Articles | Volume 19, issue 7
https://doi.org/10.5194/nhess-19-1319-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-19-1319-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flood risk in a range of spatial perspectives – from global to local scales
Zbigniew W. Kundzewicz
Institute for Disaster Risk Management (iDRM), School of Geographical Sciences, Nanjing University of Information
Science and Technology (NUIST), Nanjing, China
Institute for Agricultural and Forest Environment, Polish Academy
of Sciences, Poznań, Poland
Potsdam Institute for Climate Impact Research, Potsdam, Germany
Buda Su
Institute for Disaster Risk Management (iDRM), School of Geographical Sciences, Nanjing University of Information
Science and Technology (NUIST), Nanjing, China
National Climate Center, China Meteorological Administration,
Beijing, China
Yanjun Wang
CORRESPONDING AUTHOR
Institute for Disaster Risk Management (iDRM), School of Geographical Sciences, Nanjing University of Information
Science and Technology (NUIST), Nanjing, China
Guojie Wang
Institute for Disaster Risk Management (iDRM), School of Geographical Sciences, Nanjing University of Information
Science and Technology (NUIST), Nanjing, China
Guofu Wang
National Climate Center, China Meteorological Administration,
Beijing, China
Jinlong Huang
Institute for Disaster Risk Management (iDRM), School of Geographical Sciences, Nanjing University of Information
Science and Technology (NUIST), Nanjing, China
Institute for Disaster Risk Management (iDRM), School of Geographical Sciences, Nanjing University of Information
Science and Technology (NUIST), Nanjing, China
Related authors
Abdelkader Mezghani, Andreas Dobler, Jan Erik Haugen, Rasmus E. Benestad, Kajsa M. Parding, Mikołaj Piniewski, Ignacy Kardel, and Zbigniew W. Kundzewicz
Earth Syst. Sci. Data, 9, 905–925, https://doi.org/10.5194/essd-9-905-2017, https://doi.org/10.5194/essd-9-905-2017, 2017
Short summary
Short summary
Projected changes estimated from an ensemble of nine model simulations showed that annual means of temperature are expected to increase steadily by 1 °C until 2021–2050 and by 2 °C until 2071–2100 assuming the RCP4.5, which is accelerating assuming the RCP8.5 scenario and can reach up to almost 4 °C by 2071–2100. Similarly to temperature, projected changes in regional annual means of precipitation are expected to increase by 6 to 10 % and by 8 to 16 % for the two future horizons and RCPs.
This article is included in the Encyclopedia of Geosciences
Fred Fokko Hattermann, Shaochun Huang, Olaf Burghoff, Peter Hoffmann, and Zbigniew W. Kundzewicz
Nat. Hazards Earth Syst. Sci., 16, 1617–1622, https://doi.org/10.5194/nhess-16-1617-2016, https://doi.org/10.5194/nhess-16-1617-2016, 2016
Short summary
Short summary
We report that a considerable increase in flood-related losses can be expected in Germany in a future warmer climate. The general significance of the study is supported by the fact that the outcome of an ensemble of global climate models (GCMs) and regional climate models (RCMs) was used as a climate driver for a hydrological model considering more than 3000 river basins in Germany.
This article is included in the Encyclopedia of Geosciences
P. Matczak, J. Lewandowski, A. Choryński, M. Szwed, and Z. W. Kundzewicz
Proc. IAHS, 369, 195–199, https://doi.org/10.5194/piahs-369-195-2015, https://doi.org/10.5194/piahs-369-195-2015, 2015
Z. W. Kundzewicz and P. Matczak
Proc. IAHS, 369, 181–187, https://doi.org/10.5194/piahs-369-181-2015, https://doi.org/10.5194/piahs-369-181-2015, 2015
Z. W. Kundzewicz
Proc. IAHS, 369, 189–194, https://doi.org/10.5194/piahs-369-189-2015, https://doi.org/10.5194/piahs-369-189-2015, 2015
G. Blöschl, A. Bárdossy, D. Koutsoyiannis, Z. W. Kundzewicz, I. Littlewood, A. Montanari, and H. Savenije
Hydrol. Earth Syst. Sci., 18, 2433–2435, https://doi.org/10.5194/hess-18-2433-2014, https://doi.org/10.5194/hess-18-2433-2014, 2014
Zhenjie Li, Buda Su, Jinlong Huang, Peni Hausia Havea, Runhong Xu, Cheng Jing, Yu Gong, and Tong Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1169, https://doi.org/10.5194/egusphere-2024-1169, 2024
Preprint archived
Short summary
Short summary
Use the soil zero-degree layer as an index to investigate the changes in permafrost and the active layer thickness. The observed and projected permafrost and active layer thickness were estimated by the summer, revealed that the active layer thickness is deeper in summer across the Qinghai-Tibetan Plateau. The active layer thickness was increased of 53.9 % during observed period, and it will continue to increase in the future.
This article is included in the Encyclopedia of Geosciences
Jiao Lu, Guojie Wang, Tiexi Chen, Shijie Li, Daniel Fiifi Tawia Hagan, Giri Kattel, Jian Peng, Tong Jiang, and Buda Su
Earth Syst. Sci. Data, 13, 5879–5898, https://doi.org/10.5194/essd-13-5879-2021, https://doi.org/10.5194/essd-13-5879-2021, 2021
Short summary
Short summary
This study has combined three existing land evaporation (ET) products to obtain a single framework of a long-term (1980–2017) daily ET product at a spatial resolution of 0.25° to define the global proxy ET with lower uncertainties. The merged product is the best at capturing dynamics over different locations and times among all data sets. The merged product performed well over a range of vegetation cover scenarios and also captured the trend of land evaporation over different areas well.
This article is included in the Encyclopedia of Geosciences
Xikun Wei, Guojie Wang, Donghan Feng, Zheng Duan, Daniel Fiifi Tawia Hagan, Liangliang Tao, Lijuan Miao, Buda Su, and Tong Jiang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-418, https://doi.org/10.5194/essd-2021-418, 2021
Preprint withdrawn
Short summary
Short summary
In this study, we use the deep learning (DL) method to generate the temperature data for the global land (except Antartica) at higher spatial resolution (0.5 degree) based on 31 different CMIP6 Earth system model(ESM). Our methods can perform bias correction, spatial downscaling and data merging simultaneously. The merged data have a remarkably better quality compared with the individual ESMs in terms of both spatial dimension and time dimension.
This article is included in the Encyclopedia of Geosciences
Chao Gao, Buda Su, Valentina Krysanova, Qianyu Zha, Cai Chen, Gang Luo, Xiaofan Zeng, Jinlong Huang, Ming Xiong, Liping Zhang, and Tong Jiang
Earth Syst. Sci. Data, 12, 387–402, https://doi.org/10.5194/essd-12-387-2020, https://doi.org/10.5194/essd-12-387-2020, 2020
Short summary
Short summary
The study produced the daily discharge time series for the upper Yangtze River basin (Cuntan hydrological station) in the period 1861–2299 under scenarios with and without anthropogenic climate change. The daily discharge was simulated by using four hydrological models (HBV, SWAT, SWIM and VIC) driven by multiple GCM outputs. This dataset could be compared to assess changes in river discharge in the upper Yangtze River basin attributable to anthropogenic climate change.
