Development of an inverse method for coastal risk management
Abstract. Recent flooding events, like Katrina (USA, 2005) or Xynthia (France, 2010), illustrate the complexity of coastal systems and the limits of traditional flood risk analysis. Among other questions, these events raised issues such as: "how to choose flooding scenarios for risk management purposes?", "how to make a society more aware and prepared for such events?" and "which level of risk is acceptable to a population?". The present paper aims at developing an inverse approach that could seek to address these three issues. The main idea of the proposed method is the inversion of the usual risk assessment steps: starting from the maximum acceptable hazard level (defined by stakeholders as the one leading to the maximum tolerable consequences) to finally obtain the return period of this threshold. Such an "inverse" approach would allow for the identification of all the offshore forcing conditions (and their occurrence probability) inducing a threat for critical assets of the territory, such information being of great importance for coastal risk management. This paper presents the first stage in developing such a procedure. It focuses on estimation (through inversion of the flooding model) of the offshore conditions leading to the acceptable hazard level, estimation of the return period of the associated combinations, and thus of the maximum acceptable hazard level. A first application for a simplified case study (based on real data), located on the French Mediterranean coast, is presented, assuming a maximum acceptable hazard level. Even if only one part of the full inverse method has been developed, we demonstrate how the inverse method can be useful in (1) estimating the probability of exceeding the maximum inundation height for identified critical assets, (2) providing critical offshore conditions for flooding in early warning systems, and (3) raising awareness of stakeholders and eventually enhance preparedness for future flooding events by allowing them to assess risk to their territory. The next challenge is to develop a framework to properly identify the acceptable hazard level, as an input to the present inverse approach.