly number of location requests no less than the
median of the daily NLR time series of that grid over the
whole month, i.e., the grids with at least one NLR every hour
on average.

Haikou and Zhuhai are located in southern China, which
has mean annual precipitation between 1600 and 3000 mm.
Among the eight cities, Zhuhai is the least-populated city, but
it has the highest urbanization rate. In central China, we se-
lected Hefei and Xiangyang, which have mean annual precip-
itation between 800 and 1600 mm. Two cities, Lanzhou and
Hengshui, were selected from a semi-humid region in north-
ern China with a mean annual precipitation between 400 and
800 mm. Hengshui has the largest footprint area but the low-
est urbanization rate among the cities. Harbin and Jilin are
located in northeastern China. The mean annual precipitation
of Harbin and Jilin ranges from 400 to 800 mm and between
800 and 1600 mm, respectively. Harbin is the most populated
among the eight cities.

2.2 Data collection

The smartphone location data were obtained from the
Tencent big data portal (https://heat.qq.com/, last access:
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Figure 1. A map showing the geographic locations, annual precipitation, and footprints of the eight cities in this study.

2 April 2019). The portal provides location request records
of global smartphone users via the Tencent Maps application
programming interface (API). A location request record is
generated when a smartphone user requests any LBS, which
includes but is not limited to navigation, car hailing, food
and merchandise delivery, or social media check-ins. Table 2
lists the popular LBS applications that collect users’ location
requests. These apps are developed for various purposes, in-
cluding social communication, entertainment video watch-
ing, mobile web browsing, e-commerce trading and shop-
ping, mobile game playing, traveling and transportation, and
so on. Every application has a large group of active users
who request LBSs using a large number of monthly unique
devices across China.

The Tencent big data portal releases the number of loca-
tion requests per a 0.01◦× 0.01◦ regular grid for every 4–
5 min. Compared with other Chinese social media platforms,
Tencent is the most popular one with the largest social com-
munity, which is reported to have nearly 1.1 billion monthly
active users as of 2018 (https://www.tencent.com/en-us/
company.html, last access: 26 August 2019). Ma (2019)
compared the NLR dataset with visitor numbers in a few
places and confirmed that the NLR data are a good proxy for
investigating dynamic population changes. We collected the
NLR data of the grids within the administrative boundaries
of the eight cities from 1 to 31 August 2017.

This study used the Version 05B Global Precipitation Mea-
surement (GPM) Integrated Multi-satellitE Retrievals for
GPM (IMERG) 30 min precipitation dataset (Huffman et al.,
2019), which has a spatial resolution of 0.1◦× 0.1◦. This
dataset has been evaluated and widely used (Wang et al.,
2017; Zhao et al., 2018; Su et al., 2018). The news reports
about the flooding events in the eight cities were mainly col-
lected from the Chinese mainstream online media, including
Xinhuanet, Ecns.cn, Sohu, etc.

3 Methods

3.1 Time series anomaly detection

The smartphone location request record can be represented
by a series of spatial points as follows: {(xi , yi , Tsi )},
i = 1, 2, . . . , n. Each point contains its geographic coordi-
nates (x, y) and a time (T ) when the LBS is requested. The
NLR was then aggregated to time series per grid or per city
as illustrated below.

At the city level, a time series hourly NLR was established
by adding up all location requests from the grids within the
footprint area of that city. The magnitudes of the NLR in
different cities vary significantly due to the different num-
bers of smartphone users. To make the NLR in different
cities comparable, we normalized the NLR using the median-
interquartile normalization method, which is more robust
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Table 2. Common smartphone applications using location-based services.