This article is included in the Encyclopedia of Geosciences
Hongmei Xu, Lüliu Liu, Yong Wang, Sheng Wang, Ying Hao, Jingjin Ma, and Tong Jiang
Hydrol. Earth Syst. Sci., 23, 4219–4231, https://doi.org/10.5194/hess-23-4219-2019, https://doi.org/10.5194/hess-23-4219-2019, 2019
Short summary
Short summary
1.5 and 2 °C have become targets in the discussion of climate change impacts. However, climate research is also challenged to provide more robust information on the impact of climate change at local and regional scales to assist the development of sound scientific adaptation and mitigation measures. This study assessed the impacts and differences of 1.5 and 2.0 °C global warming on basin-scale river runoff by examining four river basins covering a wide hydroclimatic setting in China.
This article is included in the Encyclopedia of Geosciences
Yue Peng, Hong Wang, Yubin Li, Changwei Liu, Tianliang Zhao, Xiaoye Zhang, Zhiqiu Gao, Tong Jiang, Huizheng Che, and Meng Zhang
Atmos. Chem. Phys., 18, 17421–17435, https://doi.org/10.5194/acp-18-17421-2018, https://doi.org/10.5194/acp-18-17421-2018, 2018
Short summary
Short summary
Two surface layer schemes are evaluated in eastern China based on observational flux data. The results indicate that the Li scheme better describes regional atmosphere stratification compared with the MM5 scheme, especially for the transition stage from unstable to stable atmosphere conditions, corresponding to PM2.5 accumulation. Our research suggests the potential improved possibilities for severe haze prediction in eastern China by coupling Li online into atmosphere chemical models.
This article is included in the Encyclopedia of Geosciences
Abdelkader Mezghani, Andreas Dobler, Jan Erik Haugen, Rasmus E. Benestad, Kajsa M. Parding, Mikołaj Piniewski, Ignacy Kardel, and Zbigniew W. Kundzewicz
Earth Syst. Sci. Data, 9, 905–925, https://doi.org/10.5194/essd-9-905-2017, https://doi.org/10.5194/essd-9-905-2017, 2017
Short summary
Short summary
Projected changes estimated from an ensemble of nine model simulations showed that annual means of temperature are expected to increase steadily by 1 °C until 2021–2050 and by 2 °C until 2071–2100 assuming the RCP4.5, which is accelerating assuming the RCP8.5 scenario and can reach up to almost 4 °C by 2071–2100. Similarly to temperature, projected changes in regional annual means of precipitation are expected to increase by 6 to 10 % and by 8 to 16 % for the two future horizons and RCPs.
This article is included in the Encyclopedia of Geosciences
Hemin Sun, Tong Jiang, Cheng Jing, Buda Su, and Guojie Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-566, https://doi.org/10.5194/hess-2016-566, 2017
Revised manuscript not accepted
Short summary
Short summary
Unlike previous studies, we focused on the return level variation caused not only by the choice of distribution functions, but also by the different sampling and parameterization methods. It was found that estimated return levels based on the various approaches were very large, and the contributions of different sources to uncertainties were not same for discharges with and without significant trend. These findings are meaningful for hydraulic designing and risk management practices.
This article is included in the Encyclopedia of Geosciences
Fred Fokko Hattermann, Shaochun Huang, Olaf Burghoff, Peter Hoffmann, and Zbigniew W. Kundzewicz
Nat. Hazards Earth Syst. Sci., 16, 1617–1622, https://doi.org/10.5194/nhess-16-1617-2016, https://doi.org/10.5194/nhess-16-1617-2016, 2016
Short summary
Short summary
We report that a considerable increase in flood-related losses can be expected in Germany in a future warmer climate. The general significance of the study is supported by the fact that the outcome of an ensemble of global climate models (GCMs) and regional climate models (RCMs) was used as a climate driver for a hydrological model considering more than 3000 river basins in Germany.
This article is included in the Encyclopedia of Geosciences
Michel Wortmann, Tobias Bolch, Valentina Krysanova, and Su Buda
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-272, https://doi.org/10.5194/hess-2016-272, 2016
Revised manuscript not accepted
P. Matczak, J. Lewandowski, A. Choryński, M. Szwed, and Z. W. Kundzewicz
Proc. IAHS, 369, 195–199, https://doi.org/10.5194/piahs-369-195-2015, https://doi.org/10.5194/piahs-369-195-2015, 2015
Z. W. Kundzewicz and P. Matczak
Proc. IAHS, 369, 181–187, https://doi.org/10.5194/piahs-369-181-2015, https://doi.org/10.5194/piahs-369-181-2015, 2015
Z. W. Kundzewicz
Proc. IAHS, 369, 189–194, https://doi.org/10.5194/piahs-369-189-2015, https://doi.org/10.5194/piahs-369-189-2015, 2015
C. Rumbaur, N. Thevs, M. Disse, M. Ahlheim, A. Brieden, B. Cyffka, D. Duethmann, T. Feike, O. Frör, P. Gärtner, Ü. Halik, J. Hill, M. Hinnenthal, P. Keilholz, B. Kleinschmit, V. Krysanova, M. Kuba, S. Mader, C. Menz, H. Othmanli, S. Pelz, M. Schroeder, T. F. Siew, V. Stender, K. Stahr, F. M. Thomas, M. Welp, M. Wortmann, X. Zhao, X. Chen, T. Jiang, J. Luo, H. Yimit, R. Yu, X. Zhang, and C. Zhao
Earth Syst. Dynam., 6, 83–107, https://doi.org/10.5194/esd-6-83-2015, https://doi.org/10.5194/esd-6-83-2015, 2015
G. Blöschl, A. Bárdossy, D. Koutsoyiannis, Z. W. Kundzewicz, I. Littlewood, A. Montanari, and H. Savenije
Hydrol. Earth Syst. Sci., 18, 2433–2435, https://doi.org/10.5194/hess-18-2433-2014, https://doi.org/10.5194/hess-18-2433-2014, 2014
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Temporal dynamic vulnerability – impact of antecedent events on residential building losses to wind storm events in Germany
Verifying the relationships among the variabilities of summer rainfall extremes over Japan in the d4PDF climate ensemble, Pacific sea surface temperature, and monsoon activity
Tree fall along railway lines: modelling the impact of wind and other meteorological factors
The probabilistic skill of extended-range heat wave forecasts over Europe
An appraisal of the value of simulated weather data for quantifying coastal flood hazard in the Netherlands
Insights into thunderstorm characteristics from geostationary lightning jump and dive observations
The unique features in the 4 d widespread extreme rainfall event over North China in July 2023
Classifying extratropical cyclones and their impact on Finland's electricity grid: insights from 92 damaging windstorms
Evaluation of machine learning approaches for large-scale agricultural drought forecasts to improve monitoring and preparedness in Brazil
Soil moisture–atmosphere coupling strength over central Europe in the recent warming climate
A data-driven framework for assessing climatic impact drivers in the context of food security
Soil conditioner mixtures as an agricultural management alternative to mitigate drought impacts: a proof of concept
Insights from hailstorm track analysis in European climate change simulations
Extreme heat and mortality in the State of Rio de Janeiro in the 2023/24 season: attribution to climate change and ENSO
Compound winter low-wind and cold events impacting the French electricity system: observed evolution and role of large-scale circulation
Probabilistic hazard analysis of the gas emission of Mefite d'Ansanto, southern Italy
Are heavy-rainfall events a major trigger of associated natural hazards along the German rail network?
