Changes in the occurrence of rainfall-induced landslides in Calabria, southern Italy, in the 20th century
Abstract. Only a few studies have investigated the geographical and temporal variations in the frequency and distribution of rainfall-induced landslides, and the consequences of the variations on landslide risk. Lack of information limits the possibility to evaluate the impact of environmental and climate changes on landslide frequency and risk. Here, we exploit detailed historical information on landslides and rainfall in Calabria, southern Italy, between 1921 and 2010 to study the temporal and the geographical variation in the occurrence of rainfall-induced landslides and in their impact on the population. We exploit a catalogue with information on historical landslides from June 1920 to December 2010, and daily rainfall records obtained by a network of 318 rain gauges in the same period, to reconstruct 448 493 rainfall events (RE). Combining the rainfall and the landslide information, we obtain a catalogue of 1466 rainfall events with landslides (REL), where an REL is the occurrence of one or more landslide during or immediately after a rainfall event. We find that (i) the geographical and the temporal distributions of the rainfall-induced landslides have changed in the observation period, (ii) the monthly distribution of the REL has changed in the observation period, and (iii) the average and maximum cumulated event rainfall that have resulted in landslides in the recent 30-year period 1981–2010 are lower than the rainfall necessary to trigger landslides in previous periods, whereas the duration of the RE that triggered landslides has remained the same. We attribute the changes to variations in the rainfall conditions and to an increased vulnerability of the territory. To investigate the variations in the impact of REL on the population, we compared the number of REL in each of the 409 municipalities in Calabria with the size of the population in the municipalities measured by national Censuses conducted in 1951, 1981, and 2011. We adopted two strategies; the first strategy considered impact as IREL = #REL / P, and the second strategy measured impact as RREL = #REL × P, where #REL is the total number of REL in a period, and P is the size of the population in the same period and geographical area. The analysis has revealed a complex pattern of changes in the impact of rainfall-induced landslides in Calabria in the recent past, with areas where IREL and RREL have increased, and other areas where they have decreased. Municipalities where IREL has increased are mainly in the mountains, and municipalities where RREL has increased are mainly along the coasts. The complexity of the changes in the frequency and impact of rainfall-induced landslides observed in Calabria suggests that it remains difficult and uncertain to predict the possible variations in the frequency and impact of landslide in response to future climatic and environmental changes.