Applications Types Usages Monthly
unique

devices∗

(billion)

WeChat Mobile messaging app Share location with friends 1.123
Mobile QQ Mobile messaging app Share location with friends 0.706
Tencent Video Mobile video app Upload geotagged videos 0.576
QQ Browser Mobile web browser Receive push notifications about local news and weather 0.450
QQ Music Mobile music app Listen to music while running 0.309
Tencent News Mobile news app Receive push notifications about local news 0.265
JingDong (JOYBUY) Mobile e-commerce platform Receive location-based product recommendations 0.242
Wangzhe Rongyao Mobile game Interact with nearby players 0.142
Dianping Mobile review and rating app Receive location-based recommendations for restaurants, hotels, shops, etc. 0.112
DiDi Mobile transportation platform Hail a car with a location-based request 0.055
Qzone Social network platform Post geotagged microblogs 0.034
Meituan Waimai Mobile on-demand delivery app Receive location-based restaurant recommendations 0.025
∗ The monthly unique devices denote the total number of unique devices that have used the application over a month. The data were collected by the iResearch company in July 2019 (available at
https://index.iresearch.com.cn/app, last access: 26 August 2019).

to anomalies than other common approaches using sample
mean and standard deviation (Geller et al., 2003).

We employed the Seasonal Hybrid Extreme Studentized
Deviate (S-H-ESD) method (Vallis et al., 2014) to detect
anomalies from the time series NLR, which can be repre-
sented by the following additive model:

Ts = T + S+R, (1)

where T , S, and R denote the trend, seasonality, and resid-
ual components in the time series data, respectively. The
S-H-ESD method assumes that the trend and the seasonal-
ity would not be significantly disrupted by rapidly evolv-
ing events that last for only a few hours. Two major steps
are involved in the method. First, it uses the piecewise me-
dian method to fit and remove the long-term trend and then
the seasonal and trend decomposition using locally esti-
mated scatterplot smoothing (STL) to remove seasonality
(Cleveland et al., 1990). Using the STL to remove the long-
term trend would introduce artificial anomalies (Vallis et al.,
2014). In this study, the underlying trend in the time series
NLR is approached using a piecewise combination of the bi-
weekly medians, which show little changes over the whole
time series.

In the second step, the S-H-ESD method employs the Gen-
eralized Extreme Studentized Deviate (GESD) statistic (Ros-
ner, 1975) to identify significant anomalies in the residuals.
The GESD calculates the statistic (G) based on the mean (r)
and the standard deviation (s) of the observations.

G=
max

∣∣rj − r∣∣
s

(2)

Given the upper bound of u suspected anomalies, the GESD
performs u separate tests. In each test, the GESD re-
computes the statistic G after removing the observation rj

that maximizes |rj − r| and then compares G with the criti-
cal value λ as defined below.

λ=
(k− 1)t1−a/(2k),k−2√

λk
(
k− 2+ t21−a/(2k),k−2

) , (3)

where k denotes the number of the observations in the time
series after eliminating a suspected anomaly in the last run,
and tp,d represents the pth percentile of a t distribution with
a d degree of freedom. In this study, we set the signifi-
cance level a to 0.05 and the number of anomalies to no
more than 25 % of the total observations. Each test identi-
fies one anomaly in the residuals when G> λ. The identi-
fied anomaly is either a positive or negative, depending upon
whether the residual is greater or smaller than 0, respectively.

3.2 Anomaly measures and scores

In this study, an individual anomaly is represented with a vec-
tor,

v = (x,y, t,obs, res), (4)

where x and y denote the coordinates of the grid centroid,
t denotes the observation time, and “obs” and “res” denote
the observation and the residual (R in Eq. 1) in the time se-
ries. This study uses an anomaly’s absolute residual to de-
scribe its unusual deviation from its expectation.

A rainstorm disaster, once it significantly impacts the
cities, usually can trigger an outbreak of NLR anomalies in
multiple places across the city. To collectively characterize
the abnormal human responses, this study defines three in-
dices: the total number (Nt), the total residual (Rt), and the
mean density (Dt) of the positive or negative anomalies. The
mean density is defined as follows:
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Dt =

Nt∑
i=1
Bi

Nt
, (5)

where Bi denotes the number of neighborhood anomalies
within a Manhattan distance of a five grid (∼ 5 km) radius
of the ith anomaly. The radius is large enough to cover most
urban facilities nearby the anomaly.