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
The record-breaking precipitation event of December 2022 in Portugal
Compound events in Germany in 2018: drivers and case studies
Indirect assimilation of radar reflectivity data with an adaptive hydrometer retrieval scheme for the short-term severe weather forecasts
Assimilation of temperature and relative humidity observations from personal weather stations in AROME-France
The anomalously thundery month of June 1925 in southwest Spain: description and synoptic analysis
Spatial identification of regions exposed to multi-hazards at the pan-European level
Classification of North Atlantic and European extratropical cyclones using multiple measures of intensity
Subseasonal forecasts of heat waves in West African cities
Impacts on and damage to European forests from the 2018–2022 heat and drought events
Brief communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Examining the Eastern European extreme summer temperatures of 2023 from a long-term perspective: the role of natural variability vs. anthropogenic factors
How well are hazards associated with derechos reproduced in regional climate simulations?
Is considering runs (in)consistency so useless for weather forecasting?
Reconstructing hail days in Switzerland with statistical models (1959–2022)
Exploring the interplay between observed warming, atmospheric circulation, and soil-atmosphere feedbacks on heatwaves in a temperate mountain region
High-Resolution Data Assimilation for Two Maritime Extreme Weather Events: A comparison between 3DVar and EnKF
Reask UTC: a machine learning modeling framework to generate climate connected tropical cyclone event sets globally
Historical changes in drought characteristics and its impact on vegetation cover over Madagascar
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
This article is included in the Encyclopedia of Geosciences
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Invited perspectives: Thunderstorm Intensification from Mountains to Plains
Intense rains in Israel associated with the train effect
Review article: The growth in compound weather events research in the decade since SREX
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Impact-based temporal clustering of multiple meteorological hazard types in southwestern Germany
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
The ability of a stochastic regional weather generator to reproduce heavy precipitation events across scales
Surprise floods: the role of our imagination in preparing for disasters
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Andreas Trojand, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 25, 2331–2350, https://doi.org/10.5194/nhess-25-2331-2025, https://doi.org/10.5194/nhess-25-2331-2025, 2025
Short summary
Short summary
The study investigates how the intensity of previous windstorm events and the time between two events affect the vulnerability of residential buildings in Germany. By analyzing 23 years of data, it was found that higher intensity of previous events generally reduces vulnerability in subsequent storms, while shorter intervals between events increase vulnerability. The results emphasize the approach of considering vulnerability in risk assessments as temporally dynamic.
This article is included in the Encyclopedia of Geosciences
Shao-Yi Lee, Sicheng He, and Tetsuya Takemi
Nat. Hazards Earth Syst. Sci., 25, 2225–2253, https://doi.org/10.5194/nhess-25-2225-2025, https://doi.org/10.5194/nhess-25-2225-2025, 2025
Short summary
Short summary
The authors performed verification on the relationships between extreme monsoon rainfall over Japan and Pacific sea surface temperature variability in the “database for Policy Decision-making for Future climate changes” (d4PDF). Observations showed widespread weak relationships between hourly extremes and the warming mode but reversed relationships between daily extremes and the decadal variability mode. Biases in d4PDF could be explained by the monsoon's slower movement over Japan in the model.
This article is included in the Encyclopedia of Geosciences
Rike Lorenz, Nico Becker, Barry Gardiner, Uwe Ulbrich, Marc Hanewinkel, and Benjamin Schmitz
Nat. Hazards Earth Syst. Sci., 25, 2179–2196, https://doi.org/10.5194/nhess-25-2179-2025, https://doi.org/10.5194/nhess-25-2179-2025, 2025
Short summary
Short summary
Tree fall events have an impact on forests and transport systems. Our study explored tree fall in relation to wind and other weather conditions. We used tree fall data along railway lines and ERA5 and radar meteorological data to build a logistic regression model. We found that high and prolonged wind speeds, wet conditions, and high air density increase tree fall risk. These factors might change in the changing climate, which in return will change risks for trees, forests and transport.
This article is included in the Encyclopedia of Geosciences
Natalia Korhonen, Otto Hyvärinen, Virpi Kollanus, Timo Lanki, Juha Jokisalo, Risto Kosonen, David S. Richardson, and Kirsti Jylhä
Nat. Hazards Earth Syst. Sci., 25, 1865–1879, https://doi.org/10.5194/nhess-25-1865-2025, https://doi.org/10.5194/nhess-25-1865-2025, 2025
Short summary
Short summary
The skill of hindcasts from the European Centre for Medium-Range Weather Forecasts in forecasting heat wave days, defined as periods with the 5 d moving average temperature exceeding its local summer 90th percentile over Europe 1 to 4 weeks ahead, is examined. Forecasts of heat wave days show potential for warning of heat risk 1 to 2 weeks in advance and enhanced accuracy in forecasting prolonged heat waves up to 3 weeks ahead, when the heat wave had already begun before forecast issuance.
This article is included in the Encyclopedia of Geosciences
Cees de Valk and Henk van den Brink
Nat. Hazards Earth Syst. Sci., 25, 1769–1788, https://doi.org/10.5194/nhess-25-1769-2025, https://doi.org/10.5194/nhess-25-1769-2025, 2025
Short summary
Short summary
Estimates of the risk posed by rare and catastrophic weather events are often derived from relatively short measurement records, which renders them highly uncertain. We investigate if (and by how much) this uncertainty can be reduced by making use of large datasets of simulated weather. More specifically, we focus on coastal flood hazard in the Netherlands and on the challenge of estimating the once in 10 million years coastal water level and wind stress as accurately as possible.
This article is included in the Encyclopedia of Geosciences
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025, https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary
Short summary
This study provides detailed insight into the thunderstorm characteristics associated with abrupt changes in the lightning activity of a thunderstorm – lightning jumps (LJs) and lightning dives (LDs) – using geostationary satellite observations. Thunderstorms exhibiting one or multiple LJs or LDs feature characteristics similar to severe thunderstorms. Storms with multiple LJs contain strong convective updrafts and are prone to produce high rain rates, large hail, or tornadoes.
This article is included in the Encyclopedia of Geosciences
Jinfang Yin, Feng Li, Mingxin Li, Rudi Xia, Xinghua Bao, Jisong Sun, and Xudong Liang
Nat. Hazards Earth Syst. Sci., 25, 1719–1735, https://doi.org/10.5194/nhess-25-1719-2025, https://doi.org/10.5194/nhess-25-1719-2025, 2025
Short summary
Short summary
A persistent severe rainfall event occurred over North China in July 2023, which was regarded as one of the most extreme episodes globally during that year. The extreme rainfall was significantly underestimated by forecasters at that time. Flooding from this event affected 1.3 million people, causing severe human casualties and economic losses. We examined the convective initiation and subsequent persistent heavy rainfall based on simulations with the Weather Research and Forecasting model.