An anomaly score is then defined based on the aforemen-
tioned indices to evaluate the city residents’ responses to a
rainstorm event. First, we surveyed the hourly changes of the
indices and calculated the quartiles (Q1–Q3) and interquar-
tile range (IQR) of each index for every hour every day. The
score of an index is defined by

SV,t =


Vt−Q1

IQR if Vt ≤Q1,

0 if Q1 < Vt <Q3,
Vt−Q3

IQR if Vt ≥Q3,

(6)

where Vt represents one of the three indices at time t . Ac-
cording to Tukey’s fences (Tukey, 1977), the score is consid-
ered an outlier if its absolute value is greater than 1.5 or an
extreme if it is greater than 3. The final anomaly score is the
mean of the three index scores.

3.3 Characterization of a rainfall event

In this study, we examined city residents’ responses to the
rainfall events in August 2017. The national average precipi-
tation of this month is 124.6 mm, which is the highest in 2017
and 21.3 % more than the average precipitation for August in
previous years.

We defined a rainfall event as a precipitation process that
lasts for at least 2 h and with no rain preceding it for at least
1 h. The severity of a rainfall event is described by its du-
ration, accumulated precipitation, and peak rainfall intensity.
The duration refers to how long a rainfall event lasts, and the
accumulated precipitation is the total precipitation received
during a rainfall event. The peak rainfall intensity (Id ) is
widely used to estimate the possible rainfall intensity thresh-
old that triggers city flooding (Cannon et al., 2007; Diakakis,
2012) and is defined as below.

Id =

max

{
j+d−1∑
i=j

Pi

}
d

, j = 1,2, . . . ,N − d + 1, (7)

where Pi denotes the precipitation during the ith time inter-
val,N denotes the total number of the time intervals in a rain-
fall time series, and d denotes the width of the moving time
window that was used to search for the maximum accumu-
lated precipitation in a rainfall event. Based on the peak rain-
fall intensity, the August rainfall events in the eight cities can
be categorized as a moderate rainstorm (0.5 mm h−1 < I1 ≤

4 mm h−1), a heavy rainstorm (4 mm h−1 < I1 ≤ 8 mm h−1),
or a violent rainstorm (I1 ≥ 8 mm h−1).

For the purpose of calculation, we downscaled the precip-
itation data to the same spatial resolution as that of the NLR
using the nearest-neighbor interpolation method. At the city
level, the rainfall of a city is defined as the total of the half-
hour Tropical Rainfall Measuring Mission (TRMM) precipi-
tation within the human footprint. At the grid level, the rain-
fall of each grid refers to the total precipitation received by
that grid within a certain time period.

4 Results

4.1 Rainfall characteristics and peak rainfall intensity
thresholds

The eight cities could be categorized into two groups in terms
of the total precipitation amount in August 2017 (Fig. 2a).
The first group includes Haikou, Zhuhai, and Hefei, with to-
tal precipitation more than 400 mm. The summer monsoon
brings plenty of water to the two coastal cities (i.e., Haikou
and Zhuhai). Typhoon Hato, when it made landfall on 23 Au-
gust, dumped an additional 68 and 108 mm of water on
Haikou and Zhuhai, respectively. By contrast, the inland
city Hefei, received 47.6 % more precipitation in 2017 than
the average mainly due to a few unusual rainstorms in Au-
gust 2017 (Hydrology and Water Resource Bureau of Hefei,
2018).

The second group includes all the other cities, which had
less than 400 mm of precipitation in August 2017. The city
Lanzhou is located in the northwestern China and had the
least precipitation at 250 mm. The two inland cities, Xi-
angyang and Hengshui, both had slightly more precipitation
at 300 mm. The precipitation of the two northeastern cities,
Harbin and Jilin, ranged between 320 and 350 mm and was
mainly brought in by the northwestern vortexes.

There were at least 15 rainstorms and 2 flooding events
in each city. The cities of Haikou, Lanzhou, and Harbin wit-
nessed more than 20 rainstorms and about a quarter of them
caused serious flooding problems. The number of rainstorms
in the other cities ranged from 15 to 20, and about 2 to 4 of
them caused flooding problems in the cities.

We identified the peak rainfall intensity threshold value
that likely triggers city flooding using the method devel-
oped by Cannon et al. (2007) and Diakakis (2012). The
method plots peak the rainfall intensity of different time win-
dows against the corresponding rainfall duration. The flood-
triggering threshold is defined as the upper limit of the peak
rainfall intensity that tends to lead to urban flooding but ac-
tually does not. As shown in Fig. 2b, for the rainfall thresh-
olds calculated based on 0.5, 1, 2, and 3 h time windows, the
city ranking shows no change with an order of Haikou, Jilin,
Hengshui, Zhuhai, Hefei, Lanzhou, Harbin, and Xiangyang.
The ranking shows some fluctuations when the flooding-
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Figure 2. Total precipitation and the frequency of rainfall and city flooding events in August (a). Variations in peak rainfall intensity (circles)
and the flood-triggering precipitation threshold values (lines) are derived from time windows ranging from 0.5 to 24 h (b).

triggering rainfall threshold values were calculated with a
time window of more than 3 h. However, Haikou and Harbin
are always the top two cities, whereas Xiangyang is the last
one on the ranking list. It is worthy to note that a rainstorm
with a peak rainfall intensity over the threshold of 5 mm h−1

would definitely trigger floods in Xiangyang. However, in
Haikou, such a threshold value is 30 mm h−1. In other words,
city flooding would occur in Haikou when it is hit by a rain-
storm with a peak rainfall intensity over 30 mm h−1. In gen-
eral, the difference between the threshold values among these
cities reduces with a longer time window, indicating that the
rainfall in a shorter time window is more critical to evaluate
whether a city is prone to flooding.

4.2 Normal rhythm of the city

The NLR records can serve as a proxy of the city residents’
normal daily routine. The normalized NLR shows that the
eight cities have a similar diurnal rhythm (Fig. 3a). The nor-
malized NLR median climbs from a minimum at around
04:00 LT to a peak right at 12:00 LT. It starts to drop slightly
and then peaks again at around 20:00 LT. This general pattern
reflects the smartphone usage patterns of the city residents.
Phone usage starts to drop after midnight when most resi-
dents start to rest. It reaches its first peak during lunchtime as
residents may request more LBS to find a place to eat. After
lunchtime, phone usage remains at a high plateau, probably
due to more LBS requests for business purposes. Phone us-
age reaches the highest peak of the whole day right after nor-
mal work hours, indicating a significantly increased need for
LBSs such as hailing nearby taxis to socialize with friends or
go back home or sending geotagged posts for socializing.

The general diurnal pattern was superposed with subtle
short-term NLR variations. The NLR in the southern cities
peaks later at night and hits the bottom before dawn, which
is different than in northern cities. This is very likely due to
the different lifestyles between the northern and southern res-
idents in response to economic activities and day length. It is

well-known that southern China is more active in economic
and social activities, and the southerners enjoy night activi-
ties more (Ma et al., 2019). By contrast, the northerners tend
to end their nightlife earlier and also become active earlier,
as the day breaks earlier in the north.

The total NLR is moderately correlated with the popula-
tion of these cities (Fig. 3b). The 0.63 Pearson correlation co-
efficient (with a p value of 0.046) indicates a statistically sig-
nificant positive relationship between the normalized NLR
and the population. As a result, we believe the NLR data
could reflect the collective geotagged behaviors of the city
residents as a whole, and consequently it could serve as a
proxy for human responses to different environmental and
social events.