This article is included in the Encyclopedia of Geosciences
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and Victoria Anne Sinclair
Nat. Hazards Earth Syst. Sci., 25, 1697–1717, https://doi.org/10.5194/nhess-25-1697-2025, https://doi.org/10.5194/nhess-25-1697-2025, 2025
Short summary
Short summary
We present a classification method for extratropical cyclones and windstorms and show their impacts on Finland's electricity grid by analysing the 92 most damaging windstorms (2005–2018). The south-west- and north-west-arriving windstorms cause the most damage to the power grid. The most relevant parameters for damage are the wind gust speed and extent of wind gusts. Windstorms are more frequent and damaging in autumn and winter, but weaker wind speeds in summer also cause significant damage.
This article is included in the Encyclopedia of Geosciences
Joseph W. Gallear, Marcelo Valadares Galdos, Marcelo Zeri, and Andrew Hartley
Nat. Hazards Earth Syst. Sci., 25, 1521–1541, https://doi.org/10.5194/nhess-25-1521-2025, https://doi.org/10.5194/nhess-25-1521-2025, 2025
Short summary
Short summary
In Brazil, drought is of national concern and can have major consequences for agriculture. Here, we determine how to develop forecasts for drought stress on vegetation health using machine learning. Results aim to inform future developments in operational drought monitoring at the National Centre for Monitoring and Early Warning of Natural Disasters (CEMADEN) in Brazil. This information is essential for disaster preparedness and planning of future actions to support areas affected by drought.
This article is included in the Encyclopedia of Geosciences
Thomas Schwitalla, Lisa Jach, Volker Wulfmeyer, and Kirsten Warrach-Sagi
Nat. Hazards Earth Syst. Sci., 25, 1405–1424, https://doi.org/10.5194/nhess-25-1405-2025, https://doi.org/10.5194/nhess-25-1405-2025, 2025
Short summary
Short summary
During recent decades, Europe has experienced increasing periods of severe drought and heatwave. To provide an overview of how land-surface conditions shape land–atmosphere (LA) coupling, the interannual LA coupling strength variability for the summer seasons of 1991–2022 is investigated by means of ERA5 data. The results clearly reflect ongoing climate change by a shift in the coupling relationships towards reinforced heating and drying by the land surface.
This article is included in the Encyclopedia of Geosciences
Marcos Roberto Benso, Roberto Fray Silva, Gabriela Chiquito Gesualdo, Antonio Mauro Saraiva, Alexandre Cláudio Botazzo Delbem, Patricia Angélica Alves Marques, José Antonio Marengo, and Eduardo Mario Mendiondo
Nat. Hazards Earth Syst. Sci., 25, 1387–1404, https://doi.org/10.5194/nhess-25-1387-2025, https://doi.org/10.5194/nhess-25-1387-2025, 2025
Short summary
Short summary
This study applies climate extreme indices to assess climate risks to food security. Using an explainable machine learning analysis, key climate indices affecting maize and soybean yields in Brazil were identified. Results reveal the temporal sensitivity of these indices and critical yield loss thresholds, informing policy and adaptation strategies.
This article is included in the Encyclopedia of Geosciences
Juan F. Dueñas, Edda Kunze, Huiying Li, and Matthias C. Rillig
Nat. Hazards Earth Syst. Sci., 25, 1377–1386, https://doi.org/10.5194/nhess-25-1377-2025, https://doi.org/10.5194/nhess-25-1377-2025, 2025
Short summary
Short summary
We investigated the potential of adding mixtures composed of minimum dosages of several popular amendment types to soil. Our goal was to increase the resistance of agricultural soil to drought stress. We found that adding mixtures of three to five amendment types increased the capacity of soil to retain water, reduced soil erosion, and increased fungal abundance while buffering soil from drastic changes in pH. More research is encouraged to validate this approach.
This article is included in the Encyclopedia of Geosciences
Killian P. Brennan, Iris Thurnherr, Michael Sprenger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2025-918, https://doi.org/10.5194/egusphere-2025-918, 2025
Short summary
Short summary
Hailstorms can cause severe damage to homes, crops, and infrastructure. Using high-resolution climate simulations, we tracked thousands of hailstorms across Europe to study future changes. Large hail will become more frequent, hail-covered areas will expand, and extreme hail combined with heavy rain will double. These shifts could increase risks for communities and businesses, highlighting the need for better preparedness and adaptation.
This article is included in the Encyclopedia of Geosciences
Soledad Collazo, David Barriopedro, Ricardo García-Herrera, and Santiago Beguería
EGUsphere, https://doi.org/10.5194/egusphere-2025-792, https://doi.org/10.5194/egusphere-2025-792, 2025
Short summary
Short summary
In the 2023/24 season, Rio de Janeiro experienced record-breaking heatwaves linked to climate change and El Niño. Our study shows global warming made these extreme temperatures at least 2°C hotter than in pre-industrial times. Heat-related deaths surged, with climate change contributing to 1 in 3 fatalities during the peak event. Without adaptation, future heatwaves will claim even more lives. This underscores the urgent need for policies to mitigate climate impacts from escalating heat threats.
This article is included in the Encyclopedia of Geosciences
François Collet, Margot Bador, Julien Boé, Laurent Dubus, and Bénédicte Jourdier
Nat. Hazards Earth Syst. Sci., 25, 843–856, https://doi.org/10.5194/nhess-25-843-2025, https://doi.org/10.5194/nhess-25-843-2025, 2025
Short summary
Short summary
Our aim is to characterize the observed evolution of compound winter low-wind and cold events impacting the French electricity system. The frequency of compound events exhibits a decrease over the 1950–2022 period, which is likely due to a decrease in cold days. Large-scale atmospheric circulation is an important driver of compound event occurrence and has likely contributed to the decrease in cold days, while we cannot draw conclusions on its influence on the decrease in compound events.
This article is included in the Encyclopedia of Geosciences
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025, https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Short summary
We present results of non-volcanic-gas (CO2) hazard assessment at the Mefite d’Ansanto area (Italy) where a cold-gas stream, which has already been lethal to humans and animals, forms in the valleys surrounding the emission zone. We took the uncertainty related to the gas emission and meteorological conditions into account. Results include maps of CO2 concentrations at defined probability levels and the probability of overcoming specified CO2 concentrations over specified time intervals.
This article is included in the Encyclopedia of Geosciences
Sonja Szymczak, Frederick Bott, Vigile Marie Fabella, and Katharina Fricke
Nat. Hazards Earth Syst. Sci., 25, 683–707, https://doi.org/10.5194/nhess-25-683-2025, https://doi.org/10.5194/nhess-25-683-2025, 2025
Short summary
Short summary
We investigate the correlation between heavy-rainfall events and three associated natural hazards along the German rail network using GIS analyses and random-effects logistic models. The results show that 23 % of floods, 14 % of gravitational mass movements, and 2 % of tree fall events between 2017 and 2020 occurred after a heavy-rainfall event, and the probability of occurrence of flood and tree fall events significantly increased. This study contributes to more resilient rail transport.