4.3 Urban anomalies during rainstorms

4.3.1 City-scale analysis

There are more positive than negative anomalies in the Au-
gust time series hourly NLR, and most positive anomalies
were found in a pair with precipitation spikes (Fig. 4). For
example, two significant precipitation spikes in Harbin in the
afternoon of 2 and 3 August were closely associated with
positive NLR anomalies. Few NLR negative anomalies were
identified in the eight cities except Zhuhai. This city was sig-
nificantly affected by Typhoon Hato, which brought a huge
amount of precipitation and led to a negative anomaly begin-
ning the afternoon of 23 August in Zhuhai. Such a significant
negative anomaly could be attributed to a serious communi-
cation interruption or damages caused by the typhoon.

It is noteworthy that both positive and negative anoma-
lies were also identified when there was no rain in the cities.
For example, two positive anomalies were identified around
28 August in Harbin when there was no rain at all. The
no-rain anomalies must have been triggered by other major
events in the cities. However, at this moment it is not easy to
trace what local events may trigger such anomalies.

Nat. Hazards Earth Syst. Sci., 19, 2169–2182, 2019 www.nat-hazards-earth-syst-sci.net/19/2169/2019/
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Figure 3. The diurnal variation patterns of the NLR in the eight cities (a). A positive correlation between the NLR and the total number of
residents (b).

Table 3. A number of different categories regarding rainstorms and their corresponding Rpos and Rneg values.

Rainstorms

No rainfall Moderate Heavy Violent

Cities N Rpos Rneg N Rpos Rneg N Rpos Rneg N Rpos Rneg

Haikou 27 0.04 0.22 14 0.21 0.00 3 0.33 0.00 8 0.75 0.00
Zhuhai 16 0.19 0.25 5 0.20 0.20 3 0.00 0.00 5 0.40 0.40
Hefei 19 0.05 0.32 7 0.00 0.14 2 0.50 1.00 5 0.60 0.60
Xiangyang 15 0.33 0.33 7 0.29 0.00 0 – – 2 1.00 0.00
Lanzhou 29 0.07 0.10 17 0.24 0.06 5 0.20 0.20 0 – –
Hengshui 19 0.00 0.21 11 0.18 0.09 2 0.00 0.00 2 0.50 0.00
Harbin 21 0.24 0.10 7 0.14 0.14 3 1.00 0.00 2 1.00 0.00
Jilin 20 0.15 0.15 10 0.40 0.00 1 1.00 0.00 3 1.00 0.33

Overall 166 0.12 0.20 78 0.22 0.06 19 0.37 0.11 27 0.70 0.22

It is very interesting to note that a couple of no-rain posi-
tive anomalies were identified in the last week of August for
all of the eight selected cities except Zhuhai. These positive
anomalies were obviously not associated with any special
rainstorm events. Instead, they are more likely to be associ-
ated with some sort of nation-wide event, such as college stu-
dents’ back-to-school and move-in events, which are mainly
scheduled in the last week of August every year in China.
Such positive anomalies were not found in Zhuhai, where
the 2017 back-to-school and move-in events were postponed
to the first week of October due to the significant damage
caused by Typhoon Hato. However, further studies, such as
those of the NLR of other cities in China, are needed to con-
solidate this argument.

We further quantitatively examined the association be-
tween rainfall events and the NLR anomalies. Table 3 lists
the Rpos and Rneg, which are the ratios of the positive and
negative anomalies corresponding to the four scenarios (no
rain, moderate, heavy, and violent rainstorm events) to the
total number of anomalies identified over the whole time se-
ries, respectively. As shown in Table 3, in total we identi-
fied 27, 19, 78, and 166 violent, heavy, moderate, and no

rainstorm events in the eight cities, respectively. Under dif-
ferent scenarios, the Rpos is always higher than Rneg except
in the no-rain scenario, in which there is no significant dif-
ference between these two ratios. The rainstorm-related Rpos
increases from 0.22 to 0.70 as the rainstorms level up from
moderate to violent as compared to a no-rain Rpos of 0.12.
The rain-related or no-rain Rneg is no more than 0.22. The
Rpos is much higher than Rneg when the cities are affected by
stronger rainfall events. For example, when the cities are af-
fected by violent storms, the Rpos and Rneg are 0.70 and 0.22,
respectively. By contrast, theRpos andRneg are 0.22 and 0.06,
respectively, when the cities are affected by moderate rain-
storms. It is very likely that, when there are severe rain-
storms, people may send out more LBS requests in order to,
for instance, search a route free of inundation spots and less-
congested roads, order food for delivery, or post geotagged
photos of the terrible moments.

A lower Rpos of the heavy and moderate rainstorms may
also be partly attributed to the effect of data aggregation at
the city scale. It is very common that a rainstorm may in-
fluence only a part of a city and only lead to certain local
positive anomalies. In such a case, an increase of the NLR in
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Figure 4. The time series NLR and rain events during August 2017. Positive and negative anomalies are shown in orange and green,
respectively. The light gray columns show the periods when NLR data are missing.

a small number of grids may not result in significant changes
to the NLR of the entire city and consequently no anoma-
lies at the city level. Analysis at the grid level, as reported in
the next section, would show how residents respond to local
rainstorm events.

The difference between the Rpos and Rneg also varies for
different cities. For example, the two violent rainstorms both
triggered a positive anomaly in Xiangyang and Harbin. By
contrast, the five violent rainstorms in Zhuhai led to the same
percentage of positive and negative anomalies. Hefei is spe-

cial. The same percentage of positive and negative anoma-
lies was triggered by the five violent storms. However, when
Hefei was affected by the moderate and heavy rainstorms or
even no rainfalls, there were slightly more negative than pos-
itive anomalies.

4.3.2 Grid-scale analysis: anomaly indices

The S-H-ESD method was also used to detect the NLR
anomalies at the grid level. There were always more grids
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Figure 5. Grid with negative and positive anomalies within the footprint areas of Haikou and Jilin. The contour lines show the precipitation.

showing anomalies when the city was affected by a rain-
storm. Figure 5 provides an example to illustrate the grids
with an anomaly detected during a rainstorm and the same
time period in another day without rainfall in Jilin and
Haikou, respectively. Anomalies were identified in 56 grids
in Jilin when it was hit by a rainstorm at 07:00 LT on 3 Au-
gust 2017. By contrast, anomalies were observed in only
10 grids during the same time period on 6 August 2017 when
there was no rain at all. In Haikou, anomalies were found in
52 grids during a rainstorm and only 19 grids when there was
no rain.

The total number, total residual, and mean density of these
anomalies were then calculated (Fig. 6) for the cities if they
were affected by flooding caused by a typical rainstorm event
(Table 4). The three anomaly indices show diurnal variations
similar to the NLR diurnal rhythm, and they all spiked to the
level of an outlier or even to an extreme value when the city
was significantly affected by flooding issues.

After the spikes, the anomaly indices usually bounce back
to the same level as before for almost all the cities except
Zhuhai, indicating most cities return to their normal rhythms

Table 4. An exemplary flooding event in each of the cities. All times
are given in the local time zone.

City Urban Rainfall Accumulated Half-hour
flood duration precipitation peak
event (h) (mm) rainfall

intensity
(mm h−1)

Haikou 4 Aug 15:00 10 117 77
Zhuhai 23 Aug 12:50 23 108 32
Hefei 25 Aug 17:00 13 72 25
Xiangyang 7 Aug 18:00 30.5 140 34
Lanzhou 12 Aug 21:00 9.5 14 5
Hengshui 18 Aug 08:00 15 67 18
Harbin 2 Aug 17:00 12.5 61 26
Jilin 3 Aug 07:00 38.5 185 31
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Figure 6. Intra-day variations of the NLR, total residuals, mean density, and anomaly score within 24 h of a typical flooding event in each of
the cities.

after the rainstorm interruption. However, Zhuhai was hit by
the category 3 Typhoon Hato at around 12:50 LT on 23 Au-
gust. The typhoon brought intense rain and strong winds,
and it caused significant flooding issues and damage to the
city infrastructure, causing a sharp decline in the NLR data
and persistent negative anomalies after the landfall of Hato. It
took more than 72 h for the anomaly indices to bounce back
to the same level before Hato (not shown in Fig. 6).