This article is included in the Encyclopedia of Geosciences
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 25, 675–682, https://doi.org/10.5194/nhess-25-675-2025, https://doi.org/10.5194/nhess-25-675-2025, 2025
Short summary
Short summary
Extreme rainfall comprises a major hydrohazard for New Zealand and is commonly associated with atmospheric rivers – narrow plumes of very high atmospheric moisture transport. Here, we focus on improved forecasting of these events by testing a forecasting tool previously applied to similar situations in western Europe. However, our results for New Zealand suggest the performance of this forecasting tool may vary depending on geographical setting.
This article is included in the Encyclopedia of Geosciences
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci., 25, 609–623, https://doi.org/10.5194/nhess-25-609-2025, https://doi.org/10.5194/nhess-25-609-2025, 2025
Short summary
Short summary
We investigate the synoptic evolution associated with the occurrence of an atmospheric river that led to a 24 h record-breaking extreme precipitation event (120.3 mm) in Lisbon, Portugal, on 13 December 2022. The synoptic background allowed the formation, on 10 December, of an atmospheric river associated with a deep extratropical cyclone and with a high moisture content and an inflow of moisture, due to the warm conveyor belt, throughout its life cycle. The system made landfall on 12 December.
This article is included in the Encyclopedia of Geosciences
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
This article is included in the Encyclopedia of Geosciences
Lixin Song, Feifei Shen, Zhixin He, Dongmei Xu, Aiqing Shu, and Jiajun Chen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-203, https://doi.org/10.5194/nhess-2024-203, 2025
Revised manuscript accepted for NHESS
Short summary
Short summary
When retrieving hydrometeors from reflectivity, there are two methods to allocate hydrometeor types: temperature-based and background hydrometer-dependent schemes. The temperature-based method divides hydrometeor proportions based on the background temperature, while the other scheme calculates average weights of each hydrometeor in various reflectivity intervals from background fields. The blending scheme adaptively combines these methods and is found to improve precipitation forecast accuracy.
This article is included in the Encyclopedia of Geosciences
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 25, 429–449, https://doi.org/10.5194/nhess-25-429-2025, https://doi.org/10.5194/nhess-25-429-2025, 2025
Short summary
Short summary
The use of numerical weather prediction models enables the forecasting of hazardous weather situations. The incorporation of new temperature and relative humidity observations from personal weather stations into the French limited-area model is evaluated in this study. This leads to the improvement of the associated near-surface variables of the model during the first hours of the forecast. Examples are provided for a sea breeze case during a heatwave and a fog episode.
This article is included in the Encyclopedia of Geosciences
Francisco Javier Acero, Manuel Antón, Alejandro Jesús Pérez Aparicio, Nieves Bravo-Paredes, Víctor Manuel Sánchez Carrasco, María Cruz Gallego, José Agustín García, Marcelino Núñez, Irene Tovar, Javier Vaquero-Martínez, and José Manuel Vaquero
Nat. Hazards Earth Syst. Sci., 25, 305–320, https://doi.org/10.5194/nhess-25-305-2025, https://doi.org/10.5194/nhess-25-305-2025, 2025
Short summary
Short summary
The month of June 1925 was found to be exceptional in the southwest interior of the Iberian Peninsula due to the large number of thunderstorms and their significant impacts, with serious losses of human lives and material resources. We analyzed this event from different, complementary perspectives: reconstruction of the history of the events from newspapers, study of monthly meteorological variables of the longest series available, and the analysis of the meteorological synoptic situation.
This article is included in the Encyclopedia of Geosciences
Tiberiu-Eugen Antofie, Stefano Luoni, Aloïs Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci., 25, 287–304, https://doi.org/10.5194/nhess-25-287-2025, https://doi.org/10.5194/nhess-25-287-2025, 2025
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hotspots) and meta-analysis in order to identify the regions at a European level at risk of multi-hazards. The findings point out the socioeconomic dimension as a determining factor in the potential risk of multi-hazards. The outcome provides valuable input for the disaster risk management policy support and will assist national authorities on the implementation of a multi-hazard approach in national risk assessment preparation.
This article is included in the Encyclopedia of Geosciences
Joona Cornér, Clément Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria A. Sinclair
Nat. Hazards Earth Syst. Sci., 25, 207–229, https://doi.org/10.5194/nhess-25-207-2025, https://doi.org/10.5194/nhess-25-207-2025, 2025
Short summary
Short summary
Classification reduces the considerable variability between extratropical cyclones (ETCs) and thus simplifies studying their representation in climate models and changes in the future climate. In this paper we present an objective classification of ETCs using measures of ETC intensity. This is motivated by the aim of finding a set of ETC intensity measures which together comprehensively describe both the dynamical and impact-relevant nature of ETC intensity.
This article is included in the Encyclopedia of Geosciences
Cedric G. Ngoungue Langue, Christophe Lavaysse, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 25, 147–168, https://doi.org/10.5194/nhess-25-147-2025, https://doi.org/10.5194/nhess-25-147-2025, 2025
Short summary
Short summary
The present study addresses the predictability of heat waves at subseasonal timescales in West African cities over the period 2001–2020. Two models, the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office models, were evaluated using two reanalyses: ERA5 and MERRA. The results suggest that at subseasonal timescales, the forecast models provide a better forecast than climatology, but the hit rate and false alarm rate are sub-optimal.
This article is included in the Encyclopedia of Geosciences
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025, https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
This article is included in the Encyclopedia of Geosciences
Georgy Ayzel and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 41–47, https://doi.org/10.5194/nhess-25-41-2025, https://doi.org/10.5194/nhess-25-41-2025, 2025
Short summary
Short summary
Forecasting rainfall over the next hour is an essential feature of early warning systems. Deep learning (DL) has emerged as a powerful alternative to conventional nowcasting technologies, but it still struggles to adequately predict impact-relevant heavy rainfall. We think that DL could do much better if the training tasks were defined more specifically and that such specification presents an opportunity to better align the output of nowcasting models with actual user requirements.
This article is included in the Encyclopedia of Geosciences
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 24, 4683–4706, https://doi.org/10.5194/nhess-24-4683-2024, https://doi.org/10.5194/nhess-24-4683-2024, 2024
Short summary
Short summary
Eastern Europe's heat wave history is explored from 1885 to 2023, with a focus on pre-1960 events. The study reveals two periods with more frequent and intense heat waves (HWs): 1920s–1960s and 1980s–present. The research highlights the importance of a long-term perspective, revealing that extreme heat events have occurred throughout the entire study period, and it emphasizes the combined influence of climate change and natural variations on increasing HW severity.
This article is included in the Encyclopedia of Geosciences
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024, https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary
Short summary
A historic derecho in the USA is presented. The 29 June 2012 derecho caused more than 20 deaths and millions of US dollars of damage. We use a regional climate model to understand how model fidelity changes under different initial conditions. We find changes drive different convective conditions, resulting in large variation in the simulated hazards. The variation using different reanalysis data shows that framing these results in the context of contemporary and future climate is a challenge.
This article is included in the Encyclopedia of Geosciences
Hugo Marchal, François Bouttier, and Olivier Nuissier
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-208, https://doi.org/10.5194/nhess-2024-208, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This paper investigates the relationship between changes in weather forecasts and predictability, which has so far been considered weak. By focusing on the persistence of weather scenarios over successive forecasts, we found that it significantly affects the reliability of forecasts.
This article is included in the Encyclopedia of Geosciences
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024, https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past hail days in Switzerland from 1959–2022. This new time series reveals a significant increase in hail day occurrences over the last 7 decades. We link this trend to increases in moisture and instability variables in the models. This time series can now be used to unravel the complexities of Swiss hail occurrence and to understand what drives its year-to-year variability.
This article is included in the Encyclopedia of Geosciences
Marc Lemus-Canovas, Sergi Gonzalez-Herrero, Laura Trapero, Anna Albalat, Damian Insua-Costa, Martin Senande-Rivera, and Gonzalo Miguez-Macho
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-192, https://doi.org/10.5194/nhess-2024-192, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study explores the 2022 heatwaves in the Pyrenees, examining the factors that contributed to their intensity and distribution. The June event was driven by strong winds that created uneven temperature patterns, while the July heatwave featured calmer conditions and more uniform temperatures. Human-driven climate change has made these heatwaves more severe compared to the past. This research helps us better understand how climate change affects extreme weather in mountainous regions.
This article is included in the Encyclopedia of Geosciences
Diego Saúl Carrió, Vincenzo Mazzarella, and Rossella Ferretti
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-177, https://doi.org/10.5194/nhess-2024-177, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Populated coastal regions in the Mediterranean are known to be severely affected by extreme weather events that are initiated over maritime regions. These weather events are known to pose a serious problem in terms of numerical predictability. Different Data Assimilation techniques are used in this study with the main aim of enhancing short-range forecasts of two challenging severe weather events.
This article is included in the Encyclopedia of Geosciences
Thomas Loridan and Nicolas Bruneau
EGUsphere, https://doi.org/10.5194/egusphere-2024-3253, https://doi.org/10.5194/egusphere-2024-3253, 2024
Short summary
Short summary
Tropical Cyclone (TC) risk models have been used by the insurance industry to quantify occurrence and severity risk since the 90s. To date these models are mostly built from backward looking statistics and portray risk under a static view of the climate. We here introduce a novel approach, based on machine learning, that allows sampling of climate variability when assessing TC risk globally. This is of particular importance when computing forward looking views of TC risk.
This article is included in the Encyclopedia of Geosciences
Herijaona Hani-Roge Hundilida Randriatsara, Eva Holtanova, Karim Rizwan, Hassen Babaousmail, Mirindra Finaritra Tanteliniaina Rabezanahary, Kokou Romaric Posset, Donnata Alupot, and Brian Odhiambo Ayugi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-191, https://doi.org/10.5194/nhess-2024-191, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study aims to analyze the spatiotemporal characteristics of drought (duration, frequency, severity, intensity) over Madagascar during 1981–2022 by using Standardized Precipitation Index (SPI-3, -6 and -12). Additionally, the impact of drought on vegetation over the studied area was assessed based on the relationship evaluation between SPI and the Normalized Difference Vegetation Index (NDVI) during 2000–2022.
This article is included in the Encyclopedia of Geosciences
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024, https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance compared to a single meteorological drought index or agricultural drought index in terms of drought identification.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
This article is included in the Encyclopedia of Geosciences
Jannick Fischer, Pieter Groenemeijer, Alois Holzer, Monika Feldmann, Katharina Schröer, Francesco Battaglioli, Lisa Schielicke, Tomáš Púčik, Christoph Gatzen, Bogdan Antonescu, and the TIM Partners
EGUsphere, https://doi.org/10.5194/egusphere-2024-2798, https://doi.org/10.5194/egusphere-2024-2798, 2024
Short summary
Short summary
Strong thunderstorms have been studied mainly over flat terrain and in computer simulations in the past. However, they are particularly frequent near mountain ranges, which emphasizes the need to study storms near mountains. This article gives an overview about our existing knowledge on this topic and presents plans for a large European field campaign with the goals to fill these knowledge gaps, validate tools for thunderstorm warnings, and improve numerical weather prediction near mountains.
This article is included in the Encyclopedia of Geosciences
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024, https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Short summary
The train effect is related to convective cells that pass over the same place. Trains produce heavy rainfall and sometimes floods and are reported in North America during spring and summer. In Israel, 17 trains associated with Cyprus lows were identified by radar images and were found within the cold sector south of the low center and in the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km; last 1–3 h; and yield 35 mm of rainfall up to 60 mm.
This article is included in the Encyclopedia of Geosciences
Lou Brett, Christopher J. White, Daniela I.V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-182, https://doi.org/10.5194/nhess-2024-182, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events and compounding flooding. The review also highlights opportunities for research in the coming years.
This article is included in the Encyclopedia of Geosciences
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024, https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
This article is included in the Encyclopedia of Geosciences
Katharina Küpfer, Alexandre Tuel, and Michael Kunz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2803, https://doi.org/10.5194/egusphere-2024-2803, 2024
Short summary
Short summary
Using loss data, we assess when and how single and multiple types of meteorological extremes (river floods and heavy rainfall events, windstorms and convective gusts, and hail). We find that the combination of several types of hazards clusters robustly on a seasonal scale, whereas only some single hazard types occur in clusters. This can be associated with higher losses compared to isolated events. We argue for the relevance of jointly considering multiple types of hazards.
This article is included in the Encyclopedia of Geosciences
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024, https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the vapor pressure deficit (VPD), an important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal shows the potential for using smartphone data to compliment the regular weather station network while also providing high spatial resolution of the VPD index.
This article is included in the Encyclopedia of Geosciences
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
This article is included in the Encyclopedia of Geosciences
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
This article is included in the Encyclopedia of Geosciences
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
This article is included in the Encyclopedia of Geosciences
Xiaoxiang Guan, Dung Viet Nguyen, Paul Voit, Bruno Merz, Maik Heistermann, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-143, https://doi.org/10.5194/nhess-2024-143, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We evaluated a multi-site stochastic regional weather generator (nsRWG) for its ability to capture the cross-scale extremity of high precipitation events (HPEs) in Germany. We generated 100 realizations of 72 years of daily synthetic precipitation data. The performance was assessed using WEI and xWEI indices, which measure event extremity across spatio-temporal scales. Results show nsRWG simulates well the extremity patterns of HPEs, though it overestimates short-duration, small-extent events.
This article is included in the Encyclopedia of Geosciences
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
This article is included in the Encyclopedia of Geosciences
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
This article is included in the Encyclopedia of Geosciences
Cited articles
Adelekan, I. O. and Asiyanbi, A. P.: Flood risk perception in flood-affected
communities in Lagos, Nigeria, Nat. Hazards, 80, 445–469, 2016.
Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river
flood risk at the global scale, Climatic Change, 134, 387–401,
https://doi.org/10.1007/s10584-014-1084-5, 2014.
Auerswald, K., Moyle, P., Seibert, S. P., and Geist, J.: HESS Opinions:
Socio-economic and ecological trade-offs of flood management–benefits of a
transdisciplinary approach, Hydrol. Earth Syst. Sci., 23, 1035–1044, https://doi.org/10.5194/hess-23-1035-2019, 2019.
Blöschl, G., Hall, J., Parajka, J., Perdigao, R. A. P., Merz, B.,
Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga, M.,
Canjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K.,
Frolova, N., Gorbachova, L., Gul, A., Hannaford, J., Harrigan, S., Kireeva,
M., Kiss, A., Kjeldsen, T. R., Kohnova, S., Koskela, J. J., Ledvinka, O.,
Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P.,
Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski. I., Rogger.
M., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Viglione, A.,
Volpi, E., Wilson, D., Zaimi, K., and Živkovic, N.: Changing climate
shifts timing of European floods, Science, 357, 588–590, https://doi.org/10.1126/science.aan2506, 2017.
Dankers, R., Arnell, N. W., Clark, D. B., Falloon, P. D., Fekete, B.
M., Gosling, S. N., Heinke, J., Kim, H., Masaki, Y., Satoh, Y., Stacke,
T., Wada, Y., and Wisser, D.: First look at changes in flood hazard in the
inter-sectoral impact model intercomparison project ensemble, P.
Natl. Acad. Sci. USA, 111, 3257–3261, https://doi.org/10.1073/pnas.1302078110, 2014.
Daupras, F., Antoine, J. M., Becerra, S., and Peltier, A.: Analysis of the
robustness of the French flood warning system: a study based on the 2009 flood of the Garonne River, Nat. Hazards, 75, 215–241, 2015.
Di Baldassarre, G., Montanari, A., Lins, H., Koutsoyiannis, D., Brandimarte,
L., and Blöschl, G.: Flood fatalities in Africa: from diagnosis to
mitigation, Geophys. Res. Lett., 37, L22402, https://doi.org/10.1029/2010GL045467, 2010.
Di Baldassarre, G., Kemerink, J. S., Kooy, M., and Brandimarte, L.: Floods and societies: the spatial distribution of water-related disaster risk and its dynamics, Wiley Interdisciplin, Rev,: Water, 1, 133–139, 2014.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte,
L., and Blöschl, G.: Perspectives on socio-hydrology: Capturing feedbacks
between physical and social processes, Water Resour. Res., 51, 4770–4781, 2015.
Dieperink, C., Hegger, D. L. T., Bakker, M. H. N., Kundzewicz, Z. W., Green,
C., and Driessen, P. P. J.: Recurrent governance challenges in the
implementation and alignment of flood risk management strategies: a review,
Water Resour. Manage., 30, 4467–4481, https://doi.org/10.1007/s11269-016-1491-7, 2016.
Driessen, P. P. J., Hegger, D. L. T., Bakker, M. H. N., Rijswick, H. F. M.
W. V., and Kundzewicz, Z. W.: Toward more resilient flood risk governance,
Ecol. Soc., 21, 53, https://doi.org/10.5751/ES-08921-210453, 2016.
EASAC – European Academies' Science Advisory Council: Extreme weather events
in Europe, Preparing for climate change adaptation: an update on EASAC's 2013 study, available at: https://easac.eu/fileadmin/PDF_s/reports_statements/Extreme_Weather/EASAC_Statement_Extreme_Weather_Events_March_2018_FINAL.pdf
(last access: 28 June 2019), 2018.
EU – European Union: Directive 2007/60/EC of the European parliament and of
the council of 23 October 2007 on the assessment and management of flood
risks, Offic. J. Europ. Un., L288, 27–34, 2007.
Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K.
L., Mastrandrea, M. D., Mach, K. J., Plattner, G. K., Allen, S. K., Tignor,
M., and Midgley, P. M.: Managing the risks of extreme events and disasters to
advance climate change adaptation, in: Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC),
Cambridge University Press, Cambridge, UK, 2012.
Gemmer, M., Wilkes, A., and Vaucel, L. M.: Governing climate change
adaptation in the EU and China: An analysis of formal institutions, Adv.
Clim/ Change Res/, 2, 1–11, 2011.
Giuntoli, I., Vidal, J. P., Prudhomme, C., and Hannah, D. M.: Future
hydrological extremes: the uncertainty from multiple global climate and
global hydrological models, Earth Syst. Dynam., 6, 267–285,
https://doi.org/10.5194/esd-6-267-2015, 2015.
Guo, S., Zhang, H., Chen, H., Peng, D., Liu, P., and Pang, B.: A reservoir
flood forecasting and control system for China, Hydrolog. Sci.
J., 49, 959–972, 2004.
Hegger, D. L. T., Driessen, P. P. J., Wiering, M., Rijswick, H. F. M.
W., Kundzewicz, Z. W., Matczak, P., Crabbé, A., Raadgever, G.
T., Bakker, M. H. N., Priest, S. J., Larrue, C., and Ek, K.: Toward more flood resilience: Is a diversification of flood risk management strategies the way forward?, Ecol. Soc., 21, 52–71, https://doi.org/10.5751/ES-08854-210452, 2016.
Hirabayashi, Y, Kanae, S., Emori, S., Oki, T., and Kimoto, M.: Global
projections of changing risks of floods and droughts in a changing climate,
Hydrolog. Sci. J., 53, 754–772, https://doi.org/10.1623/hysj.53.4.754, 2008.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change,
Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/nclimate1911, 2013.
Hodgkins, G. A., Whitfield, P. H., Burn, D. H., Hannaford, J., Renard, B.,
Stahl, K., Fleig, A. K., Madsen, H., Mediero, L., Korhonen, J., Murphy, C.,
and Wilson, D.: Climate-driven variability in the occurrence of major floods
across North America and Europe, J. Hydrol., 552, 704–717,
https://doi.org/10.1016/j.jhydrol.2017.07.027, 2017.
Jongman, B., Winsemius, H. C., Aerts, J. C., de Perez, E. C., van Aalst, M.
K., Kron, W., and Ward, P. J.: Declining vulnerability to river floods and
the global benefits of adaptation, P. Natl. Acad. Sci. USA, 112, E2271–E2280, 2015.
Kates, R. W., Colten, C. E., Laska, S., and Leatherman, S. P.:
Reconstruction of New Orleans after Hurricane Katrina: A research
perspective, P. Natl. Acad. Sci. USA, 103, 14653–14660, 2006.
Koç, G. and Thieken, A. H.: The relevance of flood hazards and impacts
in Turkey: What can be learned from different disaster loss databases?,
Nat. Hazards, 91, 375–408, 2018.
Kreibich, H., Di Baldassarre, G., Vorogushyn, S., Aerts, J. C., Apel, H.,
Aronica, G. T., Arnbjerg-Nielsen, K., Bouwer, L. M., Bubeck, P., Caloiero,
T., Chinh Do, T., Cortès, M., Gain, A. K., Giampá, V., Kuhlicke, C.,
Kundzewicz, Z. W., Carmen Llasat, M., Mård, J., Matczak, P., Mazzoleni,
M., Molinari, D., Dung, N. V., Petrucci, O., Schröter, K., Slager,
K., Thieken, A. H., Ward, P. J., and Merz, B.: Adaptation to flood risk:
Results of international paired flood event studies, Earth's Future, 5,
953–965, 2017.
Kundzewicz, Z. W. and Schellnhuber, H. J.: Floods in the IPCC TAR
perspective, Nat. Hazards, 31, 111–128, 2004.
Kundzewicz, Z. W. and Xia, J.: Towards an improved flood preparedness system
in China, Hydrolog. Sci. J., 49, 941–944, 2004.
Kundzewicz, Z. W., Graczyk, D., Maurer, T., Pińskwar, I., Radziejewski,
M., Svensson, C., and Szwed, M.: Trend detection in river flow series:
1. Annual maximum flow, Hydrolog. Sci. J., 50, 797–810, 2005.
Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N.,
Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood,
R., Brakenridge, G. R., Kron, W., Benito, G., Honda, Y., Takahashi, K., and
Sherstyukov, B.: Flood risk and climate change: global and regional
perspectives, Hydrolog. Sci. J., 59, 1–28, 2014.
Kundzewicz, Z. W., Krysanova, V., Dankers, R., Hirabayashi, Y., Kanae, S.,
Hattermann, F. F., Huang, S., Milly, P. C. D., Stoffel, M., Driessen, P. P.
J., Matczak, P., Quevauviller, P., and Schellnhuber, H. J.: Differences in
flood hazard projections in Europe – their causes and consequences for
decision making, Hydrolog. Sci. J., 62, 1–14, 2017.
Kundzewicz, Z. W., Krysanova, V., Benestad, R. E., Hov, Ø., Piniewski, M.,
and Otto, I. M.: Uncertainty in climate change impacts on water resources, Environ. Sci. Policy, 79, 1–8, 2018a.
Kundzewicz, Z. W., Hegger, D. L. T., Matczak, P., and Driessen, P. P. J.:
Flood risk reduction: structural measures and diverse strategies, P. Natl. Acad. Sci. USA, 115, 12321–12325, 2018b.
Kundzewicz, Z. W., Pińskwar, I., and Brakenridge, G. R.: Changes in river
flood hazard in Europe: a review, Hydrol. Res., 49, 294–302, https://doi.org/10.2166/nh.2017.016, 2018c.
Lins, H. F. and Slack, J. R.: Streamflow trends in the United States, Geophys. Res. Lett., 26, 227–230, 1999.
Lins, H. F. and Slack, J. R.: Seasonal and regional characteristics of
U.S. streamflow trends in the United States from 1940 to 1999, Phys. Geogr.,
26, 489–501, 2005.
Ludy, J. and Kondolf, G. M.: Flood risk perception in lands “protected” by
100-year levees, Nat. Hazards, 61, 829–842, 2012.
Madsen, H., Lawrence, D., Lang, M., Martinkova, M., and Kjeldsen T. R.:
Review of trend analysis and climate change projections of extreme
precipitation and floods in Europe, J. Hydrol., 519, 3634–3650, 2014.
Mård, J., Di Baldassarre, G., and Mazzoleni, M.: Nighttime light data
reveal how flood protection shapes human proximity to rivers, Sci.
Adv., 4, eaar5779, https://doi.org/10.1126/sciadv.aar5779, 2018.
Marks, D. and Thomalla, F.: Responses to the 2011 floods in Central
Thailand: Perpetuating the vulnerability of small and medium enterprises?,
Nat. Hazards, 87, 1147–1165, 2017.
Mechler, R. and Bouwer, L. M.: Understanding trends and projections of
disaster losses and climate change: is vulnerability the missing link?,
Climatic Change, 133, 23–35, 2015.
Milly, P. C. D., Wetherald, R. T., Dunne, K. A., and Delworth, T. L.:
Increasing risk of great floods in a changing climate, Nature, 415, 514–517, 2002.
Nieland, C. and Mushtaq, S.: The effectiveness and need for flash flood
warning systems in a regional inland city in Australia, Nat. Hazards, 80,
153–171, 2016.
Paprotny, D. and Terefenko, P.: New estimates of potential impacts of sea
level rise and coastal floods in Poland, Nat. Hazards, 85, 1249–1277, 2017.
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M.,
Sorteberg, A., Vera, C., and Zhang, X.: Changes in climate extremes and their
impacts on the natural physical environment, in: Managing the risks of extreme events and disasters to advance climate change
adaptation, A special report of working groups I and II of the
Intergovernmental Panel on Climate Change (IPCC), edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea,
M. D., Mach, K. J., Plattner, G. K., Allen, S. K., Tignor, M., and Midgley,
P. M., Cambridge University Press, Cambridge, and New York, NY, 2012.
Shaw, S. B. and Riha, S. J.: Assessing possible changes in flood frequency
due to climate change in mid-sized watersheds in New York State, USA,
Hydrol. Process., 25, 2542–2550, 2011.
Surminski, S., Aerts, J. C. J. H., Botzen, W. J. W., Hudson, P., Mysiak, J.,
and Pérez-Blanco, C. D.: Reflections on the current debate on how to
link flood insurance and disaster risk reduction in the European Union,
Nat. Hazards, 79, 1451–1479, 2015.
UNISDR – The United Nations Office for Disaster Risk Reduction: Hyogo
Framework for action 2005–2015: Building the resilience of nations and
communities to disasters, available at: https://www.unisdr.org/files/1037_hyogoframeworkforactionenglish.pdf
(last access: 28 June 2019), 2007.
UNISDR – The United Nations Office for Disaster Risk Reduction: The human
cost of weather-related disasters 1995–2015, available at:
https://www.unisdr.org/files/46796_cop21weatherdisastersreport2015.pdf
(last access: 28 June 2019), 2015.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Bianchi, A., Dottori, F.,
and Feyen, L.: Climatic and socioeconomic controls of future coastal flood
risk in Europe, Nat. Clim. Change, 8, 776–780, 2018.
White, G. F.: Human Adjustments to Floods, Department of Geography, Research
Paper No. 29, Department of Geography, University of Chicago, Chicago, 225 pp., 1945.
Willner, S. N., Levermann, A., Zhao, F., and Frieler, F.: Adaptation required
to preserve future high-end river flood risk at present levels, Sci. Adv., 4, eaao1914, https://doi.org/10.1126/sciadv.aao1914, 2018.
Wittfogel, K. A.: The hydraulic civilization: Man's role in changing the
Earth, University of Chicago Press, Chicago, IL, USA, 1956.
Xu, K., Milliman, J. D., and Xu, H.: Temporal trend of precipitation and
runoff in major Chinese Rivers since 1951, Global Planet. Change, 73,
219–232, 2010.
Zhang, J. Q., Zhou, C. H., Xu, K. Q., and Watanabe, M.: Flood disaster
monitoring and evaluation in China, Environ. Hazards, 4, 33–43, 2002.
Short summary
Considering flood risk composed of hazard, exposure, and vulnerability from global to local scales, this paper reviews and presents increasing observed flood losses and projections of flood hazard and losses. We acknowledge existence of multiple driving factors and of considerable uncertainty, in particular with regards to projections for the future. Finally, this paper analyses options for flood risk reduction from a global framework to regional and local scales.
Considering flood risk composed of hazard, exposure, and vulnerability from global to local...
Altmetrics
Final-revised paper
Preprint