4.3.3 Grid-scale analysis: anomaly score and rainfall
intensity

Given that the anomaly score is indicative of the unusual re-
sponses of residents to rainstorms, we further examined the
relationship between the anomaly score and the rainfalls in
these cities during August 2017.

The grid-levelRpos is much higher than its city-level coun-
terpart with respect to all types of events (Fig. 7a). Such a
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Figure 7. Correlation between peak rainfall intensity and the anomaly score.

difference is mainly due to the different analysis levels. We
can easily identify the local anomalies per grid, which are
more likely to be imperceptible at the city level due to data
aggregation. At the grid level, the Rpos and Rneg also vary
in response to the different levels of rainstorm events. All
cities show a higher Rpos when they are affected by violent
rainstorms (85 %) compared to heavy rainstorms (68 %). The
Rpos values are lower (56 %) when the cities are not affected
by any rainfall events. However, the Rpos of moderate rain-
storms (45 %) is less than the no-rain Rpos, likely suggesting
that low-intensity rainfall events may not necessarily trigger
NLR anomalies, and other factors may contribute to the NLR
anomalies at the grid level.

How easily the rhythm of a city would be disrupted by a
rainstorm is strongly related to the anomaly-triggering peak
rainfall intensity threshold (Fig. 7b), which was calculated
using the same the ideas in the methods developed by Can-
non et al. (2007) and Diakakis (2012). We plotted the peak
rainfall intensity with respect to whether there are anomalies
or not for each city. The anomaly-triggering peak rainfall in-
tensity is defined as the upper limit of the rainfall intensity
that tends to lead to an NLR anomaly but actually does not.

Every rainstorm with its peak intensity higher than the
threshold would definitely trigger an NLR anomaly. As a re-
sult, the cities with a lower threshold tend to be more easily
disrupted by a moderate or heavy rainstorm. For example,
Xiangyang has a very low threshold value of 1.4 mm h−1. In
August 2017, there are six rainstorm events with peak rain-

fall intensity exceeding this threshold, and they all caused
anomalies in this city.

However, even a rainstorm with its peak rainfall inten-
sity below the threshold may also trigger an NLR anomaly.
For example, quite a few NLR anomalies were found in
Lanzhou, of which most rainstorms have their peak rainfall
intensity below the threshold (6.6 mm h−1). This is because a
heavy rainstorm at around 00:00 LT failed to trigger an NLR
anomaly as most people were sheltered at home and hence
were not affected. However, this rainstorm is included in the
process to calculate the peak rainfall intensity and increase
the threshold. As a result, rainstorms with their peak rain-
fall intensity below the threshold may also trigger anoma-
lies, particularly in the cities with more heavy and violent
rainstorms late at night and before dawn.

The anomaly score is correlated with rainfall intensity for
some cities (Fig. 7c). Specifically, three cities, i.e., Harbin,
Jilin, and Haikou, show a statistically significant (p < 0.05)
positive linear relationship between the anomaly score and
rainfall intensity. As the rainfall intensity increases, the
anomaly scores for the three cities increase linearly. Further-
more, the slope coefficients of the correlations indicate how
sensitive the rainfall intensity may trigger anomalies. The
city Harbin has the steepest slope; thus a slight increase in
rainfall intensity would trigger anomalies more easily. By
contrast, the gentlest slope indicates that Haikou is a city
where the residents, in terms of their LBS requests, are not
very sensitive to an increase in rainfall intensity. Such diverse
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sensitivity may be essentially due to the different climatic
conditions, infrastructure levels, or other potential factors in
these cities. The city Haikou is situated in a humid climate
zone with an average precipitation of over 1600 mm yr−1,
which is higher than the other two cities. However, Haikou
has a higher drainpipe density (11.74 km−1) and thus a more
efficient drainage system than the other two (5.73 km−1 for
Jilin and 7.44 km−1 for Haikou).1 As a result, impacts of
rainstorms on the local residents in Haikou are less than those
in the other two cities.

Around 31 %, 23 %, and 46 % of the maximum anomaly
scores were detected before, at the same time, and after
the rainfall intensity reached its peak (Fig. 7d). Specifically,
23 %, 24 %, and 20 % of the anomaly scores peaked simul-
taneously, within 1 h, and within 2 h of the rainfall inten-
sity peaks, respectively. About 46 % of the anomaly scores
peaked after the rainfall intensity peaks, which is 50 % more
than the number of the cases in which anomaly scores peaked
ahead of the rainfall intensity peak. As a result, we usu-
ally see the maximum positive anomalies (i.e., a significant
disturbance in the city rhythm) after the rainfall intensity
reached a maximum value. It is also possible for the anomaly
to reach its peak before the peak of the rainfall intensity if,
for example, the cumulative rainfall is high enough to signif-
icantly impact the city.

5 Conclusions

This study shows the potential of the NLR data to reflect
city residents’ collective geotagged behaviors. First of all,
the NLR was moderately correlated with the population of
the cities. Secondly, the time series NLR data correspond
well to the regular diurnal rhythm in all eight cities, which is
characterized by limited activities from midnight to the early
morning, and very active LBS requests are found from noon
to the evening. Thirdly, the time series NLR also reflects the
different lifestyles in northern and southern China, showing
that southerners enjoy nightlife more, whereas the northern-
ers start their days earlier in the morning.

The anomalies of the NLR data correlate well with rain-
storms, especially the violent ones, in that they were very
likely to trigger positive NLR anomalies at a city level. At
the grid level, the anomalies in response to rainstorms show
a significant increase in the anomaly indices in terms of the
total number, total residual, and mean density. The time se-
ries composite score derived from these three anomaly in-
dices clearly shows how city residents respond to rainstorms
in terms of their LBS requests.

Rainstorms of the same magnitude may not trigger NLR
anomalies in the same way in every city. Essentially, the
peak rainfall intensity of the rainstorms seems to be the key,

1The data are from the 2017 year book of the cities available
at: http://tongji.cnki.net/kns55/Navi/NaviDefault.aspx (last access:
3 October 2019).

and such a threshold is significantly different among different
cities. As a result, high peak rainfall intensity tends to trig-
ger flooding and subsequent anomalies in the NLR data. Fur-
thermore, the peak rainfall intensity is well associated with
the peak anomaly score, further indicating it is the key factor
that can trigger rainstorm-induced NLR anomalies.

It is noteworthy that other events may also contribute to
NLR anomalies. There were a couple of positive anomalies
in the last week of August for all of the cities except Zhuhai.
The last week of August is the school registration time for
college students in China. It is reasonable to expect such a
nation-wide event may trigger NLR anomalies as shown in
this study. However, some college cities may postpone the
registration time, and Zhuhai was one of them due to the
significant damage caused by Typhoon Hato right before the
registration week.

We are also aware of the limitations of the Tencent loca-
tion request dataset. The dataset is generated by more than
one billion monthly active users rather than all the dwellers
in a city. The collective geotagged human activities inferred
from the Tencent dataset may underestimate the rainstorms’
impacts upon infrequent users, particularly the elderly and
children. Our future studies would strive to integrate multi-
source geospatial datasets to address this limitation and fur-
ther explore human responses to various weather events.